
Rob MassomAustralian Antarctic Division
Rob Massom
PhD Scott Polar Research Institute (Univ. of Cambridge, UK)
About
153
Publications
37,636
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,521
Citations
Introduction
Skills and Expertise
Publications
Publications (153)
Antarctic landfast sea ice (fast ice) is stationary sea ice that is attached to the coast, grounded icebergs, ice shelves, or other protrusions on the continental shelf. Fast ice forms in narrow (generally up to 200 km wide) bands, and ranges in thickness from centimeters to tens of meters. In most regions, it forms in autumn, persists through the...
Sea ice is a key habitat in the high latitude Southern Ocean and is predicted to change in its extent, thickness and duration in coming decades. The sea-ice cover is instrumental in mediating ocean–atmosphere exchanges and provides an important substrate for organisms from microbes and algae to predators. Antarctic krill, Euphausia superba, is reli...
In the marginal ice zone (MIZ), where ocean waves and sea ice interact, waves can produce flows of water across ice floe surfaces in a process known as wave overwash. Overwash potentially influences wave propagation characteristics, floe thermodynamics, and floe surface biological and chemical processes. However, the extent of the MIZ affected by o...
The Southern Ocean plays a central role in the Earth System by connecting the Earth’s ocean
basins, and it is a crucial link between the deep ocean, surface ocean and atmosphere. Hence,
the ongoing changes in the Southern Ocean impact global climate, rates of sea level rise,
biogeochemical cycles and ecological systems. Yet, understanding of the ca...
The Antarctic marginal ice zone (MIZ) is a highly dynamic region where sea ice interacts with ocean surface waves generated in ice-free areas of the Southern Ocean. Improved large-scale (satellite-based) estimates of MIZ extent and variability are crucial for understanding atmosphere–ice–ocean interactions and biological processes and detection of...
A model of the extent of overwash into fields of sea ice is developed. The extent model builds on previous work modelling overwash of a single floe by regular waves to include irregular waves and many random floes. The extent model is validated against laboratory experiments. The model is used to study the the extent of overwash into fields of panc...
Sea ice can attenuate Southern Ocean swell before it reaches Antarctic ice shelves and imposes flexural stresses, which promote calving of outer ice-shelf margins and influence ice shelf stability. An algorithm is developed to identify sea ice-free corridors that connect the open Southern Ocean to Antarctic ice shelves from daily satellite sea ice...
Increased exposure of Antarctica’s coastal environment to open ocean and waves due to loss of a protective sea-ice “buffer” has important ramifications for ice-shelf stability, coastal erosion, important ice-ocean-atmosphere interactions and shallow benthic ecosystems. Here, we introduce a climate and environmental metric based on the ongoing long-...
The Antarctic marginal ice zone (MIZ) is a highly dynamic region where sea ice interacts with ocean surface waves generated in ice-free areas of the Southern Ocean. Improved large-scale (satellite-based) estimates of MIZ width and variability are crucial for understanding atmosphere-ice-ocean interactions and biological processes, and detection of...
Landfast sea ice (fast ice) is an important though poorly understood component of the cryosphere on the Antarctic continental shelf, where it plays a key role in atmosphere–ocean–ice-sheet interaction and coupled ecological and biogeochemical processes. Here, we present a first in-depth baseline analysis of variability and change in circum-Antarcti...
The Antarctic outer coastal margin (i.e. the coastline itself or the terminus or front of ice shelves, whichever is adjacent to the ocean) is a key
interface between the ice sheet and terrestrial environments and the Southern Ocean. Its physical configuration (including both length scale of
variation, orientation, and aspect) has direct bearing on...
Increased exposure of Antarctica’s coastal environment to ocean waves due to loss of a protective sea-ice “buffer” has important ramifications for ice-shelf stability, coastal erosion, important ice-ocean-atmosphere interactions and shallow benthic ecosystems. Here, we introduce an important new climate and environmental metric based on the ongoing...
Presentation at the AMS 16th Conference on Polar Meteorology and Oceanography, 1-4 June 2021.
Landfast sea ice (fast ice) is an important though poorly-understood component of the cryosphere on the Antarctic continental shelf, where it plays a key role in atmosphere-ocean-ice sheet interaction and coupled ecological and biogeochemical processes. Here, we present a first in-depth baseline analysis of variability and change in circum-Antarcti...
Landfast sea ice (fast ice) is an important component of the Antarctic nearshore marine environment, where it strongly modulates ice sheet–ocean–atmosphere interactions and biological and biogeochemical processes, forms a key habitat, and affects logistical operations. Given the wide-ranging importance of Antarctic fast ice and its sensitivity to c...
This study reports the occurrence of intense atmospheric rivers (ARs) during the two large Weddell Polynya events in November 1973 and September 2017 and investigates their role in the opening events via their enhancement of sea ice melt. Few days before the polynya openings, persistent ARs maintained a sustained positive total energy flux at the s...
Landfast sea ice (fast ice) is an important component of the Antarctic nearshore marine environment, where it strongly modulates ice sheet-ocean-atmosphere interactions and biological and biogeochemical processes, forms a key habitat, and affects logistical operations. Given the wide-ranging importance of Antarctic fast ice and its sensitivity to c...
Antarctic coastal polynyas serve as crucially-important sea-ice “factories” and are (in certain cases) of global significance as sites of Antarctic Bottom Water (AABW) formation e.g., the Cape Darnley Polynya (CDP) in East Antarctica. As such, understanding change and variability in their behaviour, and the factors responsible, is a high priority i...
The Antarctic outer coastal margin (i.e., the coastline itself, or the terminus/front of ice shelves, whichever is adjacent to the ocean) is a key interface between the ice-sheet and terrestrial environments and the Southern Ocean. Its physical configuration (including both length scale of variation and orientation/aspect) has direct bearing on sev...
The Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical, and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the So...
Satellite-derived Antarctic sea ice extent has displayed a slight upward since 1979, but with strong temporal and regional variability—the drivers of which are poorly understood. Here, we conduct numerical experiments with a circum-Antarctic ocean–sea ice–ice shelf model driven by realistic atmospheric surface boundary conditions to examine the fac...
Snow is the most reflective, and also the most insulative, natural material on Earth. Consequently, it is an integral part of the sea-ice and climate systems. However, the spatial and temporal heterogeneities of snow pose challenges for observing, understanding and modelling those systems under anthropogenic warming. Here, we survey the snow–ice sy...
Antarctic sea ice trends have to date been linked to surface winds, through sea ice motion and atmospheric thermal advection. This paper analyzes sea ice volume in 10 Coupled Model Intercomparison Project Phase 5 (CMIP5) model configurations under pre-industrial and historical climate forcings, to compare the relative importance of ice motion and t...
Overall Antarctic sea ice extent in the 2016 spring attained a record minimum for the satellite period (1979–2016), presenting an abrupt departure from the record maxima in previous years and the slight upward trend since 1979. In 2016 the atmospheric conditions over the Southern Ocean changed dramatically from the prevailing cold and westerly anom...
In 2017, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-reached new record highs. The annual global average carbon dioxide concentration at Earth's surface for 2017 was 405.0 ± 0.1 ppm, 2.2 ppm greater than for 2016 and the highest in the modern atmospheric measurement record and in ice cor...
We show how imagery from uncalibrated airborne cameras can be used to reconstruct the snow/air interface on Antarctic sea ice, using data collected on the SIPEX-II research voyage during austral spring 2012. Imagery collected by an airborne surveying package was used to develop a 3D surface model using a structure-from-motion approach. This model w...
Understanding the causes of recent catastrophic ice shelf disintegrations is a crucial step towards improving coupled models of the Antarctic Ice Sheet and predicting its future state and contribution to sea-level rise. An overlooked climate-related causal factor is regional sea ice loss. Here we show that for the disintegration events observed (th...
Fast ice is an important component of Antarctic coastal marine ecosystems, providing a prolific habitat for ice algal communities. This work examines the relationships between normalized difference indices (NDI) calculated from under-ice radiance measurements and sea ice algal biomass and snow thickness for Antarctic fast ice. While this technique...
In contrast to a strong decrease in Arctic sea ice extent, overall Antarctic sea ice extent has modestly increased since 1979. Several hypotheses have been proposed for the net Antarctic sea ice expansion, including atmosphere/ocean circulation and temperature changes, sea ice-atmospheric-ocean feedback, increased precipitation, and enhanced basal...
Ch 7. Regional Climates: f. Europe and the Middle East
The spreading of Dense Shelf Water (DSW) from Antarctic coastal margins to lower latitudes plays a vital role in the ocean thermohaline circulation and the global climate system. Through enhanced localized sea ice production in Antarctic coastal polynyas, cold and saline DSW is formed over the continental shelf regions as a precursor to Antarctic B...
Investigating ecological relationships between predators and their environment is essential to understand the response of marine ecosystems to climate variability and change. This is particularly true in polar regions, where sea ice (a sensitive climate variable) plays a crucial yet highly dynamic and variable role in how it influences the whole ma...
Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year...
Ocean-cryosphere interactions along the Adélie and George V Land (AGVL) coast are investigated using a coupled ocean-sea ice-ice shelf model. The dominant feature of the Mertz Glacier Tongue (MGT), located at approximately 145°E, was a highly productive winter coastal polynya system, until its calving in February 2010 dramatically changed the regio...
Snow is a crucial and integral component of the sea ice system. It insulates the ice to retard the rate of thermodynamic ice thickening. At the same time, it contributes directly to sea-ice thickening through snow-ice formation, which can occur where the weight of the snow overburden leads to surface flooding. Snow has unique optical properties tha...
In 2012, Antarctic sea-ice coverage was marked by weak annual-mean climate anomalies that consisted of opposing anomalies early and late in the year (some setting new records) which were interspersed by near-average conditions for most of the austral autumn and winter. Here, we investigate the ocean-ice atmosphere system off East Antarctica, prior...
Over the past 37 years, satellite records show an increase in Antarctic sea ice cover that is most pronounced in the period of sea ice growth. This trend is dominated by increased sea ice coverage in the western Ross Sea, and is mitigated by a strong decrease in the Bellingshausen and Amundsen seas. The trends in sea ice areal coverage are accompan...
Deriving the snow depth on Antarctic sea ice is a key factor in estimating sea-ice thickness distributions from space or airborne altimeters. Using a linear regression to model snow depth from observed ‘total freeboard’, or the snow/ice surface elevation relative to sea level is an efficient and promising method for the estimation of snow depth for...
In late winter-early spring 2012, the second Sea Ice Physics and Ecosystems Experiment (SIPEX II) was conducted off Wilkes Land, East Antarctica, onboard R/V Aurora Australis. The sea-ice conditions were characterized by significantly thick first-year ice and snow, trapping the ship for about 10 days in the near coastal region. The deep snow cover...
Our current knowledge of broad-scale patterns of primary production in the Southern Ocean is derived from satellite ocean-colour estimates of chlorophyll a (Chl a) in the open ocean, typically in spring-summer. Here, we provide evidence that large-scale intra-ice phytoplankton surface aggregation occur off the coast of Antarctica during austral aut...
Abstract Recent attention has focused on accelerated glacial losses along the Amundsen Sea coast that result from changes in atmosphere and ocean circulation, with sea ice playing a mediating but not well-understood role. Here, we investigated how sea ice has changed in the Amundsen Sea over the period of 1979 to 2014, focusing on spatio-temporal c...
The Mertz Glacier tongue (MGT) in East Antarctica lost ~55% of its floating length in February 2010, when it calved large tabular iceberg C28 (78 x 35 km). We analyse the behavior of the MGT over the preceding 12 years using a variety of satellite data (SAR and Landsat imagery, and ICESat laser altimetry). Contact of its northwestern tip with the e...
Observations of Southern Hemisphere sea ice from passive microwave satellite measurements show that a new record maximum extent of 19.58 × 106km2 was reached on 30 September 2013; the extent is just over two standard deviations above the 1979-2012 mean and follows a similar record (19.48 × 106km2) in 2012. On the record day in 2013, sea-ice extent...
Accurately measuring and monitoring the thickness distribution of thin ice is crucial for accurate estimation of ocean atmosphere heat fluxes and rates of ice production and salt flux in ice-affected oceans. Here we present results from helicopter-borne brightness temperature (TB) measurements in the Southern Ocean in October 2012 and in the Sea of...
Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to ‘scan the hor...
Horizon scan methodologies 1,2,3,4 were customized for the Antarctic Science Horizon Scan aiming for broad community engagement and transparent decision-making. A database of 866 scientific questions was generated by two open community-wide, on-line solicitations. Submitted questions were expected to: i) be answerable by an achievable research desi...
Mahlon C. Kennicutt II, Steven L. Chown and colleagues outline the most pressing questions in southern polar research, and call for greater collaboration and environmental protection in the region.
Mahlon C. Kennicutt II, Steven L.
Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species chan...
For the first time in serveral years, the El Nino-Southern Oscillation did not dominate regional climate conditions around the globe. A weak La Ni a dissipated to ENSOneutral conditions by spring, and while El Nino appeared to be emerging during summer, this phase never fully developed as sea surface temperatures in the eastern conditions. Neverthe...
Sea ice is an important component of the Earth’s cryosphere. Observed and expected changes in the Earth’s climate system at the high latitudes are found to be partly linked to changes in the sea ice cover. The main characteristics describing the sea ice cover are A) the sea ice area fraction, B) the sea ice thickness, C) the sea ice motion, D) the...
Recent analyses have shown that significant changes have occurred in patterns of sea ice seasonality in West Antarctica since 1979, with wide-ranging climatic, biological and biogeochemical consequences. Here, we provide the first detailed report on long-term change and variability in annual timings of sea ice advance, retreat and resultant ice sea...
A new methodology for coincident floe-scale measurements of the surface elevation, snow depth, and ice draft (the thickness below the water line) of Antarctic sea ice has been demonstrated during two recent research voyages: the Australian-led Sea Ice Physics and Ecosystem Experiment II (SIPEX II) to East Antarctica in September–November 2012 and t...
As the world's ice diminishes in the face of climate change-from the dramatic decline in Arctic sea ice, to thinning at the margins of both the Greenland and Antarctic ice sheets, to retreating mountain glaciers the world over-Antarctic sea ice presents something of a paradox. The trend in total sea ice extent in the Antarctic has remained steady,...
1] This bi-polar analysis resolves ice edge changes on space/time scales relevant for investigating seasonal ice-ocean feedbacks and focuses on spatio-temporal changes in the timing of annual sea ice retreat and advance over 1979/ 80 to 2010/11. Where Arctic sea ice decrease is fastest, the sea ice retreat is now nearly 2 months earlier and subsequ...