From Floor Plans to Virtual Reality

Timothée Fréville, Charles Hamesse, Benoit Pairet, Rihab Lahouli, Rob Haelterman
XR Lab - Department of Mathematics
Royal Military Academy
Brussels, Belgium
timothee.freville@mil.be charles.hamesse @mil.be

Abstract—Creating realistic VR environments is a tedious task.
For many types of applications, these environments must respect
certain constraints or correspond as faithfully as possible to a real
place. Floor plans are a simple and abundant format that humans
can read and edit. As such, they are a good basis to create VR
environments that match real buildings. We propose a method
to convert floor plans to VR environments with minimal human
intervention. Leveraging traditional computer vision, machine
learning and 3D engines, our method is efficient but remains
flexible and fast, and creates simple yet realistic environments
that can be used for various VR applications. We demonstrate
results for our specific use case for Belgian Defence’s tactical
intervention teams.

Index Terms—TFloor plans, Virtual Reality, 3D environments

I. INTRODUCTION

Generating VR environments is a notoriously tedious task.
Depending on the target application, different levels of atten-
tion must be brought to different aspects of the environment.
Aiming for maximum photorealism is not always required, for
example in the case of serious gaming or procedure training
applications where the place, scale, behaviour and lifecycle
of objects are most important. For example, in the case of
firefighting training, rooms must feature doors, windows and
flammable props at relevant locations chosen by the instructor.

Floor plans are an easily understandable and editable format.
Moreover, they can be sketched quickly with widely available
software or even by hand. With the advent of machine learn-
ing for computer vision, methods for automatically parsing
floor plans have appeared. This allows software programs to
automatically create a digital representation of the floor plan,
which can then be turned into a 3D model. Then, this 3D
model can be turned into a VR environment. This is the work
we describe in this paper: a framework to turn floor plans into
VR environments automatically.

In addition to presenting our framework, we demonstrate its
usage for a solution much sought after by Belgian Defence’s
tactical intervention teams: being able to train in new environ-
ments that fit a rough description of a building: room geometry,
large pieces of furniture and most importantly: location of
doors and windows to enter and exit the premises.

II. RELATED WORK
Traditional methods to parse floor plans use classical image
processing methods to specific features which might indicate

The research presented in this paper has been funded by the Belgian Royal
Higher Institute for Defense, in the framework of the project DAP18/04.

the presence of walls, doors or similar objects. [8] uses image
vectorization and a Hough transform to perform line detection.
If the lines satisfy a specific graphical arrangement, they are
combined into walls. A similar method is proposed to extract
arcs and detect door hypotheses. An alternative method that
uses patch-based segmentation with visual words and does
not need image vectorization is proposed in [5]. In [2], an
algorithm is designed to differentiate between thick, medium,
and thin lines to detect walls and remove the components
outside the convex hull of the outer walls. In [4], noise removal
techniques, erosions and dilations are used to extract a thick
and a thin representation of the walls. The thin one is then
subtracted from the thick one, which results in a hollow
representation of walls with a constant thickness that can then
be used as a reference for 3D modeling.

More recently, deep learning-based methods have been
introduced. For example, [14] proposes a multi-task neural
network to learn to predict room-boundary elements (walls,
windows, doors) and room types (bedroom, kitchen, etc). This
is done using a shared encoder to extract features from the
floor plan image and one separate decoder for each task. The
architecture of the encoder and the decoders are based on VGG
[12]. In [15], an object detector based on Faster-RCNN [11] is
fine-tuned to learn to predict annotations in various floor plan
datasets. A similar approach is proposed in [13], but this time
using a variant of the YOLO object detector [10]. The floor
plan datasets used in this work include [9] and [3].

The field of 3D environment generation has progressed
dramatically in the last few years as it is heavily pushed by the
gaming industry. 3D engines such as Unity [7] or Unreal En-
gine [6] are becoming more and more straightforward to use,
flexible and powerful. Environments can be assembled from
3D props designed (and if need be, animated) beforehand,
manually or programmatically. A vast quantity of 3D models
is available on the marketplace, which makes the development
of new environments easier.

In this work, we combine traditional computer vision tech-
niques to detect room boundary features (walls, doors and
windows) with a deep learning-based method to detect the
interior objects and furniture (sofa, bed, etc) and ad-hoc map
generation scripts for Unreal Engine to turn floor plans into
VR-ready environments.

Fig. 1. Wall detection. Top: original floor plan. Bottom: extracted walls. The
image was a digital copy without any noise, taken from [4].

III. METHOD

We describe the different methods that we use to detect
walls, windows, doors and interior objects.

A. Detecting walls

Our method is based on [4], which mainly uses traditional
computer vision methods and is implemented using OpenCV.
The steps of the procedure to go from a grayscale floor plan
image to a list of wall coordinates are the following:

1) Conversion to a binary image using binary inverse
thresholding.

2) Noise removal method with opening (erosion then dila-
tion) to remove the thin details (e.g. furniture). At this
point, we have an image representing a thick version of
the walls.

3) Distance transform: the value of each pixel belonging
to a wall is replaced by the distance between this pixel
and the nearest black pixel (i.e. the nearest edge of the
wall)

4) Conversion of this distance image to a binary image,
again with binary thresholding. This results in an image
representing a thin version of the walls.

5) Subtraction of thin walls (Step 4) from thick walls (Step
2), which results in a representation of hollow walls with
a constant thickness.

A sample execution of this procedure is shown in Figure 1.

B. Detecting windows and doors

Detecting the location of windows and doors is done using
template matching and a specific procedure to distinguish
between doors and windows. Again, we use OpenCV for this

Fig. 2. Detection of windows (red) and doors (green).

part. First, we use a sample door as the reference patch from
which we extract ORB features. Then, we search for similar
features in the floor plan with a brute-force matcher. However,
this matching method returns multiple occurrences per door in
the floor plan. Therefore, we develop an algorithm to refine
these door proposals by keeping only the ones where the
feature points are found on the hole of a wall between two
rooms. Windows are then put at every hole in the walls that
are on the outer contour of the floor plan, i.e. they do not serve
as junctions between two rooms. Results of this procedure are
shown in Figure 2.

C. Detecting interior objects

Our implementation is based on [13], i.e. a YOLO object
detector fine-tuned on floor plan datasets with 12 classes
(sofa, sink, bed, etc). It is implemented using TensorFlow [1].
In addition to using the YOLO object detector to parse the
content of the room, we implement a post-processing method
to avoid duplicate detections: for each pair of overlapping

Fig. 3. Detection of interior objects.

Wall Detector

Wall Extruder

((Python))/ (Blender)
Window & Door Environment
Floor Plan — Detector Generator
(Python) (Unreal Engine)

:

Interior Object

Detector

(Python)

Fig. 4. Overview of our system.

bounding boxes, we keep only the one with the maximum
confidence. Example detections are shown in Figure 3.

D. Generating the VR environment

We use Unreal Engine and the Python API to create the
environment in an automated manner. We implement a script
that takes the list of objects returned from our previous
software components and spawns the related assets in the 3D
world at their respective position. To do so, we maintain a
list of the assets per type: sink, bed, sofa, double sofa, etc.
In addition to the walls, doors and windows, our method can
spawn 12 different types of objects.

E. Introducing randomness

To create environments that match the constraints imposed
by the floor plans but still exhibit some variety, we implement
a method that selects a given 3D asset randomly in a pre-
defined list for each asset type (sofa, dining table, etc).

——————

Fig. 5. Various dining table assets used in our system.
Our entire framework is depicted in Figure 4.

IV. EVALUATION

Our evaluation consists in taking three floor plans relevant
for our use case, running our method and visually assessing the
quality of the resulting environments. The floor plans in this
section were picked from internet searches and [4]. Our tests
are performed using a computer with an Intel i7 8-core CPU
and an Nvidia RTX2080Ti GPU. In terms of computational
time, the execution of our method only takes a few seconds:
running the detection algorithm (including the neural network
inference) takes but a fraction of a second, then a few seconds

Fig. 6. Experiment on the the first test floor plan. Top: original floor plan.
Bottom: 3D environment.

\

Fig. 7. Outcomes from the 2nd plan with the VR vision

are needed to instantiate the Unreal Engine level with the
necessary assets.

Results are shown in Figure 6 to Figure 11. While our
method allows to generate environments that match the floor

Fig. 9. Outcomes from the 2nd plan with the VR vision

geometry with minimal human intervention, in some cases
details can be missing or slightly wrong. For example, the size
of the windows and doors could be adjusted to better match the
holes in the walls. Using textures for the walls of rooms would
increase photorealism. Moreover, there a few occurrences of
misclassified doors and windows, which indicates that there is
room for improvement on the detectors too.

V. CONCLUSION

We have developed an automated framework to turn floor
plans into VR environments that feature walls, doors, win-
dows, and large pieces of furniture. Our system allows to build
VR-ready environments that depict the geometry of entire
floors with the locations of doors and windows, critical for
tactical intervention teams. As experienced during the tests,
there is room for improvement in each of the components
of the framework. Our approach is modular, so it will be

Fig. 10. Outcomes from the 3rd plan

Fig. 11. Outcomes from the 3rd plan with the VR vision

convenient to achieve this further work on each component
independently.

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[2] Sheraz Ahmed, Marcus Liwicki, Markus Weber, and Andreas Dengel.
Improved automatic analysis of architectural floor plans. In 2011
International Conference on Document Analysis and Recognition, pages
864-869, 2011.

[3] Chiranjoy Chattopadhyay . Repository of building plans (robin). 2019.

[4] Daniel Westberg. Floor plans to blender 3d. 2019.

[5] Lluis-Pere de las Heras, Joan Mas, Gemma Sanchez, and Ernest Valveny.
Wall patch-based segmentation in architectural floorplans. In 2011
International Conference on Document Analysis and Recognition, pages
1270-1274, 2011.

[6] Epic Games. Unreal engine. 2019.

[7]1 John K Haas. A history of the unity game engine. Worcester Polytechnic
Institute, 2014.

[8

[9

—

[10]

(11]

[12]

[13]
[14]

[15]

Sébastien Macé, Hervé Locteau, Ernest Valveny, and Salvatore Tabbone.
A system to detect rooms in architectural floor plan images. pages 167—
174, 06 2010.

Mathieu Delalandre. Systems evaluation synthetic documents (sesyd).
2019.

Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger.
pages 6517-6525, 07 2017.

Shaoging Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’15, page 91-99, Cambridge, MA,
USA, 2015. MIT Press.

Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In International Conference
on Learning Representations, 2015.

Deewan Singh. Object detection in floor plan images. 2019.

Z. Zeng, X. Li, Y. Yu, and C. Fu. Deep floor plan recognition
using a multi-task network with room-boundary-guided attention. In
2019 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 9095-9103, Los Alamitos, CA, USA, nov 2019. IEEE Computer
Society.

Zahra Ziran and Simone Marinai. Object detection in floor plan
images. In Luca Pancioni, Friedhelm Schwenker, and Edmondo Trentin,
editors, Artificial Neural Networks in Pattern Recognition, pages 383—
394, Cham, 2018. Springer International Publishing.

