Rienk van GrondelleVrije Universiteit Amsterdam | VU · Department of Physics and Astronomy
Rienk van Grondelle
Prof. Dr.
About
856
Publications
112,923
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
47,291
Citations
Introduction
Additional affiliations
Publications
Publications (856)
Light nanoscopy is attracting widespread interest for the visualization of fluorescent structures at the nanometre scale. Recently, a variety of methods have overcome the diffraction limit, yet in practice they are often constrained by the requirement of special fluorophores, nontrivial data processing, or a high price and complex implementation. T...
In this work, we applied Stark fluorescence spectroscopy to an iron-stressed cyanobacterial membrane to reveal key insights about the electronic structures and excited state dynamics of the two important pigment-protein complexes, IsiA and PSII, both of which prevail simultaneously within the membrane during iron deficiency and whose fluorescence s...
In high light, the antenna system in oxygenic photosynthetic organisms switches to a photoprotective mode, dissipating excess energy in a process called non-photochemical quenching (NPQ). Diatoms exhibit very efficient NPQ, accompanied by a xanthophyll cycle in which diadinoxanthin is de-epoxidized into diatoxanthin. Diatoms accumulate pigments fro...
Light nanoscopy is attracting widespread interest for the visualization of fluorescent structures at the nanometer scale, especially in cellular biology. To achieve nanoscale resolution, one has to surpass the diffraction limit - a fundamental phenomenon determining the spot size of focused light. Recently, a variety of methods have overcome this l...
The SARS-CoV-2 pandemic has added new urgency to the study of viral mechanisms of infection. But while vaccines offer a measure of protection against this specific outbreak, a new era of pandemics has been predicted. In addition to this, COVID-19 has drawn attention to post-viral syndromes and the healthcare burden they entail. It seems integral th...
Stack engineering, an atomic-scale metamaterial strategy, enables the design of optical and electronic properties in van der Waals heterostructure devices. Here we reveal the optoelectronic effects of stacking-induced strong coupling between atomic motion and interlayer excitons in WSe2/MoSe2 heterojunction photodiodes. To do so, we introduce the p...
Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several...
To uncover the mechanism behind the high photo-electronic conversion efficiency in natural photosynthetic complexes it is essential to trace the dynamics of electronic and vibrational quantum coherences. Here we apply wavelet analysis to two-dimensional electronic spectroscopy data for three purple bacterial reaction centers with mutations that pro...
The SARS-CoV-2 pandemic has added new urgency to the study of viral mechanisms of infection. But while vaccines offer a measure of protection against this specific outbreak, a new era of pandemics has been predicted. In addition to this, COVID-19 has drawn attention to post-viral syndromes and the healthcare burden they entail. It seems integral th...
Under excess illumination, photosystem II of plants dissipates excess energy through the quenching of chlorophyll fluorescence in the light harvesting antenna. Various models involving chlorophyll quenching by carotenoids have been proposed, including (i) direct energy transfer from chlorophyll to the low-lying optically forbidden carotenoid S1 sta...
Reported herein is a Stark fluorescence (SF) spectroscopy study performed on photosystem II core antenna complexes CP43 and CP47 in their native and aggregated states. The systematic mathematical modeling of the SF spectra with the aid of conventional Liptay formalism revealed that induction of aggregation in both the core antenna complexes via det...
We reveal stacking-induced strong coupling between atomic motion and interlayer excitons through photocurrent measurements of WSe$_2$/MoSe$_2$ heterojunction photodiodes. Strong coupling manifests as pronounced periodic sidebands in the photocurrent spectrum in frequency windows close to the interlayer exciton resonances. The sidebands, which repea...
The Lhca4 antenna complex of plant Photosystem I (PSI) is characterized by extremely red-shifted and broadened absorption and emission bands from its low-energy chlorophylls (Chls). The mixing of a charge-transfer (CT) state with the excited state manifold causing these so-called red forms results in highly complicated multi-component excited energ...
Photosynthesis in plants starts with the capture of photons by light-harvesting complexes (LHCs). Structural biology and spectroscopy approaches have led to a map of the architecture and energy transfer pathways between LHC pigments. Still, controversies remain regarding the role of specific carotenoids in light-harvesting and photoprotection, obli...
Capturing and converting solar energy into fuels and feedstocks is a global challenge that spans numerous disciplines and fields of research. Billions of years of evolution have allowed natural organisms to hone strategies for harvesting light from the sun and storing energy in the form of carbon–carbon and carbon–hydrogen bonds. Photosynthetic ant...
Pairs of peaks stabilize output power
A counterintuitive feature of photosynthesis is that the primary pigments involved in absorbing light—for example, chlorophyll a and b in plants—do not all absorb right at the peak of the spectrum but instead are offset from the peak and each other. Arp et al. formulated a network model that explains how using...
Excitation decay in closed Photosystem I (PSI) isolated from cyanobacterium Synechocystis sp. PCC 6803 and dissolved in a buffer solution occurs predominantly with a ~ 24-ps lifetime, as measured both by time-resolved fluorescence and transient absorption. The same PSI particles deposited in mesoporous matrix made of TiO2 nanoparticles exhibit sign...
Because of their peculiar but intriguing photophysical properties, peridinin–chlorophyll–protein complexes (PCPs), the peripheral light-harvesting antenna complexes of photosynthetic dinoflagellates have been unique targets of multidimensional theoretical and experimental investigations over the last few decades. The major light-harvesting chloroph...
Phycobilisomes (PBs) absorb light and supply downstream photosynthetic processes with excitation energy in many cyanobacteria and algae. In response to a sudden increase in light intensity, excess excitation energy is photoprotectively dissipated in PBs by means of the orange carotenoid protein (OCP)-related mechanism or via a light-activated intri...
Photosynthesis is remarkable, achieving near unity light harvesting quantum efficiency in spite of dynamic light conditions and noisy physiological environment. Under these adverse conditions, it remains unknown whether there exists a fundamental organizing principle that gives rise to robust photosynthetic light harvesting. Here, we present a nois...
Light induced charge and energy transport
in nucleic acids and proteins: general
discussion
Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs...
Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to single gold nanorods (AuNRs). The...
Understanding the mechanism behind the near-unity efficiency of primary electron transfer in reaction centers is essential for designing performance-enhanced artificial solar conversion systems to fulfill mankind's growing demands for energy. One of the most important challenges is distinguishing electronic and vibrational coherence and establishin...
The main light-harvesting pigment-protein complex of cyanobacteria and certain algae is the phycobilisome, which harvests sunlight and regulates the flow of absorbed energy to provide the photochemical reaction centres with a constant energy throughput. At least two light-driven mechanisms of excited energy quenching in phycobilisomes have been ide...
Biological systems are dynamical, constantly exchanging energy and matter with the environment in order to maintain the non-equilibrium state synonymous with living. Developments in observational techniques have allowed us to study biological dynamics on increasingly small scales. Such studies have revealed evidence of quantum mechanical effects, w...
Protein film photoelectrochemistry has previously been used to monitor the activity of Photosystem II, the water-plastoquinone photooxidoreductase, but the mechanistic information attainable from a three-electrode setup has remained limited. Here we introduce the four-electrode rotating ring disk electrode technique for quantifying light-driven rea...
Photosynthetic activity and respiration share the thylakoid membrane in cyanobacteria. We present a series of spectrally resolved fluorescence experiments where whole cells of the cyanobacterium Synechocystis sp. PCC 6803 and mutants thereof underwent a dark-to-light transition after different dark-adaptation (DA) periods. Two mutants were used: (i...
Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed i...
We model the energy transfer dynamics in the Lhca4 peripheral antenna of photosystem I from higher plants. Equilibration between the bulk exciton levels of the antenna and the red-shifted charge-transfer (CT) states is described using the numerically inexpensive Redfield-Förster approach and exact hierarchical equation (HEOM) method. We propose a c...
Transient absorption spectroscopy has been applied to investigate the energy dissipation mechanisms in the nonameric fucoxanthin-chlorophyll-a,c-binding protein FCPb of the centric diatom Cyclotella meneghiniana. FCPb complexes in their unquenched state were compared with those in two types of quenching environments, namely aggregation-induced quen...
Photosystems, the machines of photosynthesis, are highly complex and energetically disordered pigment-protein structures. Yet, they perform their function, be it highly efficient energy transfer and charge separation or the ability to switch between light-harvesting and photoprotective states, extremely well. In this opinioned review we describe th...
Photosynthetic organisms have found various smart ways to cope with unexpected changes in light conditions. In many cyanobacteria, the lethal effects of a sudden increase in light intensity are mitigated mainly by the interaction between phycobilisomes (PBs) and the Orange Carotenoid Protein (OCP). The latter senses high light intensities by means...
Tolga Karsili opened the discussion of the paper by Dimitra Markovitsi: It is well known that acidic substituents in aromatic systems contain ps* states that are dissociative with respect to X-H bond ssion (where X ¼ N, O or S). It is also well known that the photochemistry of simple aromatic chromophores such as phenol and pyrrole are dominated b...
Two-dimensional electronic spectroscopy was applied to a variant of the reaction center (RC) of purple bacterium Rhodobacter sphaeroides lacking the primary acceptor ubiquinone in order to understand the ultrafast separation and transfer of charge between the bacteriochlorin cofactors. For the first time characteristic 2D spectra were obtained for...
Light induced charge and energy transport in nucleic acids and proteins is the basis of fundamental biological processes such as photosynthesis, vision, DNA-photostability, DNA-photodamage and photosensing. This article summarises the concluding remarks given at the Faraday Discussions meeting on this topic. The specific themes arising from the mee...
Following the observation of coherent oscillations in non-linear spectra of photosynthetic pigment protein complexes, particularly phycobilliprotein such as PC645, coherent vibronic transport has been suggested as a design principle for novel light harvesting materials operating at room temperature. Vibronic transport between energetically remote p...
Following the observation of coherent oscillations in non-linear spectra of photosynthetic pigment protein complexes, particularly phycobilliprotein such as PC645, coherent vibronic transport has been suggested as a design principle for novel light harvesting materials operating at room temperature. Vibronic transport between energetically remote p...
Solar energy captured by pigments embedded in light-harvesting complexes can be either transferred to neighboring pigments, dissipated or emitted as fluorescence. Only when it reaches a reaction center the excitation energy is stabilized in the form of a charge separation and converted into chemical energy. Well directed and regulated energy transf...
In the light-harvesting antenna of the Synechocystis PCC 6803 phycobilisome (PB), the core consists of three cylinders, each composed of four disks, whereas each of the six rods consists of up to three hexamers (Arteni et al., Biochim Biophys Acta 1787(4):272–279, 2009). The rods and core contain phycocyanin and allophycocyanin pigments, respective...
Excitation energy transfer (EET) and trapping in Synechococcus WH 7803 whole cells and isolated photosystem I (PSI) complexes have been studied by time-resolved emission spectroscopy at room temperature (RT) and at 77 K. With the help of global and target analysis, the pathways of EET and the charge separation dynamics have been identified. Energy...
The original article has been corrected. The article is published with Open Access but was missing Open Access information. This has been added.
Photosynthetic light harvesting can be very efficient in solar energy conversion while taking place in a highly disordered and noisy physiological environment. This efficiency is achieved by the ultrafast speed of the primary photosynthetic processes, which is enabled by a delicate interplay of quantum effects, thermodynamics and environmental nois...
Ultrafast time resolved emission spectra were measured in whole cells of a PSI-deficient mutant of Synechocystis sp. PCC 6803 at room temperature and at 77K to study excitation energy transfer and trapping. By means of a target analysis it was estimated that the terminal emitter of the phycobilisome, termed allophycocyanin 680, transfers its energy...
This chapter presents an overview of the photophysical processes which take place in photosynthetic systems, both in bacterial cells and in plant cells. It begins with a description of the light-harvesting mechanisms and centers in these cells and discusses the formation of the excited states and the potential decay and electron transfer mechanisms...
Significance
Photosynthetic energy transfer must remain robust within the disordered protein environment. A high degree of robustness is generally obtained using molecular exciton states, which are excited states delocalized over a few pigments. These states provide several advantages, including a reduced probability of energy trapping in unfavorab...
Cyanobacterial thylakoid membranes are known to host photosynthetic and respiratory complexes. This hampers a straight forward interpretation of the highly dynamic fluorescence originating from photosynthetic units. The present study focuses on dark-to-light transitions in whole cells of a PSI-deficient mutant of the cyanobacterium Synechocystis sp...
It has already been established that the quaternary structure of the main light-harvesting complex (LH2) from the photosynthetic bacterium Rhodopseudomonas palustris is a nonameric 'ring' of PucAB heterodimers and under low-light culturing conditions an increased diversity of PucB synthesis occurs. In this work, single molecule fluorescence emissio...
Percentage extraction of complexes with various SMA preparations.
Engineering natural photosynthesis to address predicted shortfalls in food and energy supply requires a detailed understanding of its molecular basis and the intrinsic photoprotective mechanisms that operate under fluctuating environmental conditions. Long-lived triplet or singlet excited electronic states have the potential to cause photodamage, p...
The photosystem II reaction centre is the photosynthetic complex responsible for oxygen production on Earth. Its water splitting function is particularly favoured by the formation of a stable charge separated state via a pathway that starts at an accessory chlorophyll. Here we envision a photovoltaic device that places one of these complexes betwee...
LHCII, the major light harvesting antenna from plants, plays a dual role in photosynthesis. In low light it is a light-harvester, while in high light it is a quencher that protects the organism from photodamage. The switching mechanism between these two orthogonal conditions is mediated by protein dynamic disorder and photoprotective energy dissipa...
The phenomenon of non-photochemical quenching (NPQ) was studied in spinach chloroplasts using pulse amplitude modulated (PAM) fluorometry. We present a new analysis method which describes the observed fluorescence quantum yield as the sum of the product of four different states of PsiI and their corresponding quantum yields. These four distinct sta...
The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting...
Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consistin...
Photosynthesis in nature does not use the far Infrared part of the solar spectrum ( λ>900 nm), comprising about 30 per cent of the incoming solar energy. By simple thermodynamic arguments it is explained that this is due to the unavoidable back reactions during the night. It follows that λ≈900 nm provides a natural limit on artificial photosynthesi...