
Estimating Missing Observations in Economic Time Series∗

A. C. Harvey
London School of Economics, Houghton Street, London, WC2A 2AE, UK

R. G. Pierse
Department of Applied Economics, Cambridge University, Cambridge CB3 9DE, UK

March 1983

Abstract

Two related problems are considered. The first concerns the maximum likelihood estimation of the
parameters in an ARIMA model when some of the observations are missing or subject to temporal
aggregation. The second concerns the estimation of the missing observations. Both problems can be
solved by setting up the model in state space form and applying the Kalman filter.
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1 Introduction

It is not unusual to encounter economic time series that are currently published at monthly or quarterly
intervals but are only available on an annual basis in earlier periods. For a stock variable, such as the
money supply, this means that there are missing observations in the first part of the series, while for a
flow, like investment, it means that the early observations are subject to temporal aggregation. Note
that a stock is the quantity of something at a particular point in time, while a flow is a quantity that
accumulates over a given period of time. The relevance of these concepts is obviously not confined to
economics.

This article considers two related problems: the estimation of an autoregressive-integrated-moving
average (ARIMA) model based on all the available observations and the estimation of the missing
values in the first part of the series. The solution of both problems lies in finding a suitable state
space representation of the ARIMA model. Maximum likelihood estimation is then possible via the
prediction error decomposition, and once this has been done the missing observations can be estimated
by smoothing.

Section 2 introduces the state space methodology and shows how it can be applied to series that can
be modelled by stationary ARMA processes. The applicataion of this technique to stock variables is
already fairly well known (see, e.g. Jones (1980)), but it does not seem to have been used in connection
with flows. The extension to the more relevant case of an ARIMA model raises some nontrivial problems
and has not been dealt with before, even for a stock variable. Two approaches to estimating ARIMA
models with missing observations are described in Section 3. Section 4 deals with the prediction of future
observations and describes how the missing observations are estimated by smoothing. The additional
complications caused to ARIMA modelling by the logarithmic transformation are considered in Section
5. Some examples of the application of the techniques are given in Section 6, and Section 7 sets out
a general solution to the problem considered by Chow and Lin (1971, 1976), namely the estimation of
missing observations by regressing on a related series.
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to thank an Associate Editor of this journal and a referee for helpful comments on an earlier draft. In addition they have
benefited from valuable discussions with P. Pereira and with several of the participants in the Symposium on Time Series
Analysis of Irregularly Observed Data held at Texas A&M University in February 1983. Any errors remain the authors’
responsibility.
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2 Stationary Processes

Since this article is only concerned with univariate time series, attention can be focused on a special case
of the state space model. Let αt be an m× 1 state vector that obeys the transition equation

αt = Tαt−1 + Rεt, t = 1, . . . , T, (2.1)

where T is a fixed matrix of dimension m ×m, R is an m × 1 vector, and εt is a sequence of normally
distributed independent random variables with mean zero and variance σ2; that is εt ∼ NID(0, σ2). The
state vector is related to a single series of observations by the measurement equation

yt = zt
′αt + ζt, t = 1, . . . , T, (2.1b)

where yt is the observed value, zt is a fixed m × 1 vector and ζt is a sequence of normally distributed
independent random variables with mean zero and variance σ2ht.

Let at−1 denote the optimal or minimum mean squared estimator (MMSE) based on all the infor-
mation available at time t − 1. Let σ2Pt−1 denote the covariance matrix of at−1 − αt−1. Given at−1
and Pt−1, the MMSE of αt, at|t−1, together with its associated covariance matrix, Pt|t−1 is obtained
by applying the prediction and updating equations of the Kalman filter (see, e.g., Anderson and Moore
(1979), or Harvey (1981b)).

2.1 State space formulation of an ARMA model

A stationary ARMA(p,q) model for a sequence of normally distributed variables y†1, . . . , y
†
T can be written

as

y†t = φ1y
†
t−1 + · · ·+ φpy

†
t−p + εt

+ θ1εt−1 + · · ·+ θqεt−q, t = 1, . . . , T, (2.2)

where φ, . . . , φp are the AR parameters, θ1, . . . , θq are the MA parameters and εt ∼ NID(0, σ2). The
model can be put in state space form that obeys a transition equation of the form (2.1). The transition
matrix T, has φi, i = 1, . . . , p as the ith element in its first column, unity as element (j, j + 1), j =
1, . . . ,m− 1 and all other elements zero. The m× 1 vector R is defined as R = (1, θ1, . . . , θm−1)′, where
θq+1, . . . , θm−1 are zero if m > q + 1. This particular matrix and vector will be denoted Φ and θ in

future sections. Given these definitions the first element in αt is identically equal to y†t . Thus in the

measurement equation, (2.1b), zt = (1, 0, . . . , 0)′ for t = 1, . . . , T , and if y†t is observed without error,

yt = y†t and ht = 0.
Because the model is stationary, the initial conditions for the Kalman filter are given by a1|0 = 0

and P1|0 = σ−2 E(αtαt
′). Given that an observation is available in every time period, the Kalman filter

produces a set of T prediction errors or innovations, νt = yt − zt
′at|t−1 for t = 1, . . . , T . These can be

used to construct the likelihood function by the prediction error decomposition; that is,

logL(y1, . . . , yT ; Φ,θ, σ2) = −T
2

log 2π − T

2
log σ2 − 1

2

T∑
t=1

log ft −
1

2σ2

T∑
t=1

ν2t /ft. (2.3)

The quantities f1, . . . , fT each of which is proportional to the variance of the corresponding innovation,
are also produced by the Kalman filter. The parameter σ2 does not appear in the Kalman filter, and it
can be concentrated out of (2.3).

Careful programming of the Kalman filter recursions leads to a very efficient algorithm for evaluating
the exact likelihood function of an ARMA model; compare the evidence presented in Gardner et al.
(1980). Various modifications of the Kalman filter can also be used for this purpose (see, e.g. Pearlman
(1980)).

2.2 Missing observations on a stock variable

A missing observation on a stock variable can be handled very easily simply by bypassing the correspond-
ing updating equation. Skipping the missing observations in this way makes no difference to the validity
of the prediction error decomposition provided that when an observation is missing the corresponding
log ft term is omitted from the likelihood. Thus the likelihood function is of the form given in (2.3) but
with the summations covering only those values of t for which the variable is actually observed. The T
appearing in the first two terms is replaced by the number of observations.
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2.3 Temporal aggregation of a flow variable

Let n denote the maximum number of time periods over which a flow variable is aggregated and let
y∗t−1 be the (n − 1) × 1 vector (y†t−1, . . . , y

†
t−n+1)′. Define an (m + n − 1) × 1 augmented state vector,

αt = (α′t y
∗
t−1)′, where αt is the state vector appropriate to the ARMA model for y†t . The transition

equation for the augmented state vector is

αt =

 Φ 0
1 0′ 0′

0 In−2 0

αt−1 +

[
θ
0

]
εt, t = 1, . . . , T (2.4)

(When q = 0, a more economical state space representation is obtained by redefining m as max(p, n)

and letting the state vector be αt = (y†t , . . . , y
†
t−m+1)′. The matrix T in the transition equation is then

the transpose of Φ.) If at time t, the aggregate yt of the previous n(t) terms in the series is observed,
the measurement equation is

yt = (1,0m−1
′, in(t)−1

′,0n−n(t)
′)αt =

n(t)−1∑
j=0

y†t−j , 1 ≤ t ≤ T, (2.5)

where i is an (n(t)−1)×1 vector of ones. In periods when there is no observation the updating equation
can be skipped in the same way as for a stock variable. Note that the definition of the vector zt changes
as the basis upon which the variable is aggregated changes.

The starting values for the augmented state space model are a1|0 = 0 and P1|0 = σ−2 E(αtαt
′).

However, if a run of disaggregated observations is available at the end of the series, the calculations
can be simplified by working backwards. This is quite legitimate since if y†t , t = 1, . . . , T is generated
by an ARMA (p, q) process, the observations taken from t = T to t = 1 can be regarded as being
generated by exactly the same process; see (Box and Jenkins, 1976, pp. 197–198). The calculations

begin with the state model appropriate to y†t and only when the agregate observations start to arrive
is a transfer to the augmented model made. The advantage of this approach is that the initial m ×m
matrix P̂1|0 = σ−2 E(α̂tα̂t

′) can be evaluated using standard algorithms. When the run of disaggregate
observations comes to an end, the MMSE of the augmented state vector and the associated Pt matrix
can be formed immediately since all the observations in the vector corresponding to y∗t−1 are known.
Note that when the observations are processed in reverse, the aggregate observations must be regarded
as arising at the beginning of the period of aggregation rather than at the end.

3 Nonstationary Process

In general, economic time series are nonstationary and the usual approach is to fit an ARIMA model.
Thus if ∆ denotes the first difference operator and ∆s denotes the seasonal difference operator (for a

season of s periods), the series ∆d∆D
s y
†
t = w†t is modelled as a stationary (seasonal) ARMA process.

There are basically two ways of constructing the likelihood function for an ARIMA model with missing
observations. The first approach formulates the state space model in such a way that the observations
are in levels, while the second has the observations in differences. The choice between them depends
on the pattern of missing observations. If they are missing at regular intervals, the algorithm based
on differenced observations may be preferrable. The levels formulation is, however, more flexible. In
addition it forms the basis for the smoothing algorithm.

3.1 Levels formulation

Let L be the lag operator and let −δj be the coefficient of Lj in the expansion of ∆d∆D
s = (1−L)d(1−

Ls)D. Let αt be the state vector in the state space model for the stationary ARMA(p, q) process, w†t ,

and define the augmented state vector, αt = (αt
′ y∗t−1

′)′, where y∗t−1 = (y†t−1, . . . , y
†
t−d−sD)′. The

transition equation for the augmented state vector is

αt =

[
αt
y∗t−1

]
=

 Φ 0′

1 0 · · · 0 δ1 · · · δk
0′ Ik−1 0

[ αt−1
y∗t−2

]
+

[
θ
0

]
εt, t = 1, . . . , T, (3.1)

where k = d+ sD.
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If y†t is observed for all t = 1, . . . , T , the measurement equation is

yt = (1,0m−1
′, δ1 · · · δk)αt, t = 1, . . . , T, (3.2)

and the Kalman filter can be initialised at t = k with ak+1|k = (0′, y∗k+1
′)′ and

Pk+1|k =

[
P1|0 0

0 0

]
, (3.3)

where P1|0 = σ−2 E(αtαt
′). It is not difficult to show that the likelihood function constructed from the

Kalman filter is identical to the likelihood function that would result from applying the Kalman filter to
the differenced observations ∆d∆D

s yt; compare a similar argument in Harvey (1981a).
For stock variables, missing observations can be handled in the same way as described in Section 2.

For a flow variable, the measurement equation for an aggregate observation of the form

yt =

n(t)−1∑
j=0

y†t−j

is
yt = (1,0m−1

′, δ1 + 1, . . . , δn(t)−1 + 1, δn(t), . . . , δk)′αt. (3.4)

This assumes n− 1 ≤ d+ sD; if this is not the case, y∗t−1 must be redefined as (y†t−1, . . . , y
†
t−n+1)′.

The only problem with the levels formulation concerns starting values since in most applications the
complete set of values y†1, . . . , y

†
k will not be available. However, if at least k consecutive observations are

available at the end of the series the problem can be solved by reversing the order of the observations.

3.2 Difference formulation

Suppose that observations on a stock variable are available evey n time period. An immediate difficulty
arises with an ARIMA model because it may not be possible to construct the differenced observations
∆d∆D

s y
†
t , from such a sequence. Thus, for example, first differences cannot be formed if the variable

in question is only obseerved every other time period. The solution to the problem is to construct a
differenced series that can be observed. If s ≥ n and s/n is an integer, the observable differenced series
is

yt = ∆d
n∆D

s y
†
t , t = nd+ SD, n(d+ 1) + sD, . . . , (3.5)

where
∆d
n = (1− Ln)d = (1− L)d(1 + L+ · · ·+ Ln−1)d. (3.6)

Expression (3.5) becomes

yt = (1 + L+ · · ·+ Ln−1)dw†t , (3.7)

where w†t is the underlying ARMA process, ∆d∆D
s y
†
t . Thus although y†t is a stock, the observable

differenced series, yt, is a flow when considered in terms of w†t . The techniques described for flow

variables in Section 2 can be applied directly, although if d > 1 the weights for different lags of w†t are
not the same, and the measurement equation must be amended accordingly. Similar methods can be
applied when the original variable is itself a flow.

4 Predicting Future Observations and Estimating Missing Ob-
servations

Once the parameters of the ARIMA model have been estimated, optimal predictions of future observa-
tions, together with their conditional mean squared errors (MSE’s), can be made by repeated application
of the Kalman filter prediction equations. Similarly, MMSE’s of the missing observations can be com-
puted by smoothing. The levels form of the model will normally be appropriate for both purposes.

There are a number of smoothing algorithms available. The best known is probably the fixed interval
algorithm; see (Anderson and Moore, 1979, pp. 187–190) or (Harvey, 1981b, Ch. 4). It is based on a set
of backward recursions starting at time T , but it has two drawbacks in the present context. The first is
that it requires the storage of a large number of covariance matrices, the Pt and Pt|t−1’s computed from
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the initial pass through the Kalman filter. The second is that the inverse of Pt|t−1 is needed and if some
of the elements in αt are known at time t − 1, this matrix will be singular. Neither of these problems
is insurmountable, but for the kind of situations with which we are concerned, a fixed-point smoothing
algorithm is more attractive.

Fixed-point smoothing can be applied by proceeding with the Kalman filter and augmenting the state
vector each time a missing observation is encountered. Once all the observations have been processed,
the components added to the state vector will contain the MMSE’s of the missing observations. The
corresponding MSE’s can be obtained directly from the associated augmented covariance matrix.

The recursions for the augmented parts of the state vector can, in fact, be separated from the Kalman
filter recursions for the original state vector. This is extremely useful since it means that a new series
of recursions can simply be started off with each missing observation, leaving the basic Kalman filter
undisturbed. The form of these recursions is as follows. Suppose that the underlying varaible y†t , is not
observed at time t = τ . The state vector is augmented by y†τ , which is, it should be noted, a linear
combination of the elements of ατ ; that is,

y†τ = z′ατ , (4.1)

where z is constant throughout the series. (Note that for a flow variable zt will not be the same as z when
there is temporal aggregation. However, for a stock variable, zt = z whenever there is an observation.)
Modifying the formulas in (Anderson and Moore, 1979, 172–173) to take account of the fact that only a
linear combination of ατ is to be estimated leads to the smoothing recursions

yτ |t = yτ |t−1 + pτ |t−1
′ztf

−1
t νt, t = τ, . . . , T (4.2a)

and
pτ |t = T(I− gtzt

′)pτ |t−1, t = τ, . . . , T, (4.2b)

where gt = Pt|t−1ztf
−1
t . The initial values are yτ |τ−1 = z′aτ |τ−1 and pτ |τ−1 = Pτ |τ−1z. The quantities

ft, νt, and gt are all produced by the Kalman filter for the original state space model, the vector zt being
used to define the measurement equation. If there is no observation at time t, then (4.2a) and (4.2b)
collapse to yτ |t = yτ |t−1 and pτ |t = Tpτ |t−1, respectively. The MSE of yτ |T is given by σ2fτ |T , where
fτ |T is obtained from the recursion

fτ |t = fτ |t−1 − pτ |t−1
′ztf

−1
t zt

′pτ |t−1, t = τ, . . . , T (4.3)

with fτ |τ−1 = z′Pτ |τ−1z.
When set up in this way, the fixed-point smoothing algorithm is extremely efficient. The storage

requirements are negligible and in a typical application, the time taken to run the augmented Kalman
filter is usually less than twice the time taken for a normal run. This is trivial compared with the time
taken to compute the ML estimators of the unknown parameters.

5 Logarithmic Transformations

It is very common to take logarithms of a variable before fitting an ARIMA model. This creates no
difficulties whatsoever for a stock variable. For a flow variable, however, an immediate problem arises
because it is the sum of the original variables that is observed and the logarithm of a sum is not equal
to the sum of the logarithms. Assuming that the logarithms of the aggregated variables are normally
distributed is then inconsistent with the assumption that the corresponding disaggregated variables are
normal. Notwithstanding this point, one way to proceed is to assume that the logarithms of all variables
actually observed are normally distributed. The logarithm of the observed aggregate at time t is

yt = log

n(t)−1∑
j=0

exp(y†t−j), (5.1)

where y†t is the underlying ARIMA process. Adopting the notation of (3.4), but assuming that n = k
for simplicity, the measurement equation can be written as

yt = log[exp {(1,0m−1 ′, δ1, . . . , δn)αt}+

m+n∑
j=m+1

exp(αjt)], (5.2)
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where αjt is the jth element in αt. this equation is obviously nonlinear but by using the extended Kalman
filter, as in (Anderson and Moore, 1979, pp. 193–195), an approximation to the likelihood function can
be computed by the prediction error decomposition.

6 Example

The airline passenger data given in (Box and Jenkins, 1976, p. 531) consists of 144 monthly observations
on the number of passengers carried by airlines over the period 1949 to 1960. It is highly seasonal and
(Box and Jenkins, 1976, Ch. 9) fitted the following model to the logarithms of the observations:

∆∆12yt = (1 + θ1L)(1 + θ12L
12)εt. (6.1)

The above model was estimated using four variations of the data set: (i) all 144 observations; (ii)
the observations from January to November deleted for the last six years; (iii) the logarithms of the
observations of each of the last six years aggregated and assigned to December; (iv) the raw observations
for each of the last six years aggregated and assigned to December. The second data set represents an
example of missing observations, with the variable treated as though it were a stock observed annually,
rather than monthly, for part of the sample period. The third and fourth data sets are examples of
temporal aggregation. Data set (iii) would be relevant if the observations used in the ARIMA model
were original observations rather than logarithms. Note that placing the missing or temporally aggre-
gated observations at the end of the series, whereas in practice they might come at the beginning, is
unimportant. As already noted, the order of the observations can always be reversed without affecting
the underlying ARIMA model.

Table 1: Maximum Lkelihood Estimates of
Parameters for Airline Passenger Model, (6.1)

Parametersa

Data set θ1 θ12

(i) Full Data −.402 −.557
(.090) (.073)

(ii) Missing Observations −.457 −.758
(.121) (.236)

(iii) Temporal Aggregation (logs) −.475 −.741
(.114) (.223)

(iv) Temporal Aggregation (raw data) −.477 −.738
(.114) (.221)

a Figures in parentheses are asymptotic standard errors.

The computer program we wrote is a fairly general one that can handle both missing observations
and temporal aggregation. The pattern of missing observations need not be regular. The only proviso
is that there should be a run of d+ sD observed values at either the beginning or the end of the series.
In writing the program, considerable care was taken to devise a computationally efficient routine for
evaluating the likelihood function. Particular attention was paid to the evaluation of P1|0, the matrix
used to initialise the Kalman filter, and the algorithm adopted is described in some detail in our original
research report (Harvey and Pierse (1982)). Maximisation of the likelihood function was carried out by
one of the Gill-Murray-Pitfield numerical optimisation routines in the UK NAG library, E04JBF. This is
a Quasi-Newton algorithm that uses numerical derivatives and allows simple bounds to be placed on the
parameters. By choosing a suitable parameterisation, we were able to devise a very effective procedure
in which we were able to constrain the roots of the MA polynomial to lie outside or on the unit circle;
again see (Harvey and Pierse, 1982, Appendix B). The reason for allowing strictly noninvertible MA
processes is set out in Harvey (1981b).

The results of exact ML estimation are shown in Table 1. The estimates obtained with data sets
(ii), (iii) and (iv) are quite close to the estimates obtained with the full set of observations. The higher
asymptotic standard errors are a reflection of the smaller number of observations.
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Table 2: Estimates of Logarithms of Missing Observations and
Associated Root Mean Squared Errors for 1957

Month

Data set Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.

(ii) Missing Observations 5.733 5.738 5.893 5.850 5.843 5.951 6.051 6.055 5.938 5.8123 5.680 —
(.045) (.049) (.052) (.054) (.055) (.055) (.055) (.054) (.052) (.049) (.045)

(iii) Temporal Aggregation (logs) 5.770 5.778 5.937 5.896 5.890 5.997 6.094 6.093 5.971 5.839 5.700 5.818
(.041) (.040) (.039) (.038) (.037) (.037) (.037) (.037) (.038) (.039) (.040) (.041)

(iv) Temporal Aggregation (raw data) 5.772 5.779 5.939 5.848 5.893 6.001 6.098 6.099 5.976 5.844 5.704 5.823
(.041) (.041) (.039) (.038) (.037) (.036) (.036) (.036) (.037) (.039) (.041) (.041)

Actual Values 5.753 5.707 5.875 5.852 5.872 6.045 6.146 6.146 6.001 5.849 5.720 5.817

Table 2 shows the estimates of the missing observations for 1957 computed by the smoothing algorithm
described in Section 4. The root mean squared errors associated with each estimate are

RMSE(yt|T ) = σ̃
√
ft|T ,

where ft|T is given by (4.3) and σ̃ is the square root of the ML estimator of σ2. For data sets (ii) and (iii)
the estimates are all remarkably close to the actual values. Similar results were obtained for the other
years in which there were missing observations. The theoretical justification for the estimates obtained
when there is temporal aggregation but the model is in logarithms—case (iv)— is somewhat weaker
because of the approximation involved in the use of the extended Kalman filter. However, the results
presented in Table 2 lend some support to the use of this device in smoothing, as well as estimation. The
figures presented for data set (iv) are virtually indistinguishable from those derived for data set (iii).

The results in Table 2 refer to estimates of the logarithms of the missing observations. If xt denotes
the original observation, a direct estimate of a missing xt is given by xt|T = exp(yt|T ). However, the
relationship between the normal and lognormal distributions suggests the modified estimator

x ∗
t|T = exp

{
yt|T +

1

2
MSE(yt|T )

}
. (6.2)

The estimator is unbiased in the sense that the expectation of xt − x ∗
t|T is zero when the parameters of

the underlying ARIMA model are known. For the airline passenger data, the use of the modification in
(6.2) made very little difference. In the case of (ii), for example, the direct and modified estimates for
May 1957 were 344.8 and 345.4 respectively. The true value is 355. For the same data point, the 95%
prediction interval was 309.5 to 384.1.

7 Regression

Chow and Lin (1971, 1976) approach the problem of estimating missing observations by assuming that

y†t is related to a set of k nonstochastic variables that are observed in all time periods. They assume a
linear relationship of the form

y†t = xt
′β + ut, t = 1, . . . , T, (7.1)

where xt is the k× 1 vector of related variables, β is a k× 1 vector of parameters, and ut is a stationary
stochastic disturbance term.

Given the covariance matrix of the disturbances, finding estimates of the missing observations is
basically an exercise in best linear unbiased estimation and prediction. However, it does require the
construction and inversion of the covariance matrix associated with the variables (aggregates in the flow
case) actually observed. Furthermore the covariances between the missing values and the observed values
must also be found. In solving the problem in this way Chow and Lin concentrate on situations where
the observations are missing at regular intervals and the disturbances are either serially uncorrelated or
generated by an AR(1) process.

The Kalman filter can be applied directly to (7.1) by using the techniques described in Section 2,

with y†t replaced by y†t −xt
′β. The likelihood function must then be maximised nonlinearly with respect

to β as well as the ARMA parameters and any estimates of MSE’s obtained in a subsequent smoothing
operation will only be conditional on β. This constitutes a possible disadvantage comapred to the Chow-
Lin approach although it does avoid the necessity for repeated inversions of relatively large covariance
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matrices. However, it is possible to conserve the advantages of the Chow-Lin approach while applying
the Kalman filter by redefining the state space model to include β in the state vector (cf. Harvey and
Phillips (1979)). This formulation yields the BLUE of β for given values of the ARMA parameters and
enables β to be concentrated out of the likelihood function. (If consistent estimators of the ARMA
parameters can be obtained, this estimator of β will be asymptotically efficient under suitable regularity
conditions.) Note that it will normally be necessary to process the observations backwards to obtain
starting values.

The above techniques can also be used if the regression model has been framed in first differences as
suggested by Denton (1971) and Fernandez (1981). In this case the model is

∆y†t = (∆xt)
′β + ut, t = 2, . . . , T. (7.2)

The Kalman filter can handle models in which ut is an ARMA process rather than the serially uncor-
related process assumed in the references just cited. In fact even when ut is serially uncorrelated, the
Kalman filter may still be advantageous since the inversion of the (T −1)× (T −1) matrix in expressions
(3) and (4) of the paper by Fernandez is avoided.

Finally, it is worth noting that one suggestion made by Chow and Lin is to use a time trend and
seasonal dummies as the explanatory variables in (7.1). Computing estimates of the missing values from
such a model can also be carried within the ARIMA framework described in Sections 3 and 4. If the
disturbance in (7.1) is a serially uncorrelated process, εt, the model is a special case of (6.1) in which
θ1 = θ12 = −1. Although this model is strictly noninvertible, starting off the Kalman filter in the manner
suggested in Section 3 ensures that estimates of missing values and predictions of future observations are
exactly the same as if the model had been estimated within the regression framework of Chow and Lin
(cf. Harvey (1981a)).

8 Conclusion

The results reported in Section 6 show that maximum likelihood estimation of ARIMA models can
be carried out efficiently when there are missing or temporally aggregated observations. Furthermore,
mimimum mean squared estimates of the missing observations together with their conditional root mean
squared errors, can be computed at vey little extra cost. Additional complications arise with temporal
aggregation when the ARIMA model is based on logarithms, but an approximate solution can be obtained
by the extended Kalman filter. This solution is not altogether satisfactory from the theoretical point of
view, although it does seem to give quite reasonable results with the airline data.

Although the approach developed here can handle most configurations of missing values, it does
need an unbroken run of observations at the beginning or end of the series. One way of relaxing this
requirement is by modifying an algorithm given in Rosenberg (1973). An indication of how this may be
done can be found in Harvey and McKenzie (1983).
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