Rickard Armiento

Rickard Armiento
Linköping University | LiU · Department of Physics, Chemistry and Biology (IFM)

Doctor of Philosophy

About

95
Publications
9,206
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,073
Citations
Introduction
Researcher in High-Throughput Computational Energy Material Design, and development of density functionals for computational physics. ORCID: http://orcid.org/0000-0002-5571-0814
Additional affiliations
January 2010 - March 2012
Massachusetts Institute of Technology
January 2006 - December 2009
Universität Bayreuth
Position
  • PostDoc Position
April 2000 - December 2005
KTH Royal Institute of Technology
Position
  • PhD Student
Education
August 1995 - April 2000
KTH Royal Institute of Technology
Field of study
  • Engineering Physics

Publications

Publications (95)
Article
Full-text available
We design a density-functional-theory DFT exchange-correlation functional that enables an accurate treat-ment of systems with electronic surfaces. Surface-specific approximations for both exchange and correlation energies are developed. A subsystem functional approach is then used: an interpolation index combines the surface functional with a funct...
Article
We present a large-scale density functional theory (DFT) investigation of the ABO3 chemical space in the perovskite crystal structure, with the aim of identifying those that are relevant for forming piezoelectric materials. Screening criteria on the DFT results are used to select 49 compositions, which can be seen as the fundamental building blocks...
Article
We derive an exchange energy functional of generalized gradient form with a corresponding potential that changes discontinuously at integer particle numbers. The functional is semilocal, yet incorporates key features that are connected to the derivative discontinuity of Kohn-Sham density-functional theory. We validate our construction for several p...
Article
Full-text available
Elpasolite is the predominant quaternary crystal structure (AlNaK$_2$F$_6$ prototype) reported in the Inorganic Crystal Structure Database. We have developed a machine learning model to calculate density functional theory quality formation energies of all the 2 M pristine ABC$_2$D$_6$ elpasolite crystals which can be made up from main-group element...
Article
A fundamental challenge in materials science pertains to elucidating the relationship between stoichiometry, stability, structure, and property. Recent advances have shown that machine learning can be used to learn such relationships, allowing the stability and functional properties of materials to be accurately predicted. However, most of these ap...
Article
Full-text available
Accelerated design of hard-coating materials requires state-of-the-art computational tools, which include data-driven techniques, building databases, and training machine learning models. We develop a heavily automated high-throughput workflow to build a database of industrially relevant hard-coating materials, such as binary and ternary nitrides....
Preprint
Doping of a two-dimensional (2D) material by impurity atoms occurs \textit{via} two distinct mechanisms: absorption of the dopants by the 2D crystal or adsorption on its surface. To distinguish the relevant mechanism, we systematically dope 53 experimentally synthesized 2D monolayers by 65 different chemical elements in both absorption and adsorpti...
Preprint
The negatively charged silicon vacancy ($\mathrm{V_{Si}^-}$) in silicon carbide is a well-studied point defect for quantum applications. At the same time, a closer inspection of ensemble photoluminescence and electron paramagnetic resonance measurements reveals an abundance of related but so far unidentified signals. In this study, we search for de...
Conference Paper
Ontologies have been proposed as a means towards making data FAIR (Findable, Accessible, Interoperable, Reusable). This has attracted much interest in several communities and ontologies are being developed. However, to obtain good results when using ontologies in semantically-enabled applications, the ontologies need to be of high quality. One of t...
Preprint
Full-text available
Accelerated design of novel hard coating materials requires state-of-the-art computational tools, which include data-driven techniques, building databases, and training machine learning models against the databases. In this work, we present a development of a heavily automated high-throughput workflow to build a database of industrially relevant ha...
Article
Full-text available
The Open Databases Integration for Materials Design (OPTIMADE) consortium has designed a universal application programming interface (API) to make materials databases accessible and interoperable. We outline the first stable release of the specification, v1.0, which is already supported by many leading databases and several software packages. We il...
Preprint
There has been a recent surge of interest in using machine learning to approximate density functional theory (DFT) in materials science. However, many of the most performant models are evaluated on large databases of computed properties of, primarily, materials with precise atomic coordinates available, and which have been experimentally synthesize...
Article
Automatic Defect Analysis and Qualification (ADAQ) is a collection of automatic workflows developed for high-throughput simulations of magneto-optical properties of point defects in semiconductors. These workflows handle the vast number of defects by automating the processes to relax the unit cell of the host material, construct supercells, create...
Preprint
A fundamental challenge in materials science pertains to elucidating the relationship between stoichiometry, stability, structure, and property. Recent advances have shown that machine learning can be used to learn such relationships, allowing the stability and functional properties of materials to be accurately predicted. However, most of these ap...
Conference Paper
Ontologies have been proposed as a means towards making data FAIR (Findable, Accessible, Interoperable, Reusable) and has recently attracted much interest in the materials science community. Ontologies for this domain are being developed and one such effort is the Materials Design Ontology. However, to obtain good results when using ontologies in s...
Article
Full-text available
Chromium-nitride based materials have shown unexpected promise as thermoelectric materials for, e.g., waste-heat harvesting. Here, CrN and (Cr,V)N thin films were deposited by reactive magnetron sputtering. Thermoelectric measurements of pure CrN thin films show a low electrical resistivity between 1.2 and 1.5 × 10⁻³ Ωcm and very high values of the...
Article
Full-text available
Important phenomena such as magnetostriction, magnetocaloric, and magnetoelectric effects arise from, or could be enhanced by, the coupling of magnetic and structural degrees of freedom. The coupling of spin and lattice also influence transport and structural properties in magnetic materials, in particular around phase transitions. In this paper we...
Preprint
Full-text available
Important phenomena such as magnetostriction, magnetocaloric, and magnetoelectric effects arise from, or could be enhanced by, the coupling of magnetic and structural degrees of freedom. The coupling of spin and lattice also influence transport and structural properties in magnetic materials in particular around phase transitions. In this paper we...
Preprint
The Open Databases Integration for Materials Design (OPTIMADE) consortium has designed a universal application programming interface (API) to make materials databases accessible and interoperable. We outline the first stable release of the specification, v1.0, which is already supported by many leading databases and several software packages. We il...
Article
Full-text available
(Ti0.5, Mg0.5)N thin films were synthesized by reactive dc magnetron sputtering from elemental targets onto c-cut sapphire substrates. Characterization by θ–2θ X-ray diffraction and pole figure measurements shows a rock-salt cubic structure with (111)-oriented growth and a twin-domain structure. The films exhibit an electrical resistivity of 150 mΩ...
Article
Full-text available
Rock-salt scandium nitride has gained interest due to its thermoelectric properties including a relatively high Seebeck coefficient. This motivates research for other semiconductor materials that exhibit similar electronic structure features as ScN. Using density functional theory calculations, we have studied disordered solid solutions of (Zr0.5,...
Conference Paper
In the materials design domain, much of the data from materials calculations are stored in different heterogeneous databases. Materials databases usually have different data models. Therefore, the users have to face the challenges to find the data from adequate sources and integrate data from multiple sources. Ontologies and ontology-based techniqu...
Preprint
Automatic Defect Analysis and Qualification (ADAQ) is a collection of automatic workflows developed for high-throughput simulations of magneto-optical properties of point defect in semiconductors. These workflows handle the vast number of defects by automating the processes to relax the unit cell of the host material, construct supercells, create p...
Preprint
In the materials design domain, much of the data from materials calculations are stored in different heterogeneous databases. Materials databases usually have different data models. Therefore, the users have to face the challenges to find the data from adequate sources and integrate data from multiple sources. Ontologies and ontology-based techniqu...
Chapter
This chapter reviews past and ongoing efforts in using high-throughput ab-initio calculations in combination with machine learning models for materials design. The primary focus is on bulk materials, i.e., materials with fixed, ordered, crystal structures, although the methods naturally extend into more complicated configurations. Efficient and rob...
Preprint
This paper reviews past and ongoing efforts in using high-throughput ab-inito calculations in combination with machine learning models for materials design. The primary focus is on bulk materials, i.e., materials with fixed, ordered, crystal structures, although the methods naturally extend into more complicated configurations. Efficient and robust...
Article
Full-text available
In the materials science domain the data-driven science paradigm has become the focus since the beginning of the 2000s. A large number of research groups and communities are building and developing data-driven workflows. However, much of the data and knowledge is stored in different heterogeneous data sources maintained by different groups. This le...
Conference Paper
In the data-driven workflows in the materials science domain, much of the data and knowledge is stored in different heterogeneous data sources maintained by different groups. This leads to a reduced availability of the data and poor interoperability between systems in this domain. Ontology-based techniques are an important way to reduce these problems...
Preprint
The electron localization function (ELF) is a universal measure of electron localization that allows for, e.g., an effective characterization of physical bonds in molecular and solid state systems. In the context of the widely used Kohn-Sham density-functional theory (KS-DFT) and its generalizations, ELF is given in terms of the single-particle ele...
Article
Point defects in semiconductors are relevant for use in quantum technologies as room temperature qubits and single photon emitters. Among suggested defects for these applications are the negatively charged silicon vacancy and the neutral divacancy in SiC. The possible nonequivalent configurations of these defects have been identified in 4H-SiC, but...
Article
Certain excitations, especially ones of long-range charge transfer character, are poorly described by time-dependent density functional theory (TDDFT) when typical (semi-)local functionals are used. A proper description of these excitations would require an exchange–correlation response differing substantially from the usual (semi-)local one. It ha...
Preprint
Certain excitations, especially ones of long-range charge transfer character, are poorly described by time-dependent density functional theory (TDDFT) when typical (semi-)local functionals are used. A proper description of these excitations would require an exchange-correlation response differing substantially from the usual (semi-)local one. It ha...
Chapter
To speed up the progress in the field of materials design, a number of challenges related to big data need to be addressed. This entry discusses these challenges and shows the semantic technologies that alleviate the problems related to variety, variability, and veracity.
Article
Full-text available
Scandium nitride has recently gained interest as a prospective compound for thermoelectric applications due to its high Seebeck coefficient. However, ScN also has a relatively high thermal conductivity, which limits its thermoelectric efficiency and figure of merit (zT). These properties motivate a search for other semiconductor materials that shar...
Article
Full-text available
Study and design of magneto-optically active single point defects in semiconductors are rapidly growing fields due to their potential in quantum bit and single photon emitter applications. Detailed understanding of the properties of candidate defects is essential for these applications, and requires the identification of the defects microscopic con...
Article
We propose a multi-body solver that extends the Material Point Method (MPM) to simulate cracks in computer animation. We define cracks as the intersection between pieces of bodies created by a pre-fracture process and held together by massless particle constraints (glue particles). These pieces are simulated using a MPM multi-body solver extended b...
Article
The Becke-Johnson model potential [A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006)] and the potential of the AK13 functional [R. Armiento and S. Kümmel, Phys. Rev. Lett. 111, 036402 (2013)] have been shown to mimic features of the exact Kohn-Sham exchange potential, such as step structures that are associated with shell closings an...
Article
Nodal surfaces of orbitals, in particular of the highest occupied one, play a special role in Kohn-Sham density-functional theory. The exact Kohn-Sham exchange potential, for example, shows a protruding ridge along such nodal surfaces, leading to the counterintuitive feature of a potential that goes to different asymptotic limits in different direc...
Article
The phase diagrams of the Ti-Zn-N, Zr-Zn-N, and Hf-Zn-N systems are determined using large-scale high-throughput density functional calculations. Thermodynamically stable ordered phases of TiZnN2, ZrZnN2, and HfZnN2 have been found to be promising candidates in piezoelectric devices/applications for energy harvesting. The identified stable phase of...
Article
The electronic properties of monolayer graphene grown epitaxially on SiC(0001) are known to be highly sensitive to the presence of NO2 molecules. The presence of small areas of bilayer graphene, on the other hand, considerably reduces the overall sensitivity of the surface. We investigate how NO2 molecules interact with monolayer and bilayer graphe...
Article
The recent non-empirical semi-local exchange functional of Armiento and K\"ummel, the AK13 [PRL 111, 036402 (2013)] incorporates a number of features reproduced by higher-order theory. The AK13 potential behaves analogously with the discontinuous jump associated with the derivative discontinuity at integer particle numbers. Recent works have establ...
Article
Full-text available
We investigate the structural and electronic properties of Li-intercalated monolayer graphene on SiC(0001) using combined angle-resolved photoemission spectroscopy and first-principles density functional theory. Li intercalates at room temperature both at the interface between the buffer layer and SiC and between the two carbon layers. The graphene...
Article
The electronic properties of epitaxial graphene grown on SiC(0001) are known to be impaired relative to those of freestanding graphene. This is due to the formation of a carbon buffer layer between the graphene layers and the substrate, which causes the graphene layers to become strongly n-doped. Charge neutrality can be achieved by completely pass...
Article
Full-text available
Transition metal diborides are ceramic materials with potential applications as hard protective thin films and electrical contact materials. We investigate the possibility to obtain age hardening through isostructural clustering, including spinodal decomposition, or ordering-induced precipitation in ternary diboride alloys. By means of first-princi...
Article
We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to peri...
Article
A recently published generalized gradient approximation functional within density functional theory (DFT) has shown, in a few paradigm tests, an improved KS orbital description over standard (semi)local approximations. The characteristic feature of this functional is an enhancement factor that diverges like sln(s) for large reduced density gradient...
Article
Full-text available
We derive a closed-form expression for the quantum corrections to the kinetic energy density in the Thomas-Fermi limit of a linear potential model system in three dimensions (the Airy gas). The universality of the expression is tested numerically in a number of three-dimensional model systems: (i) jellium surfaces, (ii) confinement in a hydrogenlik...
Article
Full-text available
Only a single linearly dispersing π-band cone, characteristic of monolayer graphene, has so far been observed in Angle Resolved Photoemission (ARPES) experiments on multilayer graphene grown on C-face SiC. A rotational disorder that effectively decouples adjacent layers has been suggested to explain this. However, the coexistence of μm-sized grains...
Article
Full-text available
We formulate the on-site occupation dependent exchange correlation energy and effective potential of hybrid functionals for localized states and connect them to the on-site correction term of the DFT+U method. Our derivation provides a theoretical justification for adding a DFT+U-like onsite potential in hybrid DFT calculations to resolve issues ca...
Article
We have previously proposed that further improved functionals for density functional theory can be constructed based on the Armiento-Mattsson subsystem functional scheme if, in addition to the uniform electron gas and surface models used in the Armiento-Mattsson 2005 functional, a model for the strongly confined electron gas is also added. However,...
Data
Full-text available
Scientific Reports 4, Article number: 4157 10.1038/srep04157 (2014); Published: February242014; Updated: July082014 The authors neglected to cite a related study that reports an ARPES experiment indicating the presence of multiple π bands in multilayer graphene on C-face SiC.1 This is given below as Reference 1. In the present Article, nano-ARPES...
Article
Full-text available
We screen a large chemical space of perovskite alloys for systems with optimal properties to accommodate a morphotropic phase boundary (MPB) in their composition-temperature phase diagram, a crucial feature for high piezoelectric performance. We start from alloy end points previously identified in a high-throughput computational search. An interpol...
Article
Full-text available
Band structure engineering for specific electronic or optical properties is essential for the further development of many important technologies including thermoelectrics, optoelectronics, and microelectronics. In this work, we report orbital interaction as a powerful tool to finetune the band structure and the transport properties of charge carrie...
Article
Full-text available
Only a single linearly dispersing π-band cone, characteristic of monolayer graphene, has so far been observed in Angle Resolved Photoemission (ARPES) experiments on multilayer graphene grown on C-face SiC. A rotational disorder that effectively decouples adjacent layers has been suggested to explain this. However, the coexistence of μm-sized grains...
Article
Constructing approximations for the exchange-correlation (xc) potential in density functional theory instead of the energy appears attractive because it may provide for a way of easily incorporating desirable features such as a particle number discontinuity into xc functionals. However, xc potentials that are constructed directly are problematic: A...
Article
Full-text available
Pyrite (FeS2), being a promising material for future solar technologies, has so far exhibited in experiments an open-circuit voltage (OCV) of around 0.2 V, which is much lower than the frequently quoted 'accepted' value for the fundamental bandgap of ∼0.95 eV. Absorption experiments show large subgap absorption, commonly attributed to defects or st...
Article
We explore a way to impose a derivative discontinuity onto a semi-local energy functional in density functional theory, rather than a model potential. The derivative discontinuity is a property of exact exchange that states that the exchange potential may have a uniform discontinuous shift as the particle number passes through an integer. The lack...
Presentation
We present a density functional for the kinetic energy derived from the Airy gas model, which is a model system for an edge electron gas. Electronic edges are the regions in a system where the electronic density changes to become exponentially decaying, and the electron physics requires special consideration. The Airy model describes an electron ga...
Conference Paper
The ab initio prediction of band gaps for solids is important for fundamental and practical reasons. Many approaches exist to remedy the "band gap problem" in Density Functional Theory (DFT) in which band gaps are severely underestimated. We recently proposed the delta-sol method [1], an adaptation of the deltaSCF method towards solids, in which th...
Conference Paper
Using the sun's energy to produce hydrogen from water through photocatalytic process has been a dream since its first demonstration by Fujishima and Honda 40 years ago. Since then significant effort has been made to find a suitable material for this purpose but so far efficiency of the available materials is too low to be commercially interesting....
Article
The subsystem functional scheme (Kohn and Mattsson, Phys Rev Lett 1998, 81, 3487; Armiento and Mattsson Phys Rev B 2002, 66, 165117) is a recently proposed framework for constructing exchange-correlation density-functionals for use in density functional theory based calculations. The fundamental principle is to describe the physics in a real materi...
Article
The subsystem functional scheme is a promising approach recently proposed for constructing exchange-correlation density functionals. In this scheme, the physics in each part of real materials is described by mapping to a characteristic model system. The “confinement physics,” an essential physical ingredient that has been left out in present functi...
Article
Full-text available
Prior works have shown that density functional theory (DFT) with the DFT+U method resolves the underestimation of redox potentials calculated by conventional functionals for a number of transition metal compounds relevant for battery applications, including the olivine LixMPO4 (M = Fe, Mn, Co, Ni), layered LixMO2 (M = Co, Ni) and spinel-like LixMn2...
Article
A Schrödinger eigenvalue problem is solved for the 2D quantum simple harmonic oscillator using a finite element discretization of real space within which elements are adaptively spatially refined. We compare two competing methods of adaptively discretizing the real-space grid on which computations are performed without modifying the standard polyno...
Presentation
The missing ingredient of confinement physics in density functionals
<