Richard B Ivry

Richard B Ivry
  • University of California, Berkeley

About

378
Publications
77,283
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
32,953
Citations
Current institution

Publications

Publications (378)
Article
Full-text available
In the past decade, there has been major interest in understanding the role of transcriptomics in the functional and anatomical layout of the human brain. To date, almost all of the work linking transcriptomics to human brain function and structure has been restricted to the cerebral cortex. The culmination of this work has identified transcriptomi...
Preprint
Full-text available
Goal-directed movements can fail due to errors in our perceptual and motor systems. While these errors may arise from random noise within these sources, they also reflect systematic motor biases that vary with the location of the target. The origin of these systematic biases remains controversial. Drawing on data from an extensive array of reaching...
Preprint
Full-text available
Goal-directed movements can fail due to errors in our perceptual and motor systems. While these errors may arise from random noise within these sources, they also reflect systematic motor biases that vary with the location of the target. The origin of these systematic biases remains controversial. Drawing on data from an extensive array of reaching...
Preprint
Non-invasive brain stimulation (NIBS) provides a method for safely perturbing brain activity, and has been employed in basic research to test hypotheses concerning brainbehavior relationships with increasing translational applications. We introduce and evaluate a novel subthreshold NIBS method: kilohertz transcranial magnetic perturbation (kTMP). k...
Preprint
Full-text available
Movement errors are used to continuously recalibrate the sensorimotor map, a process known as sensorimotor adaptation. Here we examined how attention influences this automatic and obligatory learning process. Focusing first on spatial attention, we compared conditions in which the visual feedback that provided information about the movement outcome...
Article
Full-text available
Motor learning is often viewed as a unitary process that operates outside of conscious awareness. This perspective has led to the development of sophisticated models designed to elucidate the mechanisms of implicit sensorimotor learning. In this review, we argue for a broader perspective, emphasizing the contribution of explicit strategies to senso...
Article
Full-text available
Implicit sensorimotor adaptation keeps our movements well-calibrated amid changes in the body and environment. We have recently postulated that implicit adaptation is driven by a perceptual error: the difference between the desired and perceived movement outcome. According to this perceptual re-alignment model, implicit adaptation ceases when the p...
Article
Full-text available
Functional magnetic resonance imaging (fMRI) studies have documented cerebellar activity across a wide array of tasks. However, the functional contribution of the cerebellum within these task domains remains unclear because cerebellar activity is often studied in isolation. This is problematic, as cerebellar fMRI activity may simply reflect the tra...
Preprint
Full-text available
Deterioration in motor control is a hallmark of aging, significantly contributing to a decline in quality of life. More controversial is the question of whether and how aging impacts sensorimotor learning. We hypothesized that the inconsistent picture observed in the current literature can be attributed to at least two factors. First, aging studies...
Article
Full-text available
Ventrointermediate thalamic stimulation (VIM-DBS) modulates oscillatory activity in a cortical network including primary motor cortex, premotor cortex, and parietal cortex. Here we show that, beyond the beneficial effects of VIM-DBS on motor execution, this form of invasive stimulation facilitates production of sequential finger movements that foll...
Preprint
Full-text available
Motor adaptation, the process of reducing motor errors through feedback and practice, is an essential feature of human competence, allowing us to move accurately in dynamic and novel environments. Adaptation typically results from sensory feedback, with most learning driven by visual and proprioceptive feedback that arises with the movement. In hum...
Preprint
fMRI studies have documented cerebellar activity across a wide array of tasks. However, the functional contribution of the cerebellum within these task domains remains unclear because cerebellar activity is often studied in isolation. This is problematic, as cerebellar fMRI activity may simply reflect the transmission of neocortical activity throug...
Article
Full-text available
Given that informative and relevant feedback in the real world is often intertwined with distracting and irrelevant feedback, we asked how the relevancy of visual feedback impacts implicit sensorimotor adaptation. To tackle this question, we presented multiple cursors as visual feedback in a center-out reaching task and varied the task relevance of...
Preprint
Full-text available
Savings refers to the gain in performance upon relearning a task. In sensorimotor adaptation, savings is tested by having participants adapt to perturbed feedback and, following a washout block during which the system resets to baseline, presenting the same perturbation again. While savings has been observed with these tasks, we have shown that the...
Article
Full-text available
Implicit adaptation has been regarded as a rigid process that automatically operates in response to movement errors to keep the sensorimotor system precisely calibrated. This hypothesis has been challenged by recent evidence suggesting flexibility in this learning process. One compelling line of evidence comes from work suggesting that this form of...
Preprint
Full-text available
fMRI studies have documented cerebellar activity across a wide array of tasks. However, the functional contribution of the cerebellum within these task domains remains unclear because cerebellar activity is often studied in isolation. This is problematic, as cerebellar fMRI activity may simply reflect the transmission of neocortical activity throug...
Preprint
fMRI studies have documented cerebellar activity across a wide array of tasks. However, the functional contribution of the cerebellum within these task domains remains unclear because cerebellar activity is often studied in isolation. This is problematic, as cerebellar fMRI activity may simply reflect the transmission of neocortical activity throug...
Preprint
Background Non-invasive brain stimulation (NIBS) provides a method for safely perturbing brain activity, and has been employed in basic research to test hypotheses concerning brain-behavior relationships with increasing translational applications. Objective We introduce and evaluate a novel subthreshold NIBS method: kilohertz transcranial magnetic...
Preprint
Non-invasive brain stimulation (NIBS) provides a method for safely perturbing brain activity, and has been employed in basic research to test hypotheses concerning brain-behavior relationships with increasing translational applications. We introduce and evaluate a novel subthreshold NIBS method: kilohertz transcranial magnetic perturbation (kTMP)....
Preprint
Full-text available
Goal-directed movements can fail due to errors in our perceptual and motor systems. While these errors may arise from random noise within these sources, they also reflect systematic motor biases that vary with the location of the target. The origin of these systematic biases remains controversial. Drawing on data from an extensive array of reaching...
Article
Full-text available
Sensorimotor adaptation is essential for keeping our movements well calibrated in response to changes in the body and environment. For over a century, researchers have studied sensorimotor adaptation in laboratory settings that typically involve small sample sizes. While this approach has proved useful for characterizing different learning processe...
Article
Full-text available
Humans exhibit complex mathematical skills attributed to the exceptional enlargement of neocortical regions throughout evolution. In the current work, we initiated a novel exploration of the ancient subcortical neural network essential for mathematical cognition. Using a neuropsychological approach, we report that degeneration of two subcortical st...
Preprint
Full-text available
Ventrointermediate thalamic stimulation (VIM-DBS) modulates oscillatory activity in a cortical network including primary motor cortex, premotor cortex, and parietal cortex. Here we show that, beyond the beneficial effects of VIM-DBS on motor execution, this form of invasive stimulation facilitates production of sequential finger movements that foll...
Article
Full-text available
Binary feedback, providing information solely about task success or failure, can be sufficient to drive motor learning. While binary feedback can induce explicit adjustments in movement strategy, it remains unclear if this type of feedback also induces implicit learning. We examined this question in a center-out reaching task by gradually moving an...
Preprint
Full-text available
Motor learning is often viewed as a unitary process that operates outside of conscious awareness. This perspective has led to the development of sophisticated models designed to elucidate the mechanisms of implicit sensorimotor learning. In this review we argue for a broader perspective, emphasizing the contribution of explicit strategies to sensor...
Preprint
Full-text available
The cerebellum plays a critical role in sensorimotor learning, and in particular using error information to keep the sensorimotor system well-calibrated. Here we present a population-coding model of how the cerebellum compensates for motor errors. The model consists of a two-layer network, one corresponding to the cerebellar cortex and the other to...
Preprint
Full-text available
Binary feedback, providing information solely about task success or failure, can be sufficient to drive motor learning. While binary feedback can induce explicit adjustments in movement strategy, it remains unclear if this type of feedback also induce implicit learning. We examined this question in a center-out reaching task by gradually moving an...
Article
Full-text available
Neuropsychological testing has intrinsic challenges, including the recruitment of patients and their participation in research projects. To create a method capable of collecting multiple datapoints (across domains and participants) while imposing low demands on the patients, we have developed PONT (Protocol for Online Neuropsychological Testing). U...
Preprint
Full-text available
Why does unilateral subthalamic nucleus deep brain stimulation improve motor function bilaterally? To address this clinical observation, we collected parallel neural recordings from sensorimotor cortex and the subthalamic nucleus during repetitive ipsilateral, contralateral, and bilateral hand movements in patients with Parkinson’s disease undergoi...
Article
Full-text available
Our duration estimation flexibly adapts to the statistical properties of the temporal context. Humans and non-human species exhibit a perceptual bias towards the mean of durations previously observed as well as serial dependence, a perceptual bias towards the duration of recently processed events. Here we asked whether those two phenomena arise fro...
Article
Full-text available
While resting-state fMRI studies have provided a broad picture of the connectivity between human neocortex and cerebellum, the degree of convergence of cortical inputs onto cerebellar circuits remains unknown. Does each cerebellar region receive input from a single cortical area or convergent inputs from multiple cortical areas? Here, we use task-b...
Article
Full-text available
Successful goal-directed actions require constant fine-tuning of the motor system. This fine-tuning is thought to rely on an implicit adaptation process that is driven by sensory prediction errors (e.g., where you see your hand after reaching vs. where you expected it to be). Individuals with low vision experience challenges with visuomotor control...
Article
Full-text available
Contextual interference refers to the phenomenon whereby a blocked practice schedule results in faster acquisition but poorer retention of new motor skills compared to a random practice schedule. While contextual interference has been observed under a broad range of tasks, it remains unclear if this effect generalizes to the implicit and automatic...
Preprint
Full-text available
Cerebellar-dependent implicit adaptation has been regarded as a rigid process that automatically operates in response to movement errors in order to keep the sensorimotor system calibrated. This hypothesis has been challenged by recent evidence suggesting flexibility in this learning process. One compelling line of evidence comes from work suggesti...
Preprint
Full-text available
While fMRI studies have documented cerebellar activity across a wide array of tasks, the functional contribution of the cerebellum within these task domains remains unclear. Here we present a new framework to address this problem, asking if neocortical inputs to the cerebellum are gated in a task-dependent manner. We tested this idea in the context...
Preprint
Full-text available
Our ability to produce successful goal-directed actions involves multiple learning processes. Among these, implicit adaptation is of utmost importance, keeping our sensorimotor system well-calibrated in response to changes in the body and environment. Implicit adaptation is assumed to be driven by a sensory prediction error, the difference between...
Preprint
Full-text available
Sensorimotor adaptation is essential for keeping our movements well-calibrated in response to changes in the body and environment. For over a century, we have studied sensorimotor adaptation in highly controlled laboratory settings that typically involve small sample sizes. While this approach has proven useful to characterize different learning pr...
Article
Full-text available
The cerebellum is recognized to play a critical role in the automatic and implicit process by which movement errors are used to keep the sensorimotor system precisely calibrated. However, its role in other learning processes frequently engaged during sensorimotor adaptation tasks remains unclear. In the present study, we tested the performance of i...
Preprint
Full-text available
Our sense of the passage of time flexibly adapts to the statistical properties of the temporal context. Humans and non-human species exhibit a perceptual bias towards the mean of durations previously observed as well as serial dependence, a perceptual bias towards the duration of recently processed events. Here we asked whether those two phenomena...
Article
Full-text available
Our ability to enact successful goal-directed actions involves multiple learning processes. Among these processes, implicit motor adaptation ensures that the sensorimotor system remains finely tuned in response to changes in the body and environment. Whether Parkinson’s disease impacts implicit motor adaptation remains a contentious area of researc...
Article
Full-text available
Traditional associative learning tasks focus on the formation of associations between salient events and arbitrary stimuli that predict those events. This is exemplified in cerebellar-dependent delay eyeblink conditioning, where arbitrary cues such as a light or tone act as conditioning stimuli (CSs) that predict aversive sensations at the cornea (...
Article
Full-text available
Cerebellar involvement in language processing has received considerable attention in the neuroimaging and neuropsychology literatures. Building off the motor control literature, one account of this involvement centers on the idea of internal models. In the context of language, this hypothesis suggests that the cerebellum is essential for building s...
Preprint
Full-text available
It is widely recognized that sensorimotor learning is enhanced when the feedback is provided throughout the movement compared to when it is provided at the end of the movement. However, the source of this advantage is unclear: Continuous feedback is more ecological, dynamic, and available earlier than endpoint feedback. Here we assess the relative...
Article
A deep understanding of the neural architecture of mental function should enable the accurate prediction of a specific pattern of brain activity for any psychological task, based only on the cognitive functions known to be engaged by that task. Encoding models (EMs), which predict neural responses from known features (e.g., stimulus properties), ha...
Article
Full-text available
Multiple learning processes contribute to successful goal-directed actions in the face of changing physiological states, biomechanical constraints, and environmental contexts. Amongst these processes, implicit sensorimotor adaptation is of primary importance, ensuring that movements remain well-calibrated and accurate. A large body of work on reach...
Article
Full-text available
The network of brain structures engaged in motor sequence learning comprises the same structures as those involved in tremor, including basal ganglia, cerebellum, thalamus, and motor cortex. Deep brain stimulation (DBS) of the ventrointermediate nucleus of the thalamus (VIM) reduces tremor, but the effects on motor sequence learning are unknown. We...
Preprint
Full-text available
Contextual interference refers to the phenomenon whereby a blocked practice schedule results in faster acquisition but poorer retention of new motor skills compared to a random practice schedule. While contextual interference has been observed under a broad range of tasks, it remains unclear if this effect generalizes to the implicit and automatic...
Preprint
Full-text available
In a recent paper entitled, An implicit memory of errors limits human sensorimotor adaptation, Albert and colleagues presented a model in which the adaptive response of the sensorimotor system is flexibly modulated by recent experience, or what they refer to as a memory of errors. This hypothesis stands in contrast to prevailing models in which aut...
Preprint
Full-text available
While resting-state fMRI studies have provided a broad picture of the connectivity between human neocortex and cerebellum, the degree of convergence of cortical inputs onto cerebellar circuits remains unknown. Does each cerebellar region receive input from a single cortical area or convergent inputs from multiple cortical areas? Here we use task-ba...
Article
Full-text available
Repetition of specific movement biases subsequent actions towards the practiced movement, a phenomenon known as use-dependent learning (UDL). Recent experiments that impose strict constraints on planning time have revealed two sources of use-dependent biases, one arising from dynamic changes occurring during motor planning and another reflecting a...
Article
Full-text available
Losing a point in tennis could result from poor shot selection or faulty stroke execution. To explore how the brain responds to these different types of errors, we examined feedback-locked EEG activity while participants completed a modified version of a standard three-armed bandit probabilistic reward task. Our task framed unrewarded outcomes as t...
Article
Full-text available
Implicit motor recalibration allows us to flexibly move in novel and changing environments. Conventionally, implicit recalibration is thought to be driven by errors in predicting the sensory outcome of movement (i.e., sensory prediction errors). However, recent studies have shown that implicit recalibration is also influenced by errors in achieving...
Preprint
Full-text available
Our ability to enact successful goal-directed actions involves multiple learning processes. Among these processes, implicit motor adaptation ensures that the sensorimotor system remains finely tuned in response to changes in the body and environment. Whether Parkinson’s Disease (PD) impacts implicit motor adaptation remains a contentious area of re...
Article
Full-text available
Neurophysiological studies in humans and nonhuman primates have revealed movement representations in both the contralateral and ipsilateral hemispheres. Inspired by clinical observations, we ask if this bilateral representation differs for the left and right hemispheres. Electrocorticography was recorded in human participants during an instructed-d...
Preprint
Full-text available
The motor system adapts to changes in the body and the environment by learning from sensory prediction errors, the difference between predicted and actual visual feedback. This process is highly automatic and implicit, with the response to the visual feedback occurring even when the resultant change from the sensory prediction error worsens task pe...
Preprint
Full-text available
Successful goal-directed actions require constant fine-tuning of the motor system. This fine-tuning is thought to rely on an implicit adaptation process that is driven by sensory prediction errors (i.e., where you see your hand after reaching versus where you expected it to be). Individuals with low vision experience challenges with visuomotor cont...
Preprint
Full-text available
Multiple learning processes contribute to successful goal-directed actions in the face of changing physiological states, biomechanical constraints, and environmental contexts. Amongst these processes, implicit sensorimotor adaptation is of primary importance, ensuring that movements remain well-calibrated and accurate. A large body of work on reach...
Preprint
Full-text available
Traditional associative learning tasks focus on the formation of associations between salient events and arbitrary stimuli that predict those events. This is exemplified in cerebellar-dependent delay eyeblink conditioning, where arbitrary cues such as a light or tone act as conditioning stimuli that predict aversive sensations at the cornea. Here w...
Article
Full-text available
Pronounced activity is observed in both hemispheres of the motor cortex during preparation and execution of unimanual movements. The organizational principles of bi-hemispheric signals and the functions they serve throughout motor planning remain unclear. Using an instructed-delay reaching task in monkeys, we identified two components in population...
Preprint
Full-text available
Background Non-invasive brain stimulation (NIBS) provides a method for safely perturbing brain activity, and has been employed in basic research to test hypotheses concerning brain-behavior relationships with increasing translational applications. Objective We introduce and evaluate a novel subthreshold NIBS method: kilohertz transcranial magnetic...
Preprint
Full-text available
Repetition of a specific movement biases subsequent actions towards the recently practiced movement, a phenomenon referred to as use-dependent learning (UDL). UDL has been attributed to shifts in the tuning of neurons in the motor cortex. However, recent studies employing a forced reaction time task, including the eLife article by Marinovic et al (...
Article
Full-text available
A major challenge for neuropsychological research arises from the fact that we are dealing with a limited resource: the patients. Not only is it difficult to identify and recruit these individuals, but their ability to participate in research projects can be limited by their medical condition. As such, sample sizes are small, and considerable time...
Article
Full-text available
Errors that result from a mismatch between predicted movement outcomes and sensory afference are used to correct ongoing movements through feedback control and to adapt feedforward control of future movements. The cerebellum has been identified as a critical part of the neural circuit underlying implicit adaptation across a wide variety of movement...
Article
Full-text available
Collecting data online via crowdsourcing platforms has proven to be a very efficient way to recruit a large and diverse sample. Studies of motor learning, however, have been largely confined to the lab due to the need for special equipment to record movement kinematics and, as such, are typically only accessible to specific participants (e.g., coll...
Article
Full-text available
A functional benefit of attention is to proactively enhance perceptual sensitivity in space and time. Although attentional orienting has traditionally been associated with cortico-thalamic networks, recent evidence has shown that individuals with cerebellar degeneration (CD) show a reduced reaction time benefit from cues that enable temporal antici...
Preprint
Full-text available
Implicit motor recalibration allows us to flexibly move in novel and changing environments. Conventionally, implicit recalibration is thought to be driven by errors in predicting the sensory outcome of movement (i.e., sensory prediction errors). However, recent studies have shown that implicit recalibration is also influenced by errors in achieving...
Article
Full-text available
Significance. Noninvasive brain stimulation (NIBS) by quasistatic electromagnetic means is presently comprised of two methods: magnetic induction methods (transcranial magnetic perturbation or TMP) and electrical contact methods (transcranial electric perturbation or TEP). Both methods couple to neuronal systems by means of the electric fields they...
Preprint
Neurophysiological studies in humans and non-human primates have revealed movement representations in both the contralateral and ipsilateral hemisphere. Inspired by clinical observations, we ask if this bilateral representation differs for the left and right hemispheres. Electrocorticography (ECoG) was recorded in human participants during an instr...
Article
Full-text available
Purpose Individuals with cerebellar ataxia (CA) caused by cerebellar degeneration exhibit larger reactive compensatory responses to unexpected auditory feedback perturbations than neurobiologically typical speakers, suggesting they may rely more on feedback control during speech. We test this hypothesis by examining variability in unaltered speech....
Preprint
Full-text available
Errors that result from a mismatch between predicted movement outcomes and sensory afference are used to correct ongoing movements through feedback control and to adapt feedforward control of future movements. The cerebellum has been identified as a critical part of the neural circuit underlying implicit adaptation across a wide variety of movement...
Article
Full-text available
The motor system demonstrates an exquisite ability to adapt to changes in the environment and to quickly reset when these changes prove transient. If similar environmental changes are encountered in the future, learning may be faster, a phenomenon known as savings. In studies of sensorimotor learning, a central component of savings is attributed to...
Article
Full-text available
Recent studies have revealed an upper bound in motor adaptation, beyond which other learning systems may be recruited. The factors determining this upper bound are poorly understood. The multisensory integration hypothesis states that this limit arises from opposing responses to visual and proprioceptive feedback. As individuals adapt to a visual p...
Preprint
Full-text available
Collecting data online via crowdsourcing platforms has proven to be a very efficient way to recruit individuals from a large diverse sample. While many fields in psychology have embraced online studies, the field of motor learning has lagged behind. We suspect this is because of an implicit assumption that the loss of experimental control with onli...
Preprint
Full-text available
A functional benefit of attention is to proactively enhance perceptual sensitivity in space and time. Although attentional orienting has traditionally been associated with cortico-thalamic networks, recent evidence has indicated that individuals with cerebellar degeneration (CD) show reduced reaction time benefit from temporal cues that entail an i...
Preprint
Full-text available
The motor system demonstrates an exquisite ability to adapt to changes in the environment, and to quickly reset when these changes prove transient. If similar environmental changes are encountered in the future, learning may be faster, a phenomenon known as savings. In studies of sensorimotor learning, a central component of savings is attributed t...
Article
Full-text available
Physiological methods have identified a number of signatures of temporal prediction, a core component of attention. While the underlying neural dynamics have been linked to activity within cortico-striatal networks, recent work has shown that the behavioral benefits of temporal prediction rely on the cerebellum. Here, we examine the involvement of...
Article
Full-text available
Sensorimotor adaptation is driven by sensory prediction errors, the difference between the predicted and actual feedback. When the position of the feedback is made uncertain, motor adaptation is attenuated. This effect, in the context of optimal sensory integration models, has been attributed to the motor system discounting noisy feedback, and thus...
Preprint
Full-text available
Abstract: Recent studies have revealed an upper bound in motor adaptation, beyond which other learning systems may be recruited. The factors determining this upper bound are poorly understood. The multisensory integration hypothesis states that this limit arises from opposing responses to visual and proprioceptive feedback. As individuals adapt to...
Article
The study of motor planning and learning in humans has undergone a dramatic transformation in the 20 years since this journal's last review of this topic. The behavioral analysis of movement, the foundational approach for psychology, has been complemented by ideas from control theory, computer science, statistics, and, most notably, neuroscience. T...
Preprint
Full-text available
Pronounced activity is observed in both hemispheres of the motor cortex during preparation and execution of unimanual movements. The organizational principles of bi-hemispheric signals and the functions they serve throughout motor planning remain unclear. Using an instructed-delay reaching task in monkeys, we identified two components in population...
Article
Full-text available
In our everyday behavior, we frequently cancel one movement while continuing others. Two competing models have been suggested for the cancellation of such specific actions: 1) the abrupt engagement of a unitary global inhibitory mechanism followed by reinitiation of the continuing actions, or 2) a balance between distinct global and selective inhib...
Article
Full-text available
Sensorimotor learning is thought to entail multiple learning processes, some volitional and others automatic. A new method to isolate implicit learning involves the use of a "clamped" visual perturbation in which, during a reaching movement, visual feedback is limited to a cursor that follows an invariant trajectory, offset from the target by a fix...
Preprint
Full-text available
Motor learning experiments are typically run in-person, exploiting finely calibrated setups (digitizing tablets, robotic manipulandum, full VR displays) that provide high temporal and spatial resolution. However, these experiments come at a cost, not limited to the one-time expense of purchasing equipment but also the substantial time devoted to re...
Preprint
Noninvasive brain stimulation (NIBS) by quasistatic electromagnetic means is presently comprised of two methods: Magnetic induction methods (Transcranial magnetic perturbation or TMP) and electrical contact methods (Transcranial electric perturbation or TEP). Both methods couple to neuronal systems by means of the electric fields they produce. Both...
Preprint
Full-text available
Sensorimotor learning entails multiple learning processes, some volitional and explicit, and others automatic and implicit. A new method to isolate implicit adaptation involves the use of a “clamped” visual perturbation in which, during a reaching movement, visual feedback is limited to a cursor that follows an invariant trajectory, offset from the...
Preprint
Full-text available
Various lines of evidence implicate the cerebellum as one node in a network of neural regions engaged in controlled cognitive processes. Characterizing the functional role of the cerebellum within this network, and in cognition more broadly, has proven elusive. Motivated by models of how the cerebellum helps coordinate movement, we propose that the...
Article
The world faces a climate emergency. Here, we consider the actions that can be taken by neuroscientists to tackle climate change. We encourage neuroscientists to put emissions reductions at the center of their everyday professional activities.
Preprint
Full-text available
In our everyday behavior, we frequently cancel one movement while continuing others. Two competing models have been suggested for the cancellation of such specific actions: 1) the abrupt engagement of a unitary global inhibitory mechanism followed by reinitiation of the continuing actions, or 2) a balance between distinct global and selective inhib...
Preprint
Full-text available
Sensorimotor adaptation is driven by sensory prediction errors, the difference between the predicted and actual feedback. When the position of the feedback is made uncertain, adaptation is attenuated. This effect, in the context of optimal sensory integration models, has been attributed to a weakening of the error signal driving adaptation. Here we...
Article
Full-text available
Sporadically advocated over the last two centuries, a cerebellar role in cognition and affect has been rigorously established in the past few decades. In the clinical domain, such progress is epitomized by the “cerebellar cognitive affective syndrome” (“CCAS”) or “Schmahmann syndrome.” Introduced in the late 1990s, CCAS reflects a constellation of...
Preprint
Full-text available
Physiological methods have identified a number of signatures of temporal prediction, a core component of attention. While the underlying neural dynamics have been linked to activity within cortico-striatal networks, recent work has shown that the behavioral benefits of temporal prediction causally rely on the cerebellum. Here we examine the involve...
Preprint
Full-text available
Losing a point in tennis could result from poor shot selection or faulty stroke execution. To explore how the brain responds to these different types of errors, we examined feedback-locked EEG activity while participants completed a modified version of a standard three-armed bandit probabilistic reward task. Our task framed unrewarded outcomes as e...
Article
Full-text available
The aim of this study was to derive a comprehensive picture of the functional organization of the human cerebellum. To do this, a group of participants was scanned over the course of four fMRI sessions while performing a diverse MDTB. Task-evoked activation patterns were leveraged to derive a functional parcellation of the cerebellar cortex. Using...

Network

Cited By