Richard Feely

Richard Feely
PMEL · OCRD

PhD

About

513
Publications
187,330
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
57,447
Citations

Publications

Publications (513)
Article
Full-text available
The Arctic Ocean has experienced rapid warming and sea ice loss in recent decades, becoming the first open-ocean basin to experience widespread aragonite undersaturation [saturation state of aragonite (W arag) < 1]. However, its trend toward long-term ocean acidification and the underlying mechanisms remain undocumented. Here, we report rapid acidi...
Preprint
The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2022 is an update of the previous version, GLODAP...
Article
Full-text available
Plain Language Summary The ocean mitigates the extent of global warming by absorbing a portion of the carbon dioxide gas (CO2) released into the atmosphere by human activities. However, this comes at a cost to ocean health because the uptake of this anthropogenic CO2 causes changes in ocean chemistry, called ocean acidification (OA), that can be de...
Article
Full-text available
Patterns of variability in ocean properties are often closely related to large-scale climate pattern indices, and 2021 is no exception. The year 2021 started and ended with La Niña conditions, charmingly dubbed a “double-dip” La Niña. Hence, stronger-than-normal easterly trade winds in the tropical south Pacific drove westward surface current anoma...
Article
Global change is impacting the oceans in an unprecedented way, and multiple lines of evidence suggest that species distributions are changing in space and time. There is increasing evidence that multiple environmental stressors act together to constrain species habitat more than expected from warming alone. Here, we conducted a comprehensive study...
Article
Full-text available
Coastal-estuarine habitats are rapidly changing due to global climate change, with impacts influenced by the variability of carbonate chemistry conditions. However, our understanding of the responses of ecologically and economically important calcifiers to pH variability and temporal variation is limited, particularly with respect to shell-building...
Article
Full-text available
p>Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets...
Article
Full-text available
Plain Language Summary Anthropogenic CO2 absorbed by the ocean leads to a lower pH and the calcium carbonate saturation state (Ω) and threatens the marine ecosystems state of healthiness via a process called ocean acidification (OA). The Arctic Ocean is particularly sensitive to OA because more CO2 can be dissolved in cold water. This study used th...
Article
Full-text available
Effective data management plays a key role in oceanographic research as cruise-based data, collected from different laboratories and expeditions, are commonly compiled to investigate regional to global oceanographic processes. Here we describe new and updated best practice data standards for discrete chemical oceanographic observations, specificall...
Article
Full-text available
The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2021 is an update of the previous version, GLODAP...
Preprint
Full-text available
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets...
Article
Full-text available
Plain Language Summary The ocean uptake of anthropogenic carbon dioxide (CO2) is causing increase in hydrogen ion concentration ([H⁺]) and reductions in pH and carbonate mineral aragonite saturation state (Ωarag), together of which are commonly referred to as ocean acidification (OA). The coupled behavior of these affected OA metrics responding to...
Article
Full-text available
We introduce three new Empirical Seawater Property Estimation Routines (ESPERs) capable of predicting seawater phosphate, nitrate, silicate, oxygen, total titration seawater alkalinity, total hydrogen scale pH (pHT), and total dissolved inorganic carbon (DIC) from up to 16 combinations of seawater property measurements. The routines generate estima...
Data
The supporting information includes 5 texts, 10 figures, and 1 table presenting supporting analyses of data from the relevant datasets.
Article
Full-text available
Assessing decapod sensitivity to regional-scale ocean acidification (OA) conditions is limited because of a fragmented understanding of the thresholds at which they exhibit biological response. To address this need, we undertook a three-step data synthesis: first, we compiled a dataset composed of 27,000 datapoints from 55 studies of decapod respon...
Article
Full-text available
Exposure to the impact of ocean acidification (OA) is increasing in high-latitudinal productive habitats. Pelagic calcifying snails (pteropods), a significant component of the diet of economically important fish, are found in high abundance in these regions. Pteropods have thin shells that readily dissolve at low aragonite saturation state (Ω ar ),...
Preprint
Full-text available
The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2021 is an update of the previous version, GLODAP...
Article
Full-text available
This chapter details 2020 global patterns in select observed oceanic physical, chemical, and biological variables relative to long-term climatologies, their differences between 2020 and 2019, and puts 2020 observations in the context of the historical record.
Article
Full-text available
Internally consistent, quality-controlled (QC) data products play an important role in promoting regional-to-global research efforts to understand societal vulnerabilities to ocean acidification (OA). However, there are currently no such data products for the coastal ocean, where most of the OA-susceptible commercial and recreational fisheries and...
Article
Full-text available
Analysis of global ocean carbonate chemistry and water mass age information confirms the substantial in situ dissolution of calcium carbonate particles in the upper water column.
Article
Full-text available
The ocean is mitigating global warming by absorbing large amounts of excess carbon dioxide from human activities. To quantify and monitor the ocean carbon sink, we need a state-of-the-art data resource that makes data submission and retrieval machine-compatible and efficient.
Article
Full-text available
Significance We conduct a modeling study of the effects of enhanced coastal nutrient export from human activities on the carbon, nitrogen, and oxygen cycles of the Southern California Bight, in the context of emerging global climate change. The modeling approach used is innovative in the breadth of its scope, and simulations are generally consisten...
Article
Full-text available
Assessing the vulnerability of marine invertebrates to ocean acidification (OA) requires an understanding of critical thresholds at which developmental, physiological, and behavioral traits are affected. To identify relevant thresholds for echinoderms, we undertook a three-step data synthesis, focused on California Current Ecosystem (CCE) species....
Article
Full-text available
Global projections for ocean conditions in 2100 predict that the North Pacific will experience some of the largest changes. Coastal processes that drive variability in the region can alter these projected changes but are poorly resolved by global coarse-resolution models. We quantify the degree to which local processes modify biogeochemical changes...
Article
Full-text available
Increasing atmospheric CO2, cold water temperatures, respiration, and freshwater inputs all contribute to enhanced acidification in Arctic waters. However, ecosystem effects of ocean acidification (derived from anthropogenic and/or natural sources) in the Arctic Ocean are highly uncertain. Zooplankton samples and oceanographic data were collected i...
Article
Full-text available
Shelled pteropods are widely regarded as bioindicators for ocean acidification, because their fragile aragonite shells are susceptible to increasing ocean acidity. While short-term incubations have demonstrated that pteropod calcification is negatively impacted by ocean acidification, we know little about net calcification in response to varying oc...
Preprint
Full-text available
Internally-consistent, quality-controlled data products play a very important role in promoting regional to global research efforts to understand societal vulnerabilities to ocean acidification (OA). However, there are currently no such data products for the coastal ocean where most of the OA-susceptible commercial and recreational fisheries and aq...
Article
Full-text available
The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2020 is an update of the previous version, GLODAPv2.2019...
Research Proposal
acidification-and-hypoxia-in-margi nal-seas Ocean acidification and deoxygenation are universal global environmental problems and might influence the physiology of marine organisms, element cycling and ultimately change marine ecosystems service. Along the coastal shelf and its adjacent marginal seas, human activity has induced eutrophication and e...
Article
Estuaries are recognized as one of the habitats most vulnerable to coastal ocean acidification due to seasonal extremes and prolonged duration of acidified conditions. This is combined with co-occurring environmental stressors such as increased temperature and low dissolved oxygen. Despite this, evidence of biological impacts of ocean acidification...
Article
Oceanic uptake of anthropogenic carbon dioxide (CO 2 ) from the atmosphere has changed ocean biogeochemistry and threatened the health of organisms through a process known as ocean acidification (OA). Such large-scale changes affect ecosystem functions and can have effects on societal uses, fisheries resources, and economies. In many large estuarie...
Article
Full-text available
Seawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth-ocean-atmosphere dynamic exchange of elements. The ratios' dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumptio...
Article
Seawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth–ocean–atmosphere dynamic exchange of elements. The ratios’ dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumptio...
Preprint
Full-text available
Global projections for ocean conditions in 2100 predict that the North Pacific will experience some of the largest changes. Coastal processes that drive variability in the region can alter these projected changes, but are poorly resolved by global coarse resolution models. We quantify the degree to which local processes modify biogeochemical change...
Article
Full-text available
Identifying ocean acidification and its controlling mechanisms is an important priority within the broader question of understanding how sustained anthropogenic CO2 emissions are harming the health of the ocean. Through extensive analysis of observational data products for ocean inorganic carbon, here we quantify the rate at which acidification is...
Article
Full-text available
Current carbon measurement strategies leave spatiotemporal gaps that hinder the scientific understanding of the oceanic carbon biogeochemical cycle. Data products and models are subject to bias because they rely on data that inadequately capture mesoscale spatiotemporal (kilometers and days to weeks) changes. High-resolution measurement strategies...
Preprint
Full-text available
The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of water samples. GLODAPv2.2020 is an update of the previous version, GLODAPv2.2019. T...
Article
Full-text available
Ocean acidification (OA) is projected to have profound impacts on marine ecosystems and resources, especially in estuarine habitats. Here, we describe biological risks under current levels of exposure to anthropogenic OA in the Salish Sea, an estuarine system that already experiences inherently low pH and aragonite saturation state (Ωar) conditions...
Article
Full-text available
Syntheses of carbonate chemistry spatial patterns are important for predicting ocean acidification impacts, but are lacking in coastal oceans. Here, we show that along the North American Atlantic and Gulf coasts the meridional distributions of dissolved inorganic carbon (DIC) and carbonate mineral saturation state (Ω) are controlled by partial equi...
Article
Full-text available
The Dungeness crab (Metacarcinus magister) fishery is one of the highest value fisheries in the US Pacific Northwest, but its catch size fluctuates widely across years. Although the underlying causes of this wide variability are not well understood, the abundance of M. magister megalopae has been linked to recruitment into the adult fishery 4 years...
Article
Ocean acidification (OA) along the US West Coast is intensifying faster than observed in the global ocean. This is particularly true in nearshore regions (<200 m) that experience a lower buffering capacity while at the same time providing important habitats for ecologically and economically significant species. While the literature on the effects o...
Article
Full-text available
Oceanic uptake of CO2 can mitigate climate change, but also results in global ocean acidification. Ocean acidification-related changes to the marine carbonate system can disturb ecosystems and hinder calcification by some organisms. Here, we use the calcification response of planktonic foraminifera as a tool to reconstruct the progression of ocean...
Article
Full-text available
The Southern Ocean south of 30° S represents only one-third of the total ocean area, yet absorbs half of the total ocean anthropogenic carbon and over two-thirds of ocean anthropogenic heat. In the past, the Southern Ocean has also been one of the most sparsely measured regions of the global ocean. Here we use pre-2005 ocean shipboard measurements...
Article
Full-text available
The ocean’s chemistry is changing due to the uptake of anthropogenic carbon dioxide (CO2). This phenomenon, commonly referred to as “Ocean Acidification”, is endangering coral reefs and the broader marine ecosystems. In this study, we combine a recent observational seawater CO2 data product, i.e., the 6th version of the Surface Ocean CO2 Atlas (199...
Article
Full-text available
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and m...
Article
Full-text available
We analyzed impacts of the 2014–2015 Pacific Warm Anomaly and 2015–2016 El Niño on physical and biogeochemical variables at two southern California Current System moorings (CCE2, nearshore upwelling off Point Conception; CCE1, offshore California Current). Nitrate and Chl‐a fluorescence were <1 μM and <1 Standardized Fluorescence Unit, respectively...
Article
Full-text available
The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of water samples. This update of GLODAPv2, v2.2019, adds data from 116 cruises to the...
Article
Full-text available
The Surface Ocean CO2 NETwork (SOCONET) and atmospheric Marine Boundary Layer (MBL) CO2 measurements from ships and buoys focus on the operational aspects of measurements of CO2 in both the ocean surface and atmospheric MBLs. The goal is to provide accurate pCO2 data to within 2 micro atmosphere (μatm) for surface ocean and 0.2 parts per million (p...
Article
Full-text available
A successful integrated ocean acidification (OA) observing network must include (1) scientists and technicians from a range of disciplines from physics to chemistry to biology to technology development; (2) government, private, and intergovernmental support; (3) regional cohorts working together on regionally specific issues; (4) publicly accessibl...
Technical Report
Full-text available