
Ricky EgelandNSF National Center for Atmospheric Research · High Altitude Observatory (HAO)
Ricky Egeland
Ph.D. Physics, Montana State University, Bozeman
About
108
Publications
623,876
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
17,548
Citations
Introduction
Postdoctoral Fellow at the NCAR High Altitude Observatory studying long-term magnetic variability in the Sun and Sun-like stars. Formerly a software developer for databases and distributed systems at CERN, I am also interested in the application of clever software and high performance computing to solve scientific problems.
Additional affiliations
Education
January 2014 - April 2017
August 2011 - December 2013
September 1999 - May 2003
Publications
Publications (108)
The most commonly used index of stellar magnetic activity is the instrumental flux scale of singly-ionized calcium H & K line core emission, S, developed by the Mount Wilson Observatory (MWO) HK Project, or the derivative index R'_HK. Accurately placing the Sun on the S scale is important for comparing solar activity to that of the Sun-like stars....
The Sun has a steady 11-year cycle in magnetic activity most well-known by the rising and falling in the occurrence of dark sunspots on the solar disk in visible bandpasses. The 11-year cycle is also manifest in the variations of emission in the Ca II H & K line cores, due to non-thermal (i.e. magnetic) heating in the lower chromosphere. The large...
A growing body of evidence suggests that multiple dynamo mechanisms can drive
magnetic variability on different timescales, not only in the Sun but also in
other stars. Many solar activity proxies exhibit a quasi-biennial ($\sim$2
year) variation, which is superimposed upon the dominant 11 year cycle. A
well-characterized stellar sample suggests at...
Precise photometry from the Kepler space telescope allows not only the measurement of rotation in solar-type field stars, but also the determination of reliable masses and ages from asteroseismology. These critical data have recently provided the first opportunity to calibrate rotation-age relations for stars older than the Sun. The evolutionary pi...
An inert sphere of a few meters diameter, placed in a special stable
geosynchronous orbit in perpetuo, can be used for a variety of scientific
experiments. Ground-based observations of such a sphere, "GeoSphere", can
resolve very difficult problems in measuring the long-term solar irradiance.
GeoSphere measurements will also help us understand the...
Space radiation is a notable hazard for long-duration human spaceflight¹. Associated risks include cancer, cataracts, degenerative diseases² and tissue reactions from large, acute exposures³. Space radiation originates from diverse sources, including galactic cosmic rays⁴, trapped-particle (Van Allen) belts⁵ and solar-particle events⁶. Previous rad...
The bright star λ Ser hosts a hot Neptune with a minimum mass of 13.6 M ⊕ and a 15.5 day orbit. It also appears to be a solar analog, with a mean rotation period of 25.8 days and surface differential rotation very similar to the Sun. We aim to characterize the fundamental properties of this system and constrain the evolutionary pathway that led to...
The bright star $\lambda$ Ser hosts a hot Neptune with a minimum mass of 13.6 $M_\oplus$ and a 15.5 day orbit. It also appears to be a solar analog, with a mean rotation period of 25.8 days and surface differential rotation very similar to the Sun. We aim to characterize the fundamental properties of this system, and to constrain the evolutionary p...
The photometric time series of solar-like stars can exhibit rotational modulation due to active regions co-rotating with the stellar surface, allowing us to constrain stellar rotation and magnetic activity. In this work we investigate the behavior, particularly the variability, of the photometric magnetic activity of Kepler solar-like stars and com...
Context. The photometric time series of solar-like stars can exhibit rotational modulation, that is, brightness variations due to active regions co-rotating with the stellar surface. These signatures allow us to constrain properties of stellar rotation and magnetic activity.
Aims. In this work we investigate the behavior, particularly the variabili...
We previously identified an event in the solar timeline that appeared to play a role in how sunspot Cycle 23 (SC23) transitioned into sunspot Cycle 24 (SC24). The timeframe for this transition was rapid, taking place over a very short time and perhaps in a time as short as a single solar rotation. Further, we inferred that the transition observed w...
McIntosh and colleagues identified an event in the solar timeline that appeared to play a role in how Sunspot Cycle 23 (SC23) transitioned into Sunspot Cycle 24 (SC24). The timeframe for this transition was rapid, taking place in as short as time as a solar rotation. M2014 inferred that the transition observed was a critical episode for the Sun's g...
In this work, we study the information content learned by a convolutional neural network (CNN) when trained to carry out the inverse mapping between a database of synthetic Ca ii intensity spectra and the vertical stratification of the temperature of the atmospheres used to generate such spectra. In particular, we evaluate the ability of the neural...
In this work, we study the information content learned by a convolutional neural network (CNN) when trained to carry out the inverse mapping between a database of synthetic Ca II intensity spectra and the vertical stratification of the temperature of the atmospheres used to generate such spectra. In particular, we evaluate the ability of the neural...
We investigate the occurrence of the “extended solar cycle” (ESC) as it occurs in a host of observational data spanning 140 years. Investigating coronal, chromospheric, photospheric, and interior diagnostics, we develop a consistent picture of solar activity migration linked to the 22-year Hale (magnetic) cycle using superposed epoch analysis (SEA)...
During the first half of main-sequence lifetimes, the evolution of rotation and magnetic activity in solar-type stars appears to be strongly coupled. Recent observations suggest that rotation rates evolve much more slowly beyond middle age, while stellar activity continues to decline. We aim to characterize this midlife transition by combining arch...
During the first half of main-sequence lifetimes, the evolution of rotation and magnetic activity in solar-type stars appears to be strongly coupled. Recent observations suggest that rotation rates evolve much more slowly beyond middle-age, while stellar activity continues to decline. We aim to characterize this mid-life transition by combining arc...
We take a broad look at the problem of identifying the magnetic solar causes of space weather. With the lackluster performance of extrapolations based upon magnetic field measurements in the photosphere, we identify a region in the near-UV (NUV) part of the spectrum as optimal for studying the development of magnetic free energy over active regions...
We take a broad look at the problem of identifying the magnetic solar causes of space weather. With the lackluster performance of extrapolations based upon magnetic field measurements in the photosphere, we identify a region in the near UV part of the spectrum as optimal for studying the development of magnetic free energy over active regions. Usin...
The Sun exhibits a well-observed modulation in the number of spots on its disk over a period of about 11 years. From the dawn of modern observational astronomy, sunspots have presented a challenge to understanding—their quasi-periodic variation in number, first noted 175 years ago, has stimulated community-wide interest to this day. A large number...
The cyclic, enigmatic, and ubiquitous magnetism of the Sun provides the energy we need to survive and has the ability to destroy our technologically dependent civilization. Never before has understanding solar magnetism and forecasting its behavior been so relevant. Indeed, on a broader canvas, understanding solar magnetism is a gateway to understa...
Most previous efforts to calibrate how rotation and magnetic activity depend on stellar age and mass have relied on observations of clusters, where isochrones from stellar evolution models are used to determine the properties of the ensemble. Asteroseismology employs similar models to measure the properties of an individual star by matching its nor...
Most previous efforts to calibrate how rotation and magnetic activity depend on stellar age and mass have relied on observations of clusters, where isochrones from stellar evolution models are used to determine the properties of the ensemble. Asteroseismology employs similar models to measure the properties of an individual star by matching its nor...
The Sun exhibits a well-observed modulation in the number of sunspots over a period of about 11 years. From the dawn of modern observational astronomy sunspots have presented a challenge to understanding - their quasi-periodic variation in number, first noted 160 years ago, stimulates community-wide interest to this day. A large number of technique...
Over the course of its history, the Milky Way has ingested multiple smaller satellite galaxies1. Although these accreted stellar populations can be forensically identified as kinematically distinct structures within the Galaxy, it is difficult in general to date precisely the age at which any one merger occurred. Recent results have revealed a popu...
Recently published precise stellar photometry of 72 Sun-like stars obtained at the Fairborn Observatory between 1993 and 2017 is used to set limits on the solar forcing of Earth’s atmosphere of ±4.5 W m ⁻² since 1750. This compares with the +2.2 ± 1.1 W m ⁻² IPCC estimate for anthropogenic forcing. Three critical assumptions are made. In decreasing...
Recently published, precise stellar photometry of 72 Sun-like stars obtained at the Fairborn Observatory between 1993 and 2017 is used to set limits on the solar forcing of Earth's atmosphere of $\pm$ 4.5 W m$^{-2}$ since 1750. This compares with the +2.2 $\pm$ 1.1 W m$^{-2}$ IPCC estimate for anthropogenic forcing. Three critical assumptions are m...
Over the course of its history, the Milky Way has ingested multiple smaller satellite galaxies. While these accreted stellar populations can be forensically identified as kinematically distinct structures within the Galaxy, it is difficult in general to precisely date the age at which any one merger occurred. Recent results have revealed a populati...
One of the most robust features of the solar magnetic cycle is that the stronger cycles rise faster than the weaker ones. This is popularly known as the Waldmeier Effect, which has been known for more than 100 yr. This fundamental feature of the solar cycle has not only practical implications, e.g., in predicting the solar cycle, but also implicati...
One of the most robust features of the solar magnetic cycle is that the stronger cycles rise faster than the weaker ones. This is popularly known as the Waldmeier Effect, which is known for more than 80 years. This fundamental feature of the solar cycle has not only practical implications, e,g., in predicting the solar cycle, but also implications...
We observe the abrupt end of solar-activity cycles at the Sun’s Equator by combining almost 140 years of observations from ground and space. These “terminator” events appear to be very closely related to the onset of magnetic activity belonging to the next solar cycle at mid-latitudes and the polar-reversal process at high latitudes. Using multi-sc...
Asteroseismology is the only observational tool in astronomy that can probe the interiors of stars, and is a benchmark method for deriving fundamental properties of stars and exoplanets. Over the coming decade, space-based and ground-based observations will provide a several order of magnitude increase of solar-like oscillators, as well as a dramat...
Asteroseismology is the only observational tool in astronomy that can probe the interiors of stars, and is a benchmark method for deriving fundamental properties of stars and exoplanets. Over the coming decade, space-based and ground-based observations will provide a several order of magnitude increase of solar-like oscillators, as well as a dramat...
Nearly half a century has passed since the initial indications that stellar rotation slows while chromospheric activity weakens with a power-law dependence on age, the so-called Skumanich relations. Subsequent characterization of the mass-dependence of this behavior up to the age of the Sun led to the advent of gyrochronology, which uses the rotati...
The present study reports the synchronization between the chromospheric and photometric variability at timescale of about 1.6-1.8 year as observed for the young, rapidly rotating solar analog HD 30495. In addition, HD 30495 may be presenting evidence of surface differential rotation at timescales of about 11-day and 21-day, as well as the sunspot-l...
Nearly half a century has passed since the initial indications that stellar rotation slows while chromospheric activity weakens with a power-law dependence on age, the so-called Skumanich relations. Subsequent characterization of the mass-dependence of this behavior up to the age of the Sun led to the advent of gyrochronology, which uses the rotati...
Presentation on sunstardb coving the motivation, use cases, current status, and development plans.
HD 81809 has one of the highest quality activity cycles from the sample of stars synoptically observed in the Mount Wilson Observatory HK Project. However, this object is in fact a binary system, raising the question as to which of the components is responsible for the observed cyclic activity and what are the properties of that active component. T...
The Solar-Stellar Dynamo-Irradiance Connection - Volume 14 Symposium - Ricky Egeland
HD 81809 has one of the highest quality activity cycles from the sample of stars synoptically observed in the Mount Wilson Observatory HK Project. However, this object is in fact a binary system, raising the question as to which of the components is responsible for the observed cyclic activity and what are the properties of that active component. T...
The "solar-stellar connection" began as a relatively small field of research focused on understanding the processes that generate magnetic field in stars and which sometimes lead to a cyclic pattern of long-term variability in activity, as demonstrated by our Sun. This area of study has recently become more broadly pertinent to questions of exoplan...
Observations of Sun-like stars over the last half-century have improved our understanding of how magnetic dynamos, like that responsible for the 11-year solar cycle, change with rotation, mass and age. Here we show for the first time how metallicity can affect a stellar dynamo. Using the most complete set of observations of a stellar cycle ever obt...
Observations of Sun-like stars over the last half-century have improved our understanding of how magnetic dynamos, like that responsible for the 11-year solar cycle, change with rotation, mass and age. Here we show for the first time how metallicity can affect a stellar dynamo. Using the most complete set of observations of a stellar cycle ever obt...
We analyze space- and ground-based data for the old ($7.0\pm0.3$~Gyr) solar analogs 16 Cyg A and B. The stars were observed with the Cosmic Origins UV Spectrographs on the Hubble Space Telescope (HST) on 23 October 2015 and 3 February 2016 respectively, and with the Chandra X-ray Observatory on 7 February 2016. Time-series data in \ion{Ca}{2} data...
We analyze space- and ground-based data for the old ($7.0\pm0.3$~Gyr) solar analogs 16 Cyg A and B. The stars were observed with the Cosmic Origins UV Spectrographs on the Hubble Space Telescope (HST) on 23 October 2015 and 3 February 2016 respectively, and with the Chandra X-ray Observatory on 7 February 2016. Time-series data in \ion{Ca}{2} data...
We examine the decadal-scale variability in Ca II H & K emission of the Sun and a set of 26 solar analog stars within ~5% of the solar effective temperature. Using a quantitative metric for determining cycle quality, we find that cycles of the highest quality—like the Sun’s—occur in the stars with slower rotation and lower mean activity. Reexaminin...
Earth is the only planet known to harbor life, therefore we may speculate on how the nature of the Sun-Earth interaction is relevant to life on Earth, and how the behavior of other stars may influence the development of life on their planetary systems. We study the long-term variability of a sample of five solar analog stars using composite chromos...
Earth is the only planet known to harbor life, therefore we may speculate on how the nature of the Sun-Earth interaction is relevant to life on Earth, and how the behavior of other stars may influence the development of life on their planetary systems. We study the long-term variability of a sample of five solar analog stars using composite chromos...
Lithium abundance A(Li) and surface rotation are good diagnostic tools to probe the internal mixing and angular momentum transfer in stars. We explore the relation between surface rotation, A(Li) and age in a sample of seismic solar-analogue (SA) stars and study their possible binary nature. We select a sample of 18 SA observed by the NASA Kepler s...
Lithium abundance A(Li) and surface rotation are good diagnostic tools to probe the internal mixing and angular momentum transfer in stars. We explore the relation between surface rotation, A(Li) and age in a sample of seismic solar-analogue (SA) stars and study their possible binary nature. We select a sample of 18 SA observed by the NASA Kepler s...
Stars similar to the Sun, known as solar analogues, provide an excellent opportunity to study the preceding and following evolutionary phases of our host star. The unprecedented quality of photometric data collected by the \Kepler NASA mission allows us to characterise solar-like stars through asteroseismology and study diagnostics of stellar evolu...
The most commonly used index of stellar magnetic activity is the instrumental flux scale of singly-ionized calcium H & K line core emission, S, developed by the Mount Wilson Observatory (MWO) HK Project, or the derivative index R'_HK. Accurately placing the Sun on the S scale is important for comparing solar activity to that of the Sun-like stars....
Earth is the only planet known to harbor life, therefore we may speculate on how the nature of the Sun-Earth interaction is relevant to life on Earth, and how the behavior of other stars may influence the development of life on their planetary systems. We study the long-term variability of a sample of five solar analog stars using composite chromos...
Finding solar-analog stars with fundamental properties as close as possible to the Sun and studying the characteristics of their surface magnetic activity is a very promising way to understand the solar variability and its associated dynamo process. However, the identification of solar-analog stars depends on the accuracy of the estimated stellar p...
We identify a set of 18 solar analogs among the seismic sample of solar-like stars observed by the Kepler satellite rotating between 10 and 40 days. This set is constructed using the asteroseismic stellar properties derived using either the global oscillation properties or the individual acoustic frequencies. We measure the magnetic activity proper...
We identify a set of 18 solar analogs among the seismic sample of solar-like stars observed by the Kepler satellite rotating between 10 and 40 days. This set is constructed using the asteroseismic stellar properties derived using either the global oscillation properties or the individual acoustic frequencies. We measure the magnetic activity proper...
Precise photometry from the Kepler space telescope allows not only the measurement of rotation in solar-type field stars, but also the determination of reliable masses and ages from asteroseismology. These critical data have recently provided the first opportunity to calibrate rotation-age relations for stars older than the Sun. The evolutionary pi...
The continuous photometric observations collected by the Kepler satellite over 4 years provide a whelm of data with an unequalled quantity and quality for the study of stellar evolution of more than 200000 stars. Moreover, the length of the dataset provide a unique source of information to detect magnetic activity and associated temporal variabilit...
The continuous photometric observations collected by the Kepler satellite over 4 years provide a whelm of data with an unequalled quantity and quality for the study of stellar evolution of more than 200000 stars. Moreover, the length of the dataset provide a unique source of information to detect magnetic activity and associated temporal variabilit...
Introduces the GeoSphere concept for measuring long-term solar spectral irradiance using the technique of stellar differential photometry. Iterates through potential objections to such a scheme and argues that the experiment is feasible and worthwhile.
A New Boson with a Mass of 125 GeV
Observed with the CMS Experiment at the Large Hadron Collider;
The CMS Collaboration;
The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and
has been the subject of numerous searches at accelerators around the world. Its discovery would verify...
The CMS experiment has to move Petabytes of data among dozens of computing centres with low latency in order to make efficient use of its resources. Transfer operations are well established to achieve the desired level of throughput, but operators lack a system to identify early on transfers that will need manual intervention to reach completion. F...
PhEDEx is the data-movement solution for CMS at the LHC. Created in 2004, it is now one of the longest-lived components of the CMS dataflow/workflow world. As such, it has undergone significant evolution over time, and continues to evolve today, despite being a fully mature system. Originally a toolkit of agents and utilities dedicated to specific...
PhEDEx is the data-transfer management solution written by CMS. It consists of agents running at each site, a website for presentation of information, and a web-based data-service for scripted access to information.
The website allows users to monitor the progress of data-transfers, the status of site agents and links between sites, and the overall...
Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC;
Results are presented from searches for the standard model Higgs in proton-proton collisions at root s = 7 and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb(-1) at 7 TeV and 5....
In this paper we give a description of the database services for the control and monitoring of the electromagnetic calorimeter of the CMS experiment at LHC. After a general description of the software infrastructure, we present the organization of the tables in the database, that has been designed in order to simplify the development of software in...
In a collaboration the size of CMS (approx. 3000 users, and almost 100 computing centres of varying size) communication and accurate information about the sites it has access to is vital in co-ordinating the multitude of computing tasks required for smooth running. SiteDB is a tool developed by CMS to track sites available to the collaboration, the...
The PhEDEx Data Service provides access to information from the central PhEDEx database, as well as certificate-authenticated managerial operations such as requesting the transfer or deletion of data. The Data Service is integrated with the "SiteDB" service for fine-grained access control, providing a safe and secure environment for operations. A p...
The CMS experiment expects to manage several Pbytes of data each year during the LHC progr