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Distribution of Path Durations in Mobile Ad-Hoc
Networks and Path Selection

Richard J. La and Yijie Han

Abstract— We investigate the issue of path selection in multi-
hop wireless networks with the goal of identifying a scheme that
can select a path with the largest expected duration. To this end
we first study the distribution of path duration. We show that,
under a set of mild conditions, when the hop count along a path is
large, the distribution of path duration can be well approximated
by an exponential distribution even when the distributions of
link durations are dependent and heterogeneous. Secondly, we
investigate the statistical relation between a path duration and
the durations of the links along the path. We prove that the
parameter of the exponential distribution, which determines the
expected duration of the path, is related to the link durations
only through their means and is given by the sum of the inverses
of the expected link durations. Based on our analytical results we
propose a scheme that can be implemented with existing routing
protocols and select the paths with the largest expected durations.
We evaluate the performance of the proposed scheme using ns-2
simulation.

I. INTRODUCTION

Multi-hop wireless ad-hoc networks have been the focus
of active research in recent years. Unlike a wireline network
with a fixed infrastructure, a wireless ad-hoc network can be
deployed with no infrastructure and mobile nodes can establish
and maintain a network in an autonomous manner. Due to
nodes’ mobility, links are expected to be set up and torn
down much more frequently than in a wireline network. As a
result, a network topology varies with time as the connectivity
between nodes changes dynamically. Frequent link failures
and network topology changes in mobile ad-hoc networks
(MANETs) render the routing protocols designed for wireline
networks (e.g., the Internet) rather inefficient. A suite of new
routing algorithms have been proposed for MANETs to deal
with frequent network topology changes [8], [12], [14], [15].
A detailed discussion of available routing protocols is provided
in the monographs [13].

Due to nodes’ mobility, links along a provided path may
become unavailable in an unpredictable manner. When one or
more links along a path in use become unavailable (which
we call a path failure), the path is no longer valid and a
path recovery procedure is triggered to find an alternate path.
Detecting and recovering from a path failure can take a non-
negligible amount of time (from applications’ viewpoint),
during which service to on-going traffic will be disrupted.
Such a disruption in service can degrade the performance
of time-critical applications. Furthermore, an initiation of
path recovery incurs additional overhead. Therefore, from
the perspective of providing reliable network service and
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minimizing control overhead, a good routing algorithm should
take into consideration the expected duration as well as other
requirements when selecting a path. The duration of a path
refers to the amount of time for which the path remains
available after its set-up until one of the links along the path
fails for the first time.

Intuitively the duration of a path should depend on the dura-
tions of the links along the path and their dependence structure.
Therefore, there is much interest in better understanding the
statistical properties of link and path durations and their
relation. Better understanding of their statistical properties will
allow us to approximate the frequency of disruption in service
and resulting overhead. Hence, it will help us evaluate the
performance of on-demand routing protocols and the adverse
effects of potentially frequent disruptions in service on the per-
formance of upper layers (e.g., Transmission Control Protocol)
without having to run time-consuming detailed simulations.
A numerical example using the Random Waypoint (RWP)
mobility model is given in [5, Section 8].

To the best of authors’ knowledge there is very little known
about the distribution of path durations and its relation with
those of the links that provide them. Consequently, most of
existing routing protocols select a path based on some heuristic
argument; the Dynamic Source Routing (DSR) protocol selects
the minimum hop path, whereas the Ad-hoc On-demand
Distance Vector (AODV) routing protocol selects the first
discovered path. Associativity Based Routing (ABR) protocol
selects the path with maximum average age of the links.
However, it is not clear how the hop count or the average age
of the links along a path is related to its (expected) duration.

Along this line Sadagopan et al. [17] presented a simu-
lation study of the distribution of multi-hop path durations
under various mobility models. Their study shows that the
distribution of path duration can be accurately approximated
by an exponential distribution when the number of hops is
larger than 3 or 4 for all mobility models considered. However,
no clear explanation was offered for the emergence of an
exponential distribution.

In order to correct the current state of affairs Han et al. [5]
developed an approximate framework for studying the distri-
butions of path and link durations. They showed that, under
certain conditions, the distribution of path duration (under
appropriate scaling) converges to an exponential distribution
when the number of hops becomes large. This result is in line
with the simulation results provided in [17], and is obtained
as a simple application of Palm’s Theorem [7, Thm. 5-14, p.
157]. In addition, they explored the connection between the
expected duration of a path and the expected durations of the
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links along the path. To be more precise, they showed that
when the number of hops is large, the inverse of the expected
duration of a path is approximately given by the sum of the
inverses of expected durations of the links along the path.

The results reported in [5] provide the first evidence that
when the hop count is large, the distribution of path duration
can indeed be approximated by an exponential distribution.
The application of Palm’s theorem in [5], however, requires
that the link excess lives be mutually independent, which is in
general not true. The excess life of a link in a path refers to the
amount of time the link remains available until it is torn down
for the first time after the path set-up. Two neighboring links
along a path, for example, share a common node. Clearly,
the excess lives of these two neighboring links depend on
the mobility of the shared node, introducing some level of
dependence in them. Moreover, such local dependence in link
excess lives may be more evident under group mobility models
where the mobility of a set of nodes may be correlated. There-
fore, it is of much interest to see if the same distributional
convergence to an exponential distribution holds without the
independence assumption and how the parameter of the limit
distribution (which decides the expected duration) is affected
by the dependence.

In this paper we extend the results in [5] by relaxing the
independence assumption on the link excess lives imposed in
[5]; we only require that the dependence of link excess lives
go away asymptotically with increasing hop distance between
the links. This assumption can be stated using what is known
as a mixing condition (Section V-A). It allows the possibility
of relatively strong local dependence in link excess lives
which can be exhibited, for example, under group mobility
models. We demonstrate that, under some mild conditions (to
be stated precisely), the same distributional convergence to an
exponential distribution reported in [5] holds under this much
weaker condition (Section V-B). We point out that relaxing
the independence assumption demands a new technique for
proving the distributional convergence and complicates the
proof considerably; a suitable extension of Palm’s theorem
that deals with dependent processes is not available.

We also show that the parameter of the emerging exponen-
tial distribution is the same whether the link excess lives are
mutually independent or not. In other words, the parameter
of the exponential distribution is given by the sum of the
inverses of the expected link durations. This suggests that for
a path with a sufficiently large hop count the dependence
of link excess lives does not significantly affect the path
duration distribution. Based on this observation, we outline a
scheme that can be implemented in existing routing protocols
to select the path with the largest expected duration with
minimal communication overhead (Section VI). We implement
this scheme in AODV and evaluate the performance gain
(Section VII).

The paper is organized as follows. A basic framework for
modeling path durations is given in Section II. Section III
introduces the set-up under which the asymptotic distribution
of a path duration with increasing hop count is studied. In
Section IV we study a simpler case in which link durations
have the same distribution and their dependence is limited to

a finite neighborhood. This is followed by a study of more
general cases in which the link duration distributions may be
heterogeneous and the dependence is not limited to a finite
neighborhood in Section V. We outline how our results can
be used to implement a scheme for selecting a path with the
largest expected duration during a path discovery phase in
Section VI. Simulation results are presented in Section VII to
demonstrate the performance gain from our proposed scheme.

A word on the notation and convention used throughout:
We define all the random variables (rvs) of interest on some
common probability space (Ω,F ,P). Two IR–valued rvs X
and Y are said to be equal in law if they have the same
distribution, a fact we denote by X =st Y . The independence
between two rvs X and Y is denoted by X ⊥ Y . If G is
a probability distribution on IR+, let m(G) denote its first
moment which is always assumed to be finite. Convergence in
distribution (with n going to infinity) is denoted by =⇒n. For
any x in IR2, with components (x1, x2), set ||x|| =

√
x2

1 + x2
2.

II. A BASIC FRAMEWORK

This section describes the same basic framework that we
borrow from [5] for our analysis: Consider a MANET where
a set of nodes creates and maintains network connectivity.
We assume that an on-demand algorithm is used and a path
between a source node and a destination node is set up only
when a request is made.

Let V = {1, . . . , N} denote the set of N mobile com-
municating nodes. Each node moves across a domain D of
R2 or R3 according to some mobility model. Due to nodes’
mobility, links between nodes are set up and torn down
dynamically. We assume that a link between two nodes is
either up or down. Two nodes without a link between them
establish such a link as soon as they become reachable,
e.g., when they come within a transmission range of each other
or when the signal to interference and noise ratio (SINR) at
the receiver exceeds certain threshold, and packets from each
other can be successfully decoded. The latter case captures the
characteristics of the physical layer (e.g., path loss and channel
fading) more accurately. Although this is not needed for
the analysis, communication links are assumed bidirectional
since such bidirectional communication is typically required
between two nodes for reliable forwarding of packets, for
instance, by means of acknowledgments for each transmission.

Establishing a path from a source node to a destination
node requires simultaneous availability of a number of com-
munication links that are up at the time of path request
and collectively provide the desired connectivity between the
source and the destination. The duration of a path provided by
the underlying routing protocol is then defined as the amount
of time that elapses until one of the links along the path goes
down for the first time after the path set-up. A link may go
down (which we call a link failure) due to either mobility or
degradation in channel condition. For simplicity of analysis,
path set-up delays are assumed negligible.

A. Reachability processes

We model the situation outlined above as follows: For a pair
of distinct nodes i and j in V , we introduce a {0, 1}-valued
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reachability process {ξij(t), t ≥ 0} with the interpretation
that ξij(t) = 1 (resp. ξij(t) = 0) if the unidirectional link
from node i to node j, denoted by “link” (i, j), is up (resp.
down) at time t ≥ 0. Since the communication links are
assumed bidirectional, we must have ξij(t) = ξji(t). The
process {ξij(t), t ≥ 0} is simply an alternating on-off
process, with successive up and down time durations given
by the rvs {Uij(k), k = 1, 2, . . .} and {Dij(k), k = 1, 2, . . .},
respectively.

The reachability processes can be defined in a number of
ways. For example, for each i in V , let {X i(t), t ≥ 0}
describe the trajectory of node i, i.e., X i(t) denotes the
position of node i at time t ≥ 0. If we do not explicitly model
channel fading between nodes, it is reasonable to assume that
two nodes can communicate with each other reliably if the
distance between them is smaller than some fixed transmission
range rmin > 0. Hence, a link between two distinct nodes i
and j in V exists at time t ≥ 0 if and only if their distance is
smaller than rmin, leading to the definition

ξij(t) := 1 [||Xi(t)−Xj(t)|| ≤ rmin] , t ≥ 0. (1)

Alternative models can take into account the physical layer
characteristics of the channel. For instance, two nodes i and
j in V can maintain a link between them at time t ≥ 0 if and
only if

min

(
Pj · Fji(t)

Ψi(t)
,
Pi · Fij(t)

Ψj(t)

)
> Γ (2)

for some threshold Γ > 0, where Pi is the maximum transmis-
sion power of node i, and F (t) = (Fij(t)) denotes the channel
gain matrix (including fading) at time t with Fji(t) ≥ 0 and
Fii(t) = 0, i, j = 1, . . .N . Different choices of Ψi(t) in (2)
lead to different physical layer models. In the simplest form,
one can assume that a node i can decode the packets from
node j if and only if the received signal power exceeds some
threshold Γ > 0 [2], [16]. In this case the reachability process
between nodes i and j is given by (2) with Ψi(t) = 1 as the
numerators give the largest achievable received signal power
at the nodes.

Similarly, if one assumes that packets can be successfully
decoded if and only if the achieved SINR exceeds the threshold
Γ [3], [4], then the reachability process between nodes i and
j is again given by (2) with

Ψi(t) = Wi +
∑

k∈TX(t)\{j}
Pk(t) · Fki(t) , (3)

where Wi is the noise variance at node i, TX(t) is the set
of transmitters at time t and Pk(t) denotes the transmission
power of node k. The right hand side of (3) represents the
sum of noise power and interference at node i at time t. This
implies that nodes i and j have connectivity if and only if the
achieved SINR value using the maximum transmission power
exceeds Γ in both directions.

B. Path duration

Next we endow V with a time-varying graph structure by
introducing a time-varying set E(t) of directed edges through

the relation

E(t) := {(i, j) ∈ V × V : ξij(t) = 1}, t ≥ 0 (4)

where by convention we set ξii(t) = 0 for each i in V and all
t ≥ 0. Thus, a path can be established (in principle) between
nodes s and d at time t ≥ 0, if node d is reachable from node
s by a path in the undirected graph derived from the directed
graph (V,E(t)). Let Psd(t) ⊆ 2E(t) denote the set of paths
from node s to node d providing this reachability. This set of
paths is empty when the nodes s and d are not reachable from
each other at time t. When non-empty, this set Psd(t) may
contain more than one path since multiple paths may exist
between nodes s and d. In such a case, the routing protocol
in use selects one of the paths in Psd(t) and let Lsd(t) denote
the set of links in the selected path.

For each link ` in Lsd(t), let T`(t) denote the time-to-live
or excess life after time t, i.e., T`(t) is the amount of the time
that elapses from time t onward until link ` is down. The
time-to-live or duration Zsd(t) of the established path from
node s to node d using the links in Lsd(t) is defined as the
amount of time that elapses from time t until one of the links
in Lsd(t) goes down, at which point a path recovery procedure
is initiated. This quantity is simply given by

Zsd(t) := min (T`(t) : ` ∈ Lsd(t)) , t ≥ 0. (5)

III. THE SET-UP AND MODELING ASSUMPTIONS

In this paper we are interested in studying the distribution
of path duration as the number of hops becomes large. In
the following subsection we first describe the set-up used to
model this scenario. Then, we state the modeling assumptions
under which the distributional convergence of path duration is
established with increasing hop count.

A. The set-up

In order to study the distribution of path duration with a
large hop count, we investigate the asymptotic distribution of
path duration (under appropriate scaling of link excess lives) as
the number of hop count increases. This is done by introducing
a parametric scenario with a sequence of networks in which
both the number of communicating nodes and the domain
across which they travel increase:
For each n = 1, 2, . . ., let V (n) = {1, . . . , N (n)} and D(n)

denote the set of mobile nodes and the domain across which
the nodes move, respectively. For each node i in V (n), the
D(n)-valued process {X(n)

i (t), t ≥ 0} denotes the trajectory
of node i in D(n). The stochastic process that governs the
arrival of path requests is assumed to be independent of these
trajectory processes.

1. Scaling – We are interested in the situation where

N (n) ∼ nN (1) and Area(D(n)) ∼ n ·Area(D(1)) (6)

as n goes to infinity;1 it is customary to reparameterize so that
N (n) = n. When in force, the scaling (6) guarantees

N (n)

Area(D(n))
∼ N (1)

Area(D(1))
,

1From now on we omit this qualifier in all asymptotic equivalences.
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so that the density of nodes, i.e., the number of nodes per
unit area, is asymptotically constant.

2. Stationarity – As the system is expected to run for a long
time, we can assume that steady state has been reached. This
possibility is captured by taking the N (n) trajectory processes
to be jointly stationary. Joint stationarity of the trajectory
processes also implies that the N(n)×(N(n)−1)

2 reachability
processes are jointly stationary. For distinct i < j in V (n),
let the rvs {(U (n)

ij (k), D
(n)
ij (k)), k = 1, 2, . . .} denote the

sequence of up and down times for the reachability process
{ξ(n)
ij (t), t ≥ 0}. Writing

W (n)(k) =
(

(U
(n)
ij (k), D

(n)
ij (k)), i < j, i, j ∈ V (n)

)
,

k = 1, 2, . . ., we require that the sequence of rvs
{W (n)(k), k = 2, 3, . . .} be strictly stationary. In partic-
ular, for distinct i < j in V (n), the sequence {(U (n)

ij (k),

D
(n)
ij (k)), k = 2, 3, . . .} constitutes a stationary sequence

with generic marginals (U
(n)
ij , D(n)

ij ). We denote by G(n)
ij the

cumulative distribution function (CDF) of U (n)
ij . This model

is general enough that link dynamics due to both mobility and
channel fading can be captured by a suitable choice of the
CDFs for U (n)

ij .
Well-known results for renewal processes and independent

on-off processes in equilibrium [7, Sections 5-6] can be gen-
eralized as follows: With ` = (i, j), in the notation introduced
in Section II, we have

P
[
T

(n)
` (0) ≤ x

∣∣∣ξ(n)
ij (0) = 1

]
= F

(n)
` (x), x ∈ R (7)

where the conditional probability F (n)
` (x) is given by

F
(n)
` =

{
1

m(G
(n)
` )

∫ x
0

(
1−G(n)

` (y)
)
dy if x > 0

0 if x ≤ 0
(8)

for some link duration CDF G
(n)
` with support in IR+. In

other words, F (n)
` is simply the distribution of the forward

recurrence time associated with U
(n)
` . From (8) it is easy to

see that the duration of a one-hop path has a non-increasing
probability density function (PDF). If X (n)

` denotes any R+-
valued rv distributed according to F (n)

` , then the relation (7)
simply states, with a little abuse of notation, that

[
T

(n)
` (0) ≤ x

∣∣∣ξ(n)
ij (0) = 1

]
=st X

(n)
` .

The rv (5) can now be viewed as the rv Z (n) defined by

Z(n) := min
(
X

(n)
` : ` = 1, . . . , H(n)

)
(9)

where H(n) = |L(n)
sd (0)|. Due to the underlying stationarity

assumptions, it clearly suffices to consider only the case t = 0
as we do from now on.

B. Modeling assumptions

There are a few sources of difficulty in modeling and
studying the distribution of path durations: First, the set Lsd(0)
of links in the selected path is a random subset of E(0), which

depends on the reachability processes at t = 0. Second, the
reachability processes are usually not mutually independent.
This is clear from either formulation (1) or (2). In this
subsection we explain how we handle these issues.

1. Asymptotics of the random set L(n)
sd (0) – With increasing

network size under scaling (6) the average number of hops
in a path between two randomly selected nodes is expected
to increase with n. For example, consider the model with a
fixed domain, in which the connectivity between two nodes is
determined by (1).2 We first select the locations of a source and
a destination according to some stationary spatial distribution
of the nodes. Then, for each n = 3, 4, . . ., place the remaining
n − 2 other nodes on the domain according to the same
stationary distribution while decreasing the transmission range
of the nodes as 1/

√
n. If minimum hop routing is employed,

the number of hops along the shortest path will increase ap-
proximately as

√
n. Thus, we assume that a pair of nodes s and

d in V (n) can be selected such that limn→∞ |L(n)
sd (0)| = ∞,

where for convenience the sequence {|L(n)
sd (0)|, n = 1, 2, . . .}

is assumed to be deterministic.

2. Dependence of the reachability processes and link excess
lives – As mentioned earlier, the link excess lives {X (n)

` ,
` = 1, . . . , H(n)} in (9) are not mutually independent in
general. The authors of [5] skirted this difficulty by assuming
that the reachability processes {ξij(t), t ≥ 0} are mutually
independent so that the rvs {X (n)

` , ` = 1, . . . , H(n)} are mu-
tually independent. They provided a simulation study (Section
9 in [5]) using the RWP mobility model without pause to
justify this assumption; it shows that the correlation coefficient
of link excess lives in (9) decays rapidly with increasing hop
distance between the links. More specifically, it indicates that
the correlation coefficient of link excess lives between two
neighboring links is small and that of two links separated by
intermediate link(s) is almost negligible.

This observation provides some evidence that the depen-
dence of link excess lives may indeed decrease quickly with
hop distance in some cases. However, the observed fast
decrease of correlation in hop distance may be a consequence
of the fact that the mobility of a node in the RWP model
is independent of other nodes, and if the mobility of a set
of nodes is strongly correlated (e.g., soldiers in a platoon
partaking in a mission), this may no longer be true. In the
following sections we relax the independence assumption of
the reachability processes in [5] and replace it with what
are commonly known as mixing conditions. These conditions
impose a form of asymptotic independence as the hop distance
between links increases, while allowing dependence in an
(unbounded) neighborhood.

IV. FINITE DEPENDENCE WITH HOMOGENEOUS LINK

DURATION DISTRIBUTION

In this section we consider a simpler case where link
durations have the same CDF G with support in IR+ and
the dependence in link excess lives is limited to a finite local

2Decreasing the transmission range while keeping the domain fixed has
the same effect as increasing the domain size while keeping the transmission
range fixed.
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neighborhood. First, in order to model the link excess lives,
we introduce a stationary sequence of rvs {Xi, i = 1, 2, . . .}
whose CDF is given by

F (x) =

{ 1
m(G)

∫ x
0

(1−G(y)) dy , if x > 0

0 , if x ≤ 0
. (10)

We let X(n)
` = X` for all n ∈ �

+ := {1, 2, . . .} and all
` ≤ H(n), i.e., rv X` is used to model the excess life of the `-
th link in an H(n)-hop path. The path duration of an H(n)-hop
path is modeled by rv Z(n) := min(X

(n)
` : ` = 1, . . . , H(n)).

The rvs Xi, i = 1, 2, . . ., are identically distributed from the
stationarity assumption, but may not be mutually independent.

The aforementioned assumption of finite dependence of link
excess lives is given by the following:

Assumption 1: (m-dependence [18]) The rvs Xi, i =
1, 2, . . ., satisfy X` ⊥ X`′ if |` − `′| > m, where m is a
finite positive integer.

This assumption is consistent with the findings in [5, Fig.
9], where the dependence in link excess lives under the
RWP mobility model appears to be limited to a very small
neighborhood.

Assumption 2: For every x ≥ 0 and any given ε > 0, there
exists an integer n? = n?(x; ε) such that

G
(x
n

)
≤ ε , n = n?, n? + 1, . . .

Assumption 2 is equivalent to saying that a link duration
is strictly positive with probability one, i.e., limn→∞ G(x/n)
= G(0) = 0. It is obvious that this assumption holds trivially if
the CDF G is continuous (i.e., link durations can be modeled
as continuous rvs). Therefore, it is a reasonable assumption.

Theorem 1: Suppose that Assumptions 1 and 2 hold for the
stationary sequence {Xi, i = 1, 2, . . .} and the CDF G. If the
condition

lim
c↓0

1

P [Xi < c]
max
|i−j|≤m

P [Xi < c,Xj < c]

= lim
c↓0

max
|i−j|≤m

P [Xj < c | Xi < c] (11)

= 0

holds, then

lim
n→∞

P
[
H(n) · Z(n) ≤ x

]
=

{
1− e−λx , if x > 0
0 , if x ≤ 0

(12)

where λ = (m(G))−1.
Proof: A proof is provided in Appendix III of the

supplemental document due to a space constraint.

Theorem 1 tells us that as the number of hops H(n)
along a path increases the distribution of path duration can
be well approximated by an exponential distribution with
parameter H(n) · λ for all sufficiently large H(n). Note that
rv Z(n) = min(X

(n)
` : ` = 1, . . . , H(n)) tends to decrease

with increasing H(n). This is also obvious from the fact that
H(n) · λ→∞ as n→∞. Thus, in order to keep Z (n) from
converging to a constant rv with value zero as H(n) increases,
rv Z(n) is scaled by the hop count H(n) in (12).

It is interesting to note that the parameter of the emerging
exponential distribution is given by the same λ = 1/m(G)
whether the rvs {Xi, i = 1, 2, . . .} are assumed to be locally
dependent as here or mutually independent as assumed in [5].

The condition in (11) implies that as c ↓ 0, the rare events
{Xj < c} do not occur in clusters in a local neighborhood
of node i. One interpretation of this condition is as follows:
Assume a very small c. Rare events of link excess lives being
smaller than c are primarily caused by nodes being close to
the edge of their transmission ranges and about to move out
of the transmission ranges at the time of path set-up (rather
than one or both of the nodes moving at an extremely high
speed). Condition (11) implies that one pair of neighboring
nodes being about to leave the transmission range of each
other at the time of path set-up, does not mean the same is
true for other pairs of neighboring nodes along a path, which is
reasonable. This condition is validated in the case of the RWP
mobility model in Appendix V of the supplemental document.

V. GENERAL DEPENDENCE WITH HETEROGENEOUS LINK

DURATION DISTRIBUTIONS

In the previous section we considered the simpler case
where the dependence in link excess lives is limited to a finite
neighborhood. As mentioned earlier, this may be reasonable in
some cases. However, we show that it can be relaxed consid-
erably. To be precise, the same distributional convergence can
be obtained even when the dependence of link excess lives is
not bounded to any finite neighborhood and the link duration
distributions are heterogeneous.

In this section we first define the mixing conditions that
describe the manner in which the dependence of link excess
lives decays with the hop distance between the links. Then,
we establish the distributional convergence of path duration in
more general cases under the mixing conditions.

A. Mixing conditions

Suppose that W := {W (n)
i , n = 1, 2, . . . ; i = 1, . . . , h(n)}

is an array of IR-valued rvs, where {h(n), n ≥ 1} is a sequence
of positive integers with limn→∞ h(n) = ∞. Denote the
joint CDF of rvs {W (n)

i1
,W

(n)
i2

, . . . ,W
(n)
in
} by J

(n)
i1···in . For

notational simplicity we write J
(n)
i1···in(u) for J

(n)
i1···in(u, . . . , u).

Let {un, n ≥ 1} be a sequence of real numbers (which typ-
ically increases with n) and A := {αn,m, n = 1, 2, . . . ;m =
1, . . . , h(n)} be an array of non-negative real numbers such
that, for any integers

1 < i1 < · · · < ip < j1 < · · · < jq ≤ h(n)

where j1 − ip > m, we have
∣∣∣J(n)
i1...ipj1...jq

(un)− J
(n)
i1...ip

(un)J
(n)
j1...jq

(un)
∣∣∣ ≤ αn,m . (13)

Definition 1: (D(un) condition [10], [11]) Suppose that we
can find a sequence {m(n), n = 1, 2, . . .} of non-negative in-
tegers and an array A of real numbers satisfying the condition
in (13) such that (i) limn→∞m(n) =∞, (ii) m(n) = o(h(n)),
i.e., limn→∞

m(n)
h(n) = 0, and (iii) lim

n→∞
αn,m(n) = 0. Then, we

say that the array W satisfies the condition D(un).
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The condition D(un) imposes a form of “dependence de-
cay”: As n increases, the dependence of two events {W (n)

i1
≤

un, . . . ,W
(n)
ip
≤ un} and {W (n)

j1
≤ un, . . . ,W

(n)
jq
≤ un}

decreases as the distance j1 − ip between the two sets of rvs
increases. However, since m(n) → ∞, it allows dependence
in an unbounded neighborhood. One can easily verify that
a sequence that satisfies the m-dependence condition in As-
sumption 1 satisfies the condition D(un) with any sequence
{un, n ≥ 1}.

In order to state the definition of the second mixing con-
dition, we first need to introduce some notation. Let k be a
fixed positive integer. We divide the interval {1, 2, . . . , h(n)}
into k+ 1 disjoint subintervals3: The first k subintervals have
a length n′ := bh(n)/kc, where bxc denotes the integer part
of x, and the last interval has a length smaller than k. For
j = 1, 2, . . . , k, define

I
(n)
k,j = {(j − 1) · n′ + 1, . . . , j · n′} ,

and

I
(n)
k,k+1 = {k · n′ + 1, . . . , h(n)} .

Note that |I(n)
k,j | = n′ for j = 1, . . . , k, and 0 ≤ |I (n)

k,k+1| < k,
where |I| denotes the cardinality of I .

Definition 2: The array W is said to satisfy the condition
D′(un) if, for all j = 1, 2, . . .,

lim
n→∞

( ∑

i,i′∈I(n)
k,j :i<i′

P
[
W

(n)
i > un,W

(n)
i′ > un

] )
= o

(
1

k

)

for all k > j . (14)

A sufficient condition for the condition D′(un) to hold is

lim
n→∞

(
bh(n)

k
c
2

· sup
i,i′∈I(n)

k,j :i<i′
P
[
W

(n)
i > un,W

(n)
i′ > un

] )

= o

(
1

k

)
for all k > j . (15)

The interpretation of the condition D′(un) in the context of
our problem will be provided shortly.

B. Distributional convergence

Define W
(n)
` = (X

(n)
` )−1, ` = 1, . . . , H(n). Let W :=

{W (n)
` , n = 1, 2, . . . ; ` = 1, . . . , H(n)}. We denote the

CDF of rv W
(n)
` by J

(n)
` . We first make the following two

assumptions. They are the same assumptions imposed in [5,
Assumptions 1 and 2] for independent link excess lives cases.

Assumption 3: For every x ≥ 0,4

lim
n→∞

(
max

`=1,...,H(n)
G

(n)
`

(
x

H(n)

))
= 0 .

3We call a finite set of consecutive integers {i1, . . . , i2} an interval with
length i2 − i1 + 1.

4In [5] the rvs X(n)
` are implicitly scaled by H(n), while in this paper

this scaling is carried out explicitly.

A more concrete way to express Assumption 3 is as follows:
For every x ≥ 0 and any given ε > 0, there exists an integer
n? = n?(x; ε) such that

max
`=1,...,H(n)

G
(n)
`

(
x

H(n)

)
≤ ε, n = n?, n? + 1, . . .

It is clear that the interpretation of this assumption is the same
as that of Assumption 2 and states that a link duration is
strictly positive with probability one.

Assumption 4: (scaling) Let λ(n)
` =

(
m(G

(n)
` )
)−1

. There
exists some positive constant λ such that

lim
n→∞

1

H(n)

H(n)∑

`=1

λ
(n)
` = λ . (16)

Assumption 4 simply means that the link excess lives
are scaled (by the average of the inverses of expected link
durations divided by λ) so that we can define the parameter
of the limit distribution. Under Assumption 3, one can show
that Assumption 4 is equivalent to the following assumption.

Assumption 4A: There exists some positive constant λ such
that, for any fixed x ∈ (0,∞), we have

H(n)∑

`=1

P

[
W

(n)
` >

H(n)

x

]
→ λ · x as n→∞ .

Lemma 1: Suppose that Assumption 3 holds. Let x be some
positive real number and un = H(n)/x, n = 1, 2, . . .. Then,
for any sequence {m(n), n = 1, 2, . . .} that satisfies conditions
(i) - (ii) of Definition 1, we can find an array A of real numbers
which satisfies (13) and condition (iii) in Definition 1.

Proof: A proof is provided in Appendix IV of the
supplemental document due to lack of space.

Lemma 1 implies that, under Assumption 3, the array W =

{W (n)
` , n = 1, 2, . . . ; ` = 1, . . . , H(n)} always satisfies the

condition D(un = H(n)/x) for any x in (0,∞). In fact, in the
proof we prove a slightly stronger result: For any integers 1 <

i1 < · · · < ip < j1 < · · · < jq ≤ H(n), the events {W (n)
i1
≤

H(n)
x , . . . ,W

(n)
ip
≤ H(n)

x } and {W (n)
j1
≤ H(n)

x , . . . ,W
(n)
jp
≤

H(n)
x } become asymptotically independent as n increases. In

other words, |J(n)
i1...ipj1...jq

(un)−J
(n)
i1...ip

(un)J
(n)
j1...jq

(un)| → 0.

For the cases with dependent link excess lives, we introduce
two additional assumptions.

Assumption 5: For any sequence {Î(n), n = 1, 2, . . .}
of sets of consecutive positive integers, where Î(n) ⊂
{1, . . . , H(n)},

1

H(n)

∑

`∈Î(n)

λ
(n)
` = O

(
|Î(n)|
H(n)

)
.

A sufficient condition for Assumption 5 to hold is that
there exists some arbitrarily small positive constant ε such
that the expected link durations satisfy m(G

(n)
` ) ≥ ε for

all n = 1, 2, . . . and ` = 1, . . . , H(n). The interpretation
of this assumption is that the expected link durations do not
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decrease to zero with increasing network size. Since the link
durations are likely to depend on the nodes’ mobility and their
transmission ranges but not directly on the network size, this
is a reasonable assumption.

Assumption 6: The array W = {W (n)
` , n = 1, 2, . . . ; ` =

1, . . . , H(n)} satisfies the condition D′(un) with un = H(n)
x

for any x ∈ (0,∞).

The condition D′
(
un = H(n)

x

)
implies that the rare events{

X
(n)
j ≤ x

H(n)

}
in a neighborhood are not strongly correlated

as n → ∞ (hence x
H(n) → 0). The role and interpretation of

this condition are similar to those of condition (11) in the m-
dependence case (stated at the end of Section IV).

Theorem 2: Suppose that Assumptions 3 - 6 hold. Then,
we have

lim
n→∞

P
[
H(n) · Z(n) ≤ x

]
=

{
1− e−λx , if x > 0
0 , if x ≤ 0

(17)

Proof: The proof is given in Appendix I.

Theorem 2 states that the distribution of an h-hop path can
be well approximated by an exponential distribution for all
sufficiently large h. As a byproduct it also tells us that if
the link duration distributions are given by G`, ` = 1, . . . , h,
the expected duration of the path can be approximated by
1/(
∑
`=1,...,h (m(G`))

−1
). Somewhat surprisingly, the param-

eter of the emerging exponential distribution in (17) is the
same as that of the exponential distribution with independent
link excess lives [5, Theorem 2]. This holds even with some-
what strong local dependence that may exist, and is consistent
with the similar observation made in Section IV. This again
suggests that the distribution of path duration is not signifi-
cantly affected by the dependence of the reachability processes
and link excess lives when the hop count is sufficiently large.

VI. AN OUTLINE OF A PROPOSED SCHEME

Detecting a link failure and finding an alternative path
can take a non-negligible amount of time in practice. This
is because link failures are often detected through a failure
to receive/exchange a control message over a pre-determined
period. When local recovery is unsuccessful after a link failure,
packets queued at the originator of the failed link and addi-
tional packets on the way to the node which were to be routed
using the link, will eventually be dropped by the node and
must be retransmitted by their senders. These dropped packets
lead to a waste of wireless resources. Moreover, losses of
consecutive packets cause the transport layer protocol to back
off, reducing its transmission rate. This may cause senders to
rely on timeout to detect the packet losses, which can take
more than a few seconds. Hence, frequent link failures along
the paths in use will result in disruptions in service and degrade
the performance of applications, especially that of time critical
applications. For these reasons a routing algorithm should
consider its expected duration in addition to other qualities
(e.g., estimated available bandwidth or congestion level) when
choosing a path .

In a large scale MANET the hop distance between a source
and a destination is likely to be large [4]. Our results in the

previous sections tell us that when hop counts are large, (i)
the distribution of path duration can be well approximated by
an exponential distribution and (ii) the inverse of the expected
duration of a path is approximately given by the sum of the
inverses of the expected durations of the links along the path.
Thus, in order to approximate the expected duration of a path,
a source needs to know only the sum of the inverses of the
expected link durations.

Unfortunately, accurate estimation of the expected link
durations along a path is difficult in practice. Instead, we
approximate them using average link durations experienced by
the nodes: Under our scheme each node maintains the average
duration of the links that it establishes with other nodes. These
average link durations are used as estimates to the expected
link durations along a path and are provided to the source
during a path discovery phase. Suppose that a node has routing
information for a requested destination. Then, it generates a
reply message and specifies the inverse of its estimate of the
expected duration of the path to the destination in a field
Inverse Path Duration (IPD) in the reply. A node that receives
a reply message, first adds to the IPD value the inverse of
its average of link durations, and then forwards it to the next
upstream node. Finally, when the source receives the reply
message, it adds the inverse of its average link duration to the
IPD value. Then, the source chooses a path with the smallest
IPD value, i.e., the largest estimated expected duration.

S n1 n2

Path Request

λλ (n2)

+ λ (n1)

(n2)

Reply Reply

Path Request

(n2)λ

+ λ (n1)

+ λ (S)

D

Fig. 1. An example of an estimation of expected path duration.

Let us explain this procedure using the example shown in
Fig. 1. The source node S wants to find a path to destination
node D and broadcasts a path request to its neighbors. Assume
that node n1 does not have routing information for D and
forwards the request to its neighbor, node n2. Assume that
node n2 has routing information for D. It generates a reply
with the initial IPD value of λ(n2), which is the inverse of its
average link duration. Here node n2’s average link duration is
used as an estimate of the expected duration of its link with
D. Then, it forwards the reply to node n1. Upon receiving
the reply, node n1 adds the inverse λ(n1) of its average link
duration to the IPD value and forwards the reply to source
node S. Again, node n1’s average link duration is used in
place of the expected duration of its link with n2. When
S receives the reply, it first adds λ(S) to the IPD value of
λ(n2) + λ(n1) in the reply. Then, it uses the inverse of the
final IPD value as an estimate of the expected duration of
the discovered path {(S, n1), (n1, n2), (n2, D)}. As only the
sum of the inverses of average link durations is collected, this
proposed modification can be easily implemented in available
on-demand routing algorithms with minimal overhead.

It is also possible with our scheme that a node classifies its
neighbors and maintains a separate average link duration for
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each type of neighbors. The reason for maintaining separate
averages is as follows. A large scale MANET is likely to
comprise many different types of nodes. For example, a Future
Combat System (FCS) will include different types of vehicles
(e.g., jeeps, tanks, etc.), soldiers, and possibly aerial vehicles.
Clearly, the duration of a link between two nodes will depend
on their mobility and communication capabilities. Thus, the
durations of links a node establishes with its neighbors over
time will be dependent on their mobility and communication
capabilities, as well as its own. By maintaining separate aver-
ages, we can improve the accuracy of the estimates of expected
link durations. This is demonstrated using ns-2 simulation
results in Section VII.

A. Implementation in AODV

We implemented our proposed scheme in the AODV routing
protocol to evaluate the potential gain in path durations.
Most of our changes are limited to the path request and
reply messages and their handling. The rest of the AODV
scheme is left intact. Since our primary interest is to study
the potential benefits of the path selection scheme (rather than
proposing a complete routing protocol), we did not attempt to
minimize the overhead it generates. Such overhead is likely to
depend on the routing protocol in which the proposed scheme
is implemented, and the overall overhead of the integrated
routing protocol should be minimized.

Each node maintains two separate counters - a sequence
number and a broadcast ID. The sequence number is in-
cremented when (i) the node generates a new path request
message or (ii) it is the requested destination in a path request
message and generates a path reply message. This sequence
number is used to indicate the freshness of the path request
or reply message. Every node also keeps an average of the
link durations it experienced in the past. As mentioned earlier,
a node can maintain a separate average for each type of
neighbors by classifying them.

Route entry – A node creates and maintains a route entry for
each known destination node.5 However, unlike in AODV, the
node can keep up to kp paths (instead of a single path), where
kp is a design parameter. In our simulation the value of kp is
set to three.

The information of each path is recorded in a subentry with
four fields: (i) destination sequence number, (ii) next hop to
the destination, (iii) hop count, and (iv) Inverse Path Duration
(IPD). The IPD field contains the the sum of the inverses
of expected link durations approximated using average link
durations and reported in a path reply message during path
discovery. In order to avoid keeping redundant path informa-
tion we require that the next hop to the destination of these
paths be different. If there is more than one path available,
one of them is selected as the primary path as follows. The
others are used as backup paths in case the primary path fails.

Ranking route subentries – The paths in a route entry are
ranked first based on the destination sequence numbers, and
then based on the IPD values. Ties are broken using the

5The routing protocol running at a node may not be aware of node’s
neighbors at the beginning when the route entries are empty.

hop counts. To be more precise, when more than one path
to a destination are discovered, the paths are first ranked by
decreasing destination sequence number. If two or more paths
have the same sequence number, then the one with a smaller
IPD value takes a higher preference as it has a larger estimated
expected duration than the others. Finally, if the first two are
the same, the path with a smaller hop count is preferred. This
is shown in Fig. 2. The path with the highest preference is
used as the primary path for routing packets when needed.

Dest Seq. # IPD value hop count Dest Seq. # IPD value hop count

143

144

144

143

13

17

15

13

2

3

2

4 144 15

17

3

2144

143

143 13

13

4

2

Before ranking After ranking

Fig. 2. Ranking of discovered paths.

Path or route request – When a source does not have
routing information for a desired destination, it initiates a
path discovery process; it first increments its sequence number
and broadcasts a path request message to its neighbors. A
path request message contains (i) source ID and its sequence
number, (ii) source broadcast ID, (iii) destination ID and its
sequence number, and (iv) hop count to the source. The hop
count is initially set to one. Each path request message is
distinguished by its source ID and broadcast ID.

When a node receives a path request message, it carries
out the following: 1) It checks if there is a subentry for the
source in which the next hop is the neighbor that forwarded
the request message. If there is no such subentry, it creates
a subentry using the information contained in the request
message. The IPD value is set to infinity, indicating the
information is not available, because the request message does
not contain an IPD value. If there is such a subentry and the
sequence number in the request message is larger than the one
in the subentry, it updates the source sequence number and
the hop count. After the update, it re-ranks the paths to the
source based on the new sequence number and the hop count.
2) If the node had received another copy of the same request
message, it terminates the message. Otherwise, if it is not the
requested destination node in the message and has no routing
information to the destination, it increases the hop count in
the message and rebroadcasts the message to its neighbors.

Path or route reply – If an intermediate node has a route entry
for the destination with the destination sequence number no
smaller than the destination sequence number in the request
message, it generates a path reply message. The reply message
contains (i) destination ID and its sequence number, (ii)
IPD value, and (iii) hop count. For the destination sequence
number, IPD value, and hop count, the information in the
subentry for the primary path to the destination node is used.
The reply message is then sent to the neighbor node that
forwarded the request message, and the request message is
terminated.

If a copy of the path request message reaches the destina-
tion node, the destination generates a reply message. It first
increases its sequence number to the maximum of its current
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sequence number and the destination sequence number in the
request message. Then, it generates a reply message with the
same three fields in the reply message generated by an interme-
diate node. The initial value of the IPD and the hop count are
set to zero. If the destination node receives multiple copies of
the same path request message from different neighbor nodes,
it can generate more than one reply message.

When an intermediate node receives a reply message, it first
adds the inverse of its average link duration to the IPD value
in the reply message. Recall that the node may classify the
neighbor that forwarded the reply message and add the average
link duration corresponding to the neighbor’s type when a
separate average is kept for each type of neighbors. After
incrementing the IPD value, the intermediate node updates its
routing information to the destination: It creates a temporary
subentry for the newly discovered path to the destination with
the information provided in the reply message. Then, it checks
if the new path is better than the kp-th ranked path in the entry
for the destination. If it is, then it re-ranks the paths, including
the newly discovered path, and inserts the new subentry in
the route entry for the destination. Otherwise, it discards the
temporary subentry.

If the reply message is the first reply the node receives for
the corresponding request, then it forwards the reply to its
upstream neighbor(s). Here we allow the node to forward the
reply to up to kr (≤ kp) neighbors that relayed a copy of
the request message to the node. This is done to increase the
number of discovered paths (than in AODV) so that the source
can choose the best path among them. These kr upstream
nodes are selected based on their ranking. The parameter kr
may be adapted based on the average degree of the nodes.6 In
our simulation kr is set to three. If the reply message is not
the first reply, but the new path has a smaller IPD value than
the previous primary path to the destination, then the node
can still forward the reply message. This is to advertise the
discovery of a more reliable path, i.e., a path with a larger
expected duration. However, we did not use this feature in the
simulation, and only the first reply is forwarded.

Finally, when the source receives a reply message, it first
updates the hop count and the IPD value using its average
link duration and then its route entry for the destination. Data
transmission can begin after the first path to the destination is
discovered. However, after processing a newly arrived reply
message, the source may switch its primary path to the
destination if the newly discovered path has a smaller IPD
value than the previous primary path.

When a link failure occurs, the node that detects the failure
first attempts a local recovery if there is a cached backup path
in the route entry for the destination. The details of our local
recovery scheme are described in [6] and are omitted in this
paper. If the local recovery fails, it broadcasts a “route error”
message. The error message contains a list of destination nodes
affected by the link failure. Each node that receives an error
message checks if any of the paths in its route entries traverses
the failed link. If there is any such path, the corresponding

6When the average degree is large, even a small value of kr will allow the
source to discover multiple available paths to choose from. If the network is
sparsely connected, then a larger value of kr may be preferred.

subentry is removed. If a primary path is affected, it initiates
a path recovery procedure when necessary.

VII. SIMULATION RESULTS

In this section we evaluate the performance gain (in path
duration) from our scheme outlined in the previous section.
The simulation is run with 200 nodes moving in a 2 km
× 2 km rectangular region. The RWP mobility model is
employed. The transmission range of the nodes is set to 250
m. There are two classes of nodes; the speed of a class 1 and
class 2 node is uniformly distributed in [1, 5] m/s and [10,
30] m/s, respectively. The reason for having two classes of
nodes with different speed ranges is to create a scenario with
heterogeneous nodes that experience diverse link durations in
the field (e.g., soldiers vs. tanks or jeeps). Slower moving
class 1 nodes in general experience longer link durations than
faster moving class 2 nodes in our simulation due to the
same fixed transmission range. Speeds of the nodes are chosen
independently of the selected waypoints and previous speeds.

Each run of simulation is for 1,200 seconds, and a total of
126 runs are carried out with different random seeds.7 How-
ever, in order to reduce the effects of transient period data are
collected only in the last 800 seconds of each run. A total of
approximately 5,000 connections are set up between randomly
selected source and destination nodes. The interarrival times of
connection requests are given by independent and identically
distributed rvs, each of which is a sum of 5 seconds and
an exponential rv with a mean 15 seconds. Each connection
request generates a path request message, triggering a path
discovery phase. Therefore, in the last 800 seconds of each
run we generate on the average 40 path request messages.

We simulate three different scenarios by varying the number
of class 1 nodes (hence class 2 nodes as well) to illustrate the
benefits of our scheme and a trend that emerges. We first begin
with 140 class 1 nodes and increase it to 160 and then to 180.
Our scheme is run under two different modes: In the first
mode, each node maintains a single average link duration for
all neighbor nodes. In the second mode each node classifies
the neighbors and maintains two separate averages - one for
class 1 neighbors and the other for class 2 neighbors.

The CDFs of link duration under our scheme for the 160 vs.
40 scenario are shown in Fig. 3. In the first mode, we plot the
distributions seen by class 1 nodes and class 2 nodes. In the
second mode, we plot the distributions of the links between
(i) two class 1 nodes, (ii) a class 1 node and a class 2 node,
and (iii) two class 2 nodes. As expected, in the first mode link
durations seen by class 1 nodes are much larger than those
seen by class 2 nodes in the usual stochastic order. However,
note that the discrepancy in the link duration distribution (a)
between two class 2 nodes and (b) between a class 1 node and
a class 2 node is not very large.

The CDFs of the path duration under AODV and our scheme
(both with and without separate averages) are plotted in Fig. 4.
The median values of path durations are given in Table I.
In the first two scenarios there is a 60 percent increase in
the median values over AODV when nodes maintain separate

7This is done to reduce the size of the mobility file needed in ns-2
simulation.
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Fig. 3. CDFs of link durations.

averages. It is clear from Fig. 4 that the CDF of path duration
under our scheme lies below that under AODV. In other words,
path durations under AODV are smaller than path durations
under our scheme in the stochastic order. This indicates that
our scheme does a better job of identifying paths with longer
durations than AODV even without separate averages of link
durations.

TABLE I

MEDIAN VALUES OF PATH DURATIONS

class 1 & 2 nodes AODV w/o sep. avg. w/ sep. avg.
140 & 60 2.98 3.97 4.76
160 & 40 3.68 5.80 5.88
180 & 20 5.90 8.00 8.10

AODV always selects the first discovered path. Thus, it
does not attempt to select a path that has no or only a few
class 2 nodes. When the number of class 2 nodes is 60,
due to a large number of class 2 nodes it is beneficial to
minimize the number of links involving class 2 nodes along
a selected path. This is because the average duration of the
links between two class 1 nodes is much larger than that
of other links involving a class 2 node (see Fig. 3 for an
example),8 and explains the difference between AODV and
our scheme without separate averages. For a similar reason,
although the benefit is not quite as large, maintaining separate
averages at the nodes helps avoid the link(s) between two class
2 nodes along a selected path (which is not possible without
maintaining separate averages) and provides further benefit.
However, as the number of class 2 nodes is reduced to 40
and then to 20, the benefit of maintaining separate averages
diminishes. This is because by avoiding links involving class 2
nodes, our scheme can avoid most of links between two class
2 nodes as they become more scarce with decreasing number
of class 2 nodes. Furthermore, the benefit from our algorithm
decreases when the number of class 2 nodes is reduced from
40 to 20. This follows from the fact that when there are only

8Although Fig. 3 shows the CDFs of link duration for the 160 vs. 40
scenario, the qualitative nature of the plot is similar for 140 vs. 60 scenario.
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20 class 2 nodes, most of the links do not have a class 2 node
as a terminal node and hence many of the paths selected by
AODV do not traverse class 2 nodes even without attempting
to do so. Hence, the room for potential gain decreases.

Frequent path failures can degrade applications’ perfor-
mance considerably or even render them ineffective. There-
fore, minimizing the number of short-lived paths can signif-
icantly improve perceived performance. From this viewpoint
of providing more reliable paths and minimizing disruption
in service to applications, it is also interesting to look at the
probability P [path duration ≤ x] for small values of x. This
is summarized in Table II for x = 3 seconds. When compared
to the numbers with separate averages, the numbers for AODV
are 27.4 to 40.1 percent larger, which indicates significant
improvement by our scheme.

TABLE II

P[PATH DURATION ≤ 3 SECONDS]

class 1 & 2 nodes AODV w/o sep. avg. w/ sep. avg.
140 & 60 0.5024 0.4224 0.3784
160 & 40 0.4436 0.3288 0.3166
180 & 20 0.3179 0.2496 0.2496

We also run the simulation with min-hop routing for the
160 vs. 40 scenario. This is done by modifying our scheme
and selecting a path based on the hop count (as opposed to the
IPD value in our scheme). The CDF of path duration under the
min-hop routing is shown in Fig. 4(b). Although not shown
here, the hop counts of the paths selected by the min-hop
routing are smaller than those of our scheme in the stochastic
order. However, as shown in Fig. 4(b) the path durations are
larger under our scheme in the stochastic order. In fact, the
difference between the min-hop routing and AODV is very
small.

In order to evaluate the performance of our scheme we
also compare its performance to that of the min-hop routing
with only class 1 nodes for the 180 vs. 20 scenario. Since
nodes are homogeneous, the min-hop routing is equivalent to
our algorithm (because the average link durations seen by the
nodes should be approximately the same at steady state) and
selects the paths with the largest expected durations. The CDF
of path duration under this scenario is shown in Fig. 4(c) as
‘lower bound’. As one can see, the CDF under our scheme
is very close to that of the lower bound. Note that this lower
bound may not be achievable since no class 2 nodes are used in
the case. Therefore, this demonstrates that our algorithm does
a good job of selecting the paths with the largest expected
durations by avoiding links with potentially short excess lives.

VIII. CONCLUSION

We studied the issue of designing a scheme for selecting
paths with the largest expected durations with the aim of
providing reliable network services in MANETs. To this
end we first investigated the distributional properties of path
duration in multi-hop wireless networks. We extended the
results in [5] and proved that, under certain conditions, the
distribution of path duration (appropriately scaled) converges
to an exponential distribution as the number of hops increases
even when link excess lives are not mutually independent.

Moreover, we showed that under the given conditions, the
parameter of the emerging exponential distribution is not
affected by the dependence of the link excess lives.

Based on these results we proposed a new scheme that
can be easily incorporated into existing routing protocols. The
required information under our scheme can be be piggybacked
in reply messages, introducing only minimal communication
overhead. We implemented the scheme with the AODV routing
protocol and demonstrated using the ns-2 simulation that
substantial performance benefit can be achieved with our
scheme.
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APPENDIX I
PROOF OF THEOREM 2

In order to prove the theorem, we show that, for any fixed
x ∈ (0,∞),

lim
n→∞

P
[
H(n) · Z(n) > x

]
= exp (−λx) . (18)
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To prove (18) we show the following equivalent statement.

lim
n→∞

P

[
max

`=1,...,H(n)
W

(n)
` <

H(n)

x

]
= exp (−λx) (19)

from the equality

lim
n→∞

P
[
H(n) · Z(n) > x

]

= lim
n→∞

P

[
min

`=1,...,H(n)
X

(n)
` >

x

H(n)

]

= lim
n→∞

P

[
max

`=1,...,H(n)
W

(n)
` <

H(n)

x

]
.

Before doing so, we first need to introduce some notation
used in the proof. Let E be a set of positive integers. We
define M (n)(E) := max(W

(n)
j : j ∈ E). If E = {j1, . . . , j2}

and E′ = {j′1, . . . , j′2} are two intervals with j ′1 > j2, we say
that E and E′ are separated by j ′1 − j2.

Let k be a fixed positive integer. For each n = 1, 2, . . ., we
first divide the interval {1, . . . , H(n)} into k + 1 consecutive
disjoint subintervals as done Section V-A. Then, we further
divide each of the first k subintervals into two disjoint subin-
tervals: Let n′ := bH(n)/kc. For j = 1, . . . , k, define

I
(n)
k,j = {(j − 1) · n′ + 1, . . . , j · n′} ,

and

I
(n)
k,k+1 = {k · n′ + 1, . . . , H(n)} .

Let {m(n), n = 1, 2, . . .} be a sequence of non-negative
integers such that, for all sufficiently large n, k < m(n) < n′,

lim
n→∞

m(n) =∞ and lim
n→∞

m(n)

H(n)
= 0 . (20)

We divide the subinterval I (n)
k,j , j = 1, . . . , k, into the following

two disjoint subintervals.

I
(n)
k,j = {(j − 1) · n′ + 1, . . . , j · n′ −m(n)}

and Ī
(n)
k,j = {j · n′ −m(n) + 1, . . . , j · n′} .

It is clear that |I(n)
k,j | = n′ −m(n) and |Ī(n)

k,j | = m(n).

We denote M (n)(I
(n)
k,j ), j = 1, . . . , k, by M

(n)
k,j for nota-

tional convenience. We will prove (19) and hence the theorem
in two phases: First, we will show

lim
n→∞

k(n)∏

j=1

P
[
M

(n)
k(n),j ≤ un

]
= exp(−λx) , (21)

where un = H(n)/x, and k(n), n ≥ 1, is a sequence of
positive integers which increases slower than m(n), n ≥ 1.
The conditions on k(n), n ≥ 1, will be stated shortly. Then,
we will prove

∣∣∣P
[

max
`=1,...,H(n)

W
(n)
` ≤ un

]
−
k(n)∏

j=1

P
[
M

(n)
k(n),j ≤ un

] ∣∣∣

→ 0 as n→∞ , (22)

completing the proof of (19).

We first turn to the proof of (21). From the definition of
M

(n)
k,j , for a fixed k,

{M (n)
k,j > un} =

⋃

i∈I(n)
k,j

{W (n)
i > un} for j = 1, . . . , k .

Hence, we have the following lower and upper bounds.
∑

i∈I(n)
k,j

P
[
W

(n)
i > un

]

−
∑

i,i′∈I(n)
k,j :i<i′

P
[
W

(n)
i > un,W

(n)
i′ > un

]

≤ P
[
M

(n)
k,j > un

]
(23)

≤
∑

i∈I(n)
k,j

P
[
W

(n)
i > un

]

From these bounds in (23) we can find upper and lower
bounds for

∏k
j=1 P

[
M

(n)
k,j ≤ un

]
.

k∏

j=1

(
1−

∑

i∈I(n)
k,j

P
[
W

(n)
i > un

] )

≤
k∏

j=1

(
1−P

[
M

(n)
k,j > un

])
=

k∏

j=1

P
[
M

(n)
k,j ≤ un

]

≤
k∏

j=1

(
1−

∑

i∈I(n)
k,j

P
[
W

(n)
i > un

]
(24)

+
∑

i,i′∈I(n)
k,j :i<i′

P
[
W

(n)
i > un,W

(n)
i′ > un

] )

We now show that both the upper and lower bounds in
(24) converge to exp(−λx) by appropriately increasing the
constant k with n. To do so we need the following auxiliary
results:

Let A = {αn,m, n = 1, 2, . . . ;m = 1, . . . , H(n)} be an
array of real numbers which satisfies (13) and condition (iii) in
Definition 1. Since {m(n), n = 1, 2, . . .} is assumed to satisfy
(20), Lemma 1 guarantees the existence of such an array.
Take a sequence {k(n), n = 1, 2, . . .} of positive integers
such that (i) limn→∞ k(n) =∞, (ii) limn→∞

k(n)
m(n) = 0, (iii)

limn→∞ k(n) · αn,m(n) = 0, and (iv) limn→∞
m(n)·k(n)
H(n) =

0. The existence of such a sequence is also guaranteed by
Lemma 1.

Lemma 2: The following convergences hold.
∑

i∈I(n)

k(n),j

P
[
W

(n)
i > un

]
→ 0 (25)

and

k(n)∑

j=1

∑

i∈I(n)

k(n),j

P
[
W

(n)
i > un

]
→ λ · x . (26)
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Proof: The first claim in (25) can be proved as follows.
∑

i∈I(n)

k(n),j

P
[
W

(n)
i > un

]
=

∑

i∈I(n)

k(n),j

P

[
X

(n)
i <

x

H(n)

]

≤
∑

i∈I(n)

k(n),j

λ
(n)
i · x

H(n)
from (8)

= x ·O
( |I(n)

k(n),j |
H(n)

)
from Assumption 5

= x ·O
(bH(n)/k(n)c

H(n)

)
= x ·O

( 1

k(n)

)

Since k(n)→∞ as n→∞, the claim (25) follows.
To prove (26), first note that

k(n)∑

j=1

∑

i∈I(n)

k(n),j

P
[
W

(n)
i > un

]

=

H(n)∑

i=1

P
[
W

(n)
i > un

]
−

∑

i∈I(n)

k(n),k(n)+1

P
[
W

(n)
i > un

]
.

Assumption 4A tells us that the first term converges to λ · x
as n → ∞. Following similar steps in the proof of (25), the
second term can be shown to converge to zero as follows.

lim sup
n→∞

∑

i∈I(n)

k(n),k(n)+1

P
[
W

(n)
i > un

]
(27)

≤ lim sup
n→∞

O
( |I(n)

k(n),k(n)+1|
H(n)

)
≤ lim sup

n→∞
O
(k(n)− 1

H(n)

)
= 0

This completes the proof of the lemma.

We state a well known convergence result without a proof,
which we will make use of shortly.

Lemma 3: Consider an array {cn,i, n = 1, 2, . . . ; i =
1, 2, . . . ,K(n)} of real numbers, where |cn,i| < 1 and
limn→∞K(n) = ∞. Suppose that maxi=1,...,K(n) |cn,i| → 0

and
∑K(n)
i=1 cn,i → λ as n→∞. Then, the following holds.

lim
n→∞

K(n)∏

i=1

(1− cn,i) = exp(−λ)

Continuing with the proof of (21), now (25) - (26) and
Lemma 3 imply

lim
n→∞

k(n)∏

j=1

(
1−

∑

i∈I(n)

k(n),j

P
[
W

(n)
i > un

] )
= exp(−λx) . (28)

By the same argument, we also have

lim
n→∞

k(n)∏

j=1

(
1−

∑

i∈I(n)

k(n),j

P
[
W

(n)
i > un

]

+
∑

i,i′∈I(n)

k(n),j
:i<i′

P
[
W

(n)
i > un,W

(n)
i′ > un

] )

= exp(−λx) (29)

because the condition D′(un = H(n)
x ) in Assumption 6 tells

us
k(n)∑

j=1

( ∑

i,i′∈I(n)

k(n),j
:i<i′

P
[
W

(n)
i > un,W

(n)
i′ > un

] )
→ 0 .

Since both the lower and upper bounds in (24) converge to
exp(−λx) from (28) and (29), we obtain

lim
n→∞

k(n)∏

j=1

(
P
[
M

(n)
k(n),j ≤ un

] )
= exp(−λx) .

This completes the proof of the first step in (21).
We introduce a lemma used to complete the second step of

the proof of the theorem. The proof of the lemma is provided
in Appendix II.

Lemma 4: For any sequence m(n), n ≥ 1, satisfying con-
dition (20) and k(n) satisfying the aforementioned conditions,
we have

lim
n→∞

∣∣∣P [Mn ≤ un]−
k(n)∏

j=1

P
[
M

(n)
k(n),j ≤ un

] ∣∣∣ = 0 ,

where Mn := max(W
(n)
1 , . . . ,W

(n)
H(n)).

Eq. (21) and Lemma 4 now tell us

lim
n→∞

P
[
H(n) · Z(n) > x

]

= lim
n→∞

P

[
max

`=1,...,H(n)
W

(n)
` ≤ H(n)

x

]

= lim
n→∞

P [Mn ≤ un]

= lim
n→∞

k(n)∏

j=1

P
[
M

(n)
k(n),j ≤ un

]
(from Lemma 4)

= exp(−λx) , (from (21))

and the theorem follows.

APPENDIX II
PROOFS OF LEMMA 4

We first introduce some auxiliary results used to prove the
lemma. Their proofs are provided in Appendices VI, VII, and
VIII, respectively, in the supplemental document.

Lemma 5: Suppose that A = {αn,m, n = 1, 2, . . . ;m =
1, . . . , H(n)} is an array of non-negative real numbers which
satisfies condition (13). Let n, r, and m be fixed positive
integers and E1, . . . , Er subintervals of {1, . . . , H(n)} such
that any two subintervals Ei and Ej , i 6= j, are separated by
at least m. Then, we have
∣∣∣∣∣∣
P




r⋂

j=1

{M (n)(Ej) ≤ un}


−

r∏

j=1

P
[
M (n)(Ej) ≤ un

]
∣∣∣∣∣∣

≤ (r − 1) · αn,m .

Lemma 6: For any fixed k, the following bounds hold:
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(i)

0 ≤ P




k⋂

j=1

{M (n)(I
(n)
k,j ) ≤ un}


−P [Mn ≤ un]

≤
k∑

j=1

P
[
M (n)(I

(n)
k,j ) ≤ un < M (n)(Ī

(n)
k,j )

]
(30)

+P
[
un < M (n)(I

(n)
k,k+1)

]
,

(ii) Let A be an array that satisfies (13). Then,
∣∣∣∣∣∣
P




k⋂

j=1

{
M (n)(I

(n)
k,j ) ≤ un

}

−

k∏

j=1

P
[
M (n)(I

(n)
k,j ) ≤ un

]
∣∣∣∣∣∣

≤ (k − 1) · αn,m(n) ,

(iii)

0 ≤
k∏

j=1

P
[
M (n)(I

(n)
k,j ) ≤ un

]
−

k∏

j=1

P
[
M

(n)
k,j ≤ un

]

≤
k∏

j=1

(
1 + P

[
M (n)(I

(n)
k,j ) ≤ un < M (n)(Ī

(n)
k,j )

] )
− 1 .

Lemma 7: Let {k(n), n = 1, 2, . . .} be a sequence that
satisfies the conditions in Appendix I. Then, for every j =
1, 2, . . .,

P
[
M (n)(I

(n)
k(n),j) ≤ un < M (n)(Ī

(n)
k(n),j)

]
= o

(
1

k(n)

)
,

for all sufficiently large n.

We now proceed with the proof of Lemma 4. First, by
rewriting the difference, the following bound holds.

∣∣∣P [Mn ≤ un]−
k(n)∏

j=1

P
[
M

(n)
k(n),j ≤ un

] ∣∣∣

≤
∣∣∣P [Mn ≤ un]−P



k(n)⋂

j=1

{
M (n)(I

(n)
k(n),j) ≤ un

}


∣∣∣

+
∣∣∣P



k(n)⋂

j=1

{
M (n)(I

(n)
k(n),j) ≤ un

}



−
k(n)∏

j=1

P
[
M (n)(I

(n)
k(n),j) ≤ un

] ∣∣∣ (31)

+
∣∣∣
k(n)∏

j=1

P
[
M (n)(I

(n)
k(n),j) ≤ un

]
−
k(n)∏

j=1

P
[
M

(n)
k(n),j ≤ un

] ∣∣∣

We now upper bound each term in (31) using the bounds
derived in Lemma 6.

(31) ≤
k(n)∑

j=1

P
[
M (n)(I

(n)
k(n),j) ≤ un < M (n)(Ī

(n)
k(n),j)

]

+P
[
un < M (n)(I

(n)
k(n),k(n)+1)

]

+(k(n)− 1) · αn,m(n) (32)

+

k(n)∏

j=1

(
1 + P

[
M (n)(I

(n)
k(n),j) ≤ un < M (n)(Ī

(n)
k(n),j)

] )

−1 .

In order to complete the proof, it suffices to show that (32)
converges to zero: First, note that

P
[
un < M (n)(I

(n)
k(n),k(n)+1)

]

= P




⋃

i∈I(n)

k(n),k(n)+1

{
W

(n)
i > un

}

 (33)

≤
∑

i∈I(n)

k(n),k(n)+1

P
[
W

(n)
i > un

]
→ 0 (from (27)).

Second, Lemma 7 tells us

lim
n→∞

k(n)∑

j=1

P
[
M (n)(I

(n)
k(n),j) ≤ un < M (n)(Ī

(n)
k(n),j)

]

= lim
n→∞

k(n)∑

j=1

o
( 1

k(n)

)
= 0 . (34)

Similarly, Lemmas 3 and 7 and (34) imply

lim
n→∞

k(n)∏

j=1

(
1 + P

[
M (n)(I

(n)
k(n),j) ≤ un < M (n)(Ī

(n)
k(n),j)

] )

= lim
n→∞

k(n)∏

j=1

(
1 + o

( 1

k(n)

))
= 1 . (35)

From (33) - (35) with the assumption limn→∞ k(n) ·
αn,m(n) = 0 in place, the right hand side of (32) goes to
0 as n→∞. This completes the proof of Lemma 4.
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APPENDIX III
PROOF OF THEOREM 1

The proof of the theorem follows directly from the theorem
in [18]: Define W` = (X`)

−1, ` = 1, 2, . . .. Then, {W`, ` =
1, 2, . . .} is a sequence of rvs unbounded above that satisfies
the m-dependence assumption and

lim
c↑∞

1

P [Wi > c]
max
|i−j|≤m

P [Wi > c,Wj > c] = 0

from (11).
Fix x > 0 and let cn(x) = n

x , n = 1, 2, . . .. First, note that

lim
n→∞

n ·P
[
W1 >

n

x ·m(G)

]

= lim
n→∞

n ·P
[
X1 <

x ·m(G)

n

]

= lim
n→∞

n · 1

m(G)

∫ x·m(G)
n

0

(1−G(y)) dy (from (10))

= lim
n→∞

n

m(G)

(
x ·m(G)

n
+ o

(
1

n

))

= x .

Since the conditions in the theorem in [18, pp. 798] are
satisfied by {Wi, i = 1, 2, . . .},

lim
n→∞

P
[
Wi ≤

n

x
; i = 1, . . . , n

]

= lim
n→∞

P
[
Xi ≥

x

n
; i = 1, . . . , n

]

= lim
n→∞

P
[
min(Xi : i = 1, . . . , n) ≥ x

n

]

= lim
n→∞

P
[
n ·min(Xi; i = 1, . . . , n) ≥ n · x

n

]

= lim
n→∞

P [n ·min(Xi; i = 1, . . . , n) ≥ x]

= exp(− x

m(G)
) (36)

= exp(−λx) .

where (36) follows from the theorem in [18].

APPENDIX IV
PROOF OF LEMMA 1

In order to prove the lemma, we will show that, for any
integers

1 < i1 < · · · < ip < j1 < · · · < jq ≤ H(n)

we have

lim
n→∞

∣∣∣J(n)
i1...ipj1...jq

(un)− J
(n)
i1...ip

(un) J
(n)
j1...jq

(un)
∣∣∣ = 0 , (37)

where un = H(n)
x .

For notational simplicity, denote

E(n)
1 := {W (n)

i1
≤ H(n)/x, . . . ,W

(n)
ip
≤ H(n)/x}

= {x/H(n) ≤ X(n)
i1
, . . . , x/H(n) ≤ X(n)

ip
}

E(n)
2 := {W (n)

j1
≤ H(n)/x, . . . ,W

(n)
jq
≤ H(n)/x}

= {x/H(n) ≤ X(n)
j1
, . . . , x/H(n) ≤ X(n)

jq
} .

From the well known union bound, we have

P
[
E(n)

1

]
≥ 1−

p∑

k=1

P
[
X

(n)
ik

< x/H(n)
]

P
[
E(n)

2

]
≥ 1−

q∑

l=1

P
[
X

(n)
jl

< x/H(n)
]

(38)

P
[
E(n)

1 ∩ E(n)
2

]
≥ 1−

p∑

k=1

P
[
X

(n)
ik

< x/H(n)
]

−
q∑

l=1

P
[
X

(n)
jl

< x/H(n)
]
.

Now note that Assumption 3 tells us that both∑p
k=1 P

[
X

(n)
ik

< x/H(n)
]

and
∑q
l=1 P

[
X

(n)
jl

< x/H(n)
]

converge to zero as n → ∞ because x/H(n) → 0. This
implies that the right hand sides of (38) converge to one as
n→∞. Therefore, we have

lim
n→∞

∣∣∣J(n)
i1...ipj1...jq

(un)− J
(n)
i1...ip

(un) J
(n)
j1...jq

(un)
∣∣∣

= lim
n→∞

∣∣∣P
[
E(n)

1 ∩ E(n)
2

]
−P

[
E(n)

1

]
·P
[
E(n)

2

]∣∣∣
= |1− 1 · 1| = 0 .

This proves that we can find an array A such that
limn→∞ αn,m = 0 for all m ≥ 1. In fact, this proof shows that
the distance j1− ip between the two sets need not increase in

order for |P
[
E(n)

1 ∩ E(n)
2

]
−P

[
E(n)

1

]
·P
[
E(n)

2

]
| to converge

to zero. This is a stronger result than the claim in Lemma 1.
Hence, the condition D(un = H(n)/x) holds trivially for the
array W with any m(n) such that limn→∞m(n) = ∞ and
limn→∞

m(n)
H(n) = 0.

APPENDIX V
VALIDATION OF CONDITION (11)

In this section we validate condition (11) in Section IV,
using simulation results obtained with the RWP mobility
model without pause. We refer interested readers to [1], [9]
for more details on the RWP mobility model.

The simulation is run on a rectangular region of 2 km × 2
km using ns-2 simulator. There are 200 nodes moving across
this region. We adopt the model in which node connectivity is
determined by (1) and fix the transmission range of the nodes
at 250 m. Each node selects its random waypoints according
to a uniform distribution on the rectangular region. The speed
of a node is selected from [S?, S

?] = [10, 30] m/s according
to a uniform distribution. Here S? and S? are the minimum
and maximum speed of a node, respectively. After selecting
a random waypoint and its speed, the node moves along a
straight line connecting its current location and the selected
random waypoint without a pause. When the node arrives at
the waypoint, it selects its next random waypoint and a new
speed and then repeats the above procedure. Each simulation
run lasts for 1,200 seconds, but we only look at the last 800
seconds in order to reduce the effects of the transient period.
We take the average of 5 runs.

We record the set-up and teardown times of all the links
that are established between any two nodes throughout the



2

total # of links 350,386
# of 1 hop neighbors 38,732 # of 2 hop neighbors 35,604
# of 3 hop neighbors 2,200 # of 4 hop neighbors 2,268
# of 5 hop neighbors 2,041 # of 6 hop neighbors 1,703

TABLE III

SIMULATION STATISTICS WITH S? = 10 M/S AND S? = 30 M/S.

simulation and compute the empirical distribution of the
durations of the links that are set up over the period of [400,
1200] seconds. For our analysis we only consider the links
that are used to provide a path during the simulation. The
total number of links we monitor is 350,386. The numbers
of k-hop neighboring links we analyze are given in Table
III. Here we assume that two neighboring links are 1-hop
neighbors, and two links separated by one intermediate link are
2-hop neighbors. The empirical distributions of link duration,
excess live, and path duration for different number of hops are
reported in [5].

Fig. 9 in [5] shows that the correlation coefficient between
link excess lives of two links separated by intermediate
link(s) is negligible under the RWP mobility model. This
suggests that the dependence in link excess lives (captured
by correlation coefficient) may be mostly limited to neigh-
boring links. Fig. 5(a) plots the the empirical CDF of link
excess life (i.e., P [X` ≤ c]) and the conditional probability
P [X`+1 ≤ c|X` ≤ c]. The same CDF and the conditional
probability P [X`+k ≤ c|X` ≤ c] for k = 2, 4 are plotted in
Fig. 5(b). It is clear that the conditional probabilities plotted
in Fig. 5(b) lie on top of the unconditional CDF, providing
further evidence that the dependence in link excess lives is
largely limited to neighboring links under the RWP mobility
model. Fig. 5(a) demonstrates that two neighboring links are
not independent as the CDF and the conditional probability
do not coincide. However, one can see that in all cases the
conditional probability approaches 0 as c ↓ 0, validating the
assumption in (11).

APPENDIX VI
PROOF OF LEMMA 5

For notational convenience, we write A(n)
j = {M (n)(Ej) ≤

un}. Let Ej = {kj , . . . , lj}, where k1 ≤ l1 < k2 ≤ . . . ≤ lr.
Then, since k2 − l1 ≥ m, we get∣∣∣P

[
A(n)

1 ∩ A(n)
2

]
−P

[
A(n)

1

]
P
[
A(n)

2

]∣∣∣

=
∣∣∣J(n)
k1...l1,k2...l2

(un)− J
(n)
k1...l1

(un)J
(n)
k2...l2

(un)
∣∣∣

≤ αn,m .

By the same argument∣∣∣P
[
A(n)

1 ∩ A(n)
2 ∩ A(n)

3

]
−P

[
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1

]
P
[
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2

]
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3

]∣∣∣

≤
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[
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1 ∩ A(n)
2 ∩ A(n)

3

]
−P

[
A(n)

1 ∩ A(n)
2

]
P
[
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3

]∣∣∣

+
∣∣∣P
[
A(n)

1 ∩ A(n)
2

]
−P

[
A(n)

1

]
P
[
A(n)

2

]∣∣∣ ·P
[
A(n)

3

]

≤ 2 αn,m

since E1 ∪ E2 ⊆ {k1, . . . , l2} and k3 − l2 ≥ m. By applying
the same argument repeatedly, the lemma follows.
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Fig. 5. Plot of the CDF and the conditional CDFs. (a) P [Xi+1 < c|Xi < c],
(b) P [Xi+k < c|Xi < c], k = 2, 4.

APPENDIX VII
PROOF OF LEMMA 6

Claim (i) of Lemma 6 follows from the observation that

{Mn ≤ un} ⊂
k⋂

j=1

{M (n)(I
(n)
k,j ) ≤ un}

and their difference is given by the event

( k⋃

j=1

{
M (n)(I

(n)
k,j ) ≤ un < M (n)(Ī

(n)
k,j )

})

⋃
{un < M (n)(I

(n)
k,k+1)} . (39)

The probability of the event in (39) can be bounded using the
union bound in (30).

Claim (ii) follows directly from Lemma 5 by replacing r

and Ej with k and I(n)
k,j , respectively.

In order to prove claim (iii), we first note that, for j =



3

1, . . . , k,

P
[
M (n)(I

(n)
k,j ) ≤ un

]
−P

[
M

(n)
k,j ≤ un

]

= P
[
M (n)(I

(n)
k,j ) ≤ un < M (n)(Ī

(n)
k,j )

]
. (40)

Now the claim follows from
k∏
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1 + P
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M (n)(I
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] )
− 1 ,

where the first equality follows from (40), and the inequality
holds because P

[
M

(n)
k,j ≤ un

]
≤ 1.
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Under Assumption 5,

P
[
M (n)(I

(n)
k(n),j) ≤ un < M (n)(Ī
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]

= P


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)⋂( ⋃

i∈Ī(n)
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i∈Ī(n)

k(n),j

P
[
W

(n)
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]

= O


 |Ī
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k(n),j |
H(n)


 from Assumption 5

= O

(
m(n)

H(n)

)

=
1

k(n)
·O
(
m(n) · k(n)

H(n)

)

= o

(
1

k(n)

)

where the last equality follows from the assumption m(n) ·
k(n) = o(H(n)).


