Rita L Strack

Rita L Strack
Springer Nature Publishing Group · Nature Methods

Ph.D.

About

23
Publications
6,245
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,622
Citations
Citations since 2016
5 Research Items
1124 Citations
2016201720182019202020212022050100150
2016201720182019202020212022050100150
2016201720182019202020212022050100150
2016201720182019202020212022050100150
Introduction
Skills and Expertise
Additional affiliations
January 2012 - November 2014
Weill Cornell Medical College
Position
  • PostDoc Position

Publications

Publications (23)
Article
The green fluorescent protein GFP from Aequorea victoria has been engineered extensively in the past to generate variants suitable for protein tagging. Early efforts produced the enhanced variant EGFP and its monomeric derivative mEGFP, which have useful photophysical properties, as well as superfolder GFP, which folds efficiently under adverse con...
Preprint
The green fluorescent protein GFP from Aequorea victoria has been engineered extensively in the past to generate variants suitable for protein tagging. Early efforts produced the enhanced variant EGFP and its monomeric derivative mEGFP, which have useful photophysical properties, as well as superfolder GFP, which folds efficiently under adverse con...
Article
The changing face of super-resolution imaging
Article
Full-text available
RNA transcripts containing expanded nucleotide repeats cause many incurable diseases via various mechanisms. One such disorder, Fragile X-associated tremor ataxia syndrome (FXTAS), is caused by a non-coding r(CGG) repeat expansion (r(CGG)exp) that: (i) sequesters proteins involved in RNA metabolism in nuclear foci, causing deregulation of alternati...
Article
The ability to monitor RNAs of interest in living cells is crucial to understanding the function, dynamics, and regulation of this important class of molecules. In recent years, numerous strategies have been developed with the goal of imaging individual RNAs of interest in living cells, each with their own advantages and limitations. This chapter p...
Chapter
Our laboratory recently developed Spinach, an RNA mimic of GFP, which can be used to tag RNAs of interest for live-cell imaging experiments. However, although very bright in vitro, Spinach displays reduced fluorescence in the cellular environment. For this reason, we carried out systematic mutagenesis to create Spinach2, a superfolding derivative o...
Article
GFP and its derivatives revolutionized the study of proteins. Spinach is a recently reported in vitro-evolved RNA mimic of GFP, which as genetically encoded fusions makes possible live-cell, real-time imaging of biological RNAs without resorting to large RNA-binding protein-GFP fusions. To elucidate the molecular basis of Spinach fluorescence, we s...
Article
Spinach and Spinach2 are RNA aptamers that can be used for the genetic encoding of fluorescent RNA. Spinach2 binds and activates the fluorescence of (Z)-4-(3,5-difluoro-4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (DFHBI), allowing the dynamic localizations of Spinach2-tagged RNAs to be imaged in live cells. The spectral properties of S...
Article
Genetically encoded fluorescent sensors can be valuable tools for studying the abundance and flux of molecules in living cells. We recently developed a novel class of sensors composed of RNAs that can be used to detect diverse small molecules and untagged proteins. These sensors are based on Spinach, an RNA mimic of GFP, and they have successfully...
Article
Full-text available
Imaging RNA in living cells is a challenging problem in cell biology. One strategy for genetically encoding fluorescent RNAs is to express them as fusions with Spinach, an 'RNA mimic of GFP'. We found that Spinach was dimmer than expected when used to tag constructs in living cells owing to a combination of thermal instability and a propensity for...
Article
Full-text available
The difficulties in imaging the dynamics of protein expression in live bacterial cells can be overcome by using fluorescent sensors based on Spinach, an RNA that activates the fluorescence of a small-molecule fluorophore. These RNAs selectively bind target proteins and exhibit fluorescence increases that enable protein expression to be imaged in li...
Article
Tools to study the abundance, distribution, and flux of intracellular molecules are crucial for understanding cellular signaling and physiology. Although powerful, the current FRET-based technology for imaging cellular metabolites is not easily generalizable. Thus, new platforms for generating genetically encoded sensors are needed. We recently dev...
Article
Full-text available
Fluorescent proteins (FPs) are invaluable tools for biomedical research. Useful FPs have desirable fluorescence properties such as brightness and photostability, but a limitation is that many orange, red, and far-red FPs are cytotoxic when expressed in the cytosol. This cytotoxicity stems from aggregation. To reduce aggregation, we engineered the s...
Article
In mammalian cells, the 'Golgi reassembly and stacking protein' (GRASP) family has been implicated in Golgi stacking, but the broader functions of GRASP proteins are still unclear. The yeast Saccharomyces cerevisiae contains a single non-essential GRASP homolog called Grh1. However, Golgi cisternae in S. cerevisiae are not organized into stacks, so...
Article
Like GFP, the fluorescent protein DsRed has a chromophore that forms autocatalytically within the folded protein, but the mechanism of DsRed chromophore formation has been unclear. It was proposed that an initial oxidation generates a green chromophore, and that a final oxidation yields the red chromophore. However, this model does not adequately e...
Article
Fluorescent proteins (FPs) with far-red excitation and emission are desirable for multicolor labeling and live-animal imaging. We describe E2-Crimson, a far-red derivative of the tetrameric FP DsRed-Express2. Unlike other far-red FPs, E2-Crimson is noncytotoxic in bacterial and mammalian cells. E2-Crimson is brighter than other far-red FPs and matu...
Article
Full-text available
Whole-cell labeling is a common application of fluorescent proteins (FPs), but many red and orange FPs exhibit cytotoxicity that limits their use as whole-cell labels. Recently, a tetrameric red FP called DsRed-Express2 was engineered for enhanced solubility and was shown to be noncytotoxic in bacterial and mammalian cells. Our goal was to create d...
Article
Full-text available
Fluorescent proteins (FPs) are extremely useful tools for whole-cell, tissue, and animal labeling. For these purposes, FPs may be monomeric or oligomeric, but should meet the criteria of being tolerated at high expression levels in cells and having desirable photophysical properties. Our goal was to create a variant of DsRed-Express that maintains...
Article
Full-text available
The red fluorescent protein DsRed has been extensively engineered for use as an in vivo research tool. In fast maturing DsRed variants, the chromophore maturation half-time is approximately 40 min, compared to approximately 12 h for wild-type DsRed. Further, DsRed has been converted from a tetramer into a monomer, a task that entailed mutating appr...

Network

Cited By

Projects