Richard Boothroyd

Richard Boothroyd
University of Birmingham · School of Geography, Earth and Environmental Sciences

Doctor of Philosophy

About

15
Publications
6,890
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
156
Citations
Citations since 2016
14 Research Items
156 Citations
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
Additional affiliations
June 2019 - September 2021
University of Glasgow
Position
  • Research Associate
September 2018 - May 2019
The University of Manchester
Position
  • Lecturer

Publications

Publications (15)
Article
Full-text available
Multi-temporal remote sensing imagery has the potential to classify river landforms to reconstruct the evolutionary trajectory of river morphologies. Whilst open-access archives of high spatial resolution imagery are increasingly available from satellite sensors, such as Sentinel-2, there remains a fundamental challenge of maximising the utility of...
Article
Full-text available
Characterisation of hydromorphological attributes is crucial for effective river management. Such information is often overlooked in tropical regions such as the Philippines where river management strategies mainly focus on issues around water quality and quantity. We address this knowledge gap using the River Styles Framework as a template to iden...
Article
Urban flooding is a key global challenge which is expected to become exacerbated under global change due to more intense rainfall and flashier runoff regimes over increasingly urban landscapes. Consequently, many cities are rethinking their approach to flood risk management by using green infrastructure (GI) solutions to reverse the legacy of hard...
Article
Nature Based Solutions (NBS), including Natural Flood Management (NFM) schemes are becoming an important component of many governmental and organisation responses to increases in flood and aridity risk. NFM structures may take multiple forms to slow, store, disconnect and filter distributed overland flow pathways within a catchment that coalesce to...
Article
Full-text available
With the increasing availability of big geospatial data (e.g., multi-spectral satellite imagery) and access to platforms that support multi-temporal analyses (e.g., cloud-based computing, Geographical Information Systems, GIS), the use of remotely sensed information for monitoring riverine hydro-morpho-biodynamics is growing. Opportunities to map,...
Article
River migration represents a geomorphic hazard at sites of critical bridge infrastructure, particularly in rivers where migration rates are high, as in the tropics. In the Philippines, where exposure to flooding and geomorphic risk are considerable, the recent expansion of infrastructural developments warrants quantification of river migration in t...
Preprint
Full-text available
Characterisation of hydromorphological attributes is crucial for effective river management. In the Philippines, such applications are usually solely based on water quantity and quality. This paper uses the River Styles Framework as an alternative template for identifying the diversity of river morphodynamics as a valuable input to river management...
Article
Full-text available
Cloud-based computing, access to big geospatial data, and virtualization, whereby users are freed from computational hardware and data management logistics, could revolutionize remote sensing applications in fluvial geomorphology. Analysis of multitemporal, multispectral satellite imagery has provided fundamental geomorphic insight into the planime...
Article
This paper assesses the size, shape and spatial organisation of organic, carbon-rich debris (peat blocks) in an upland fluvial peatland ecosystem. Peat block inventories collected in 2002 and 2012 at an alluvial reach of Trout Beck (North Pennines; United Kingdom) provide independent surveys for investigating the physical characteristics and spatia...
Conference Paper
Full-text available
Various tools have been demonstrated that are capable of delineating and characterizing river channels, but efforts to scale these analyses up to multi-temporal, catchment-scale applications are in their infancy. Here, we use Google Earth Engine (GEE) to extract the active channel (including the wetted channel and unvegetated, alluvial deposits) fr...
Article
Full-text available
Vegetation patches play an important role in controlling sediment deposition in shallow aquatic environments such as coastal saltmarshes and fluvial systems. However, predicting deposition around vegetation patches is difficult due to the complexity of patch morphology and their dynamic interaction with the flow. Here we incorporate a biomechanical...
Article
Full-text available
In a series of high resolution numerical modelling experiments, we incorporated submerged riparian plants into a computational fluid dynamics (CFD) model used to predict flow structures and drag in river flow. Individual plant point clouds were captured using terrestrial laser scanning (TLS) and geometric characteristics quantified. In the first ex...
Article
Full-text available
Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple, and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plan...
Conference Paper
Full-text available
This paper presents results from a recently developed methodology to incorporate natural plant morphologies into a computational fluid dynamics (CFD) model used to predict complex flow fields. Simulations of flow around morphologically complex plants, represented both statically and dynamically, are presented. The morphological complexity, comprisi...
Article
Full-text available
This paper reports a novel method for the incorporation of complex plant morphologies into a computational fluid dynamics (CFD) model, allowing the numerical prediction of flows around individual plants. The morphological complexity, which comprises the vertical and lateral distribution of individual branches and leaves is captured through terrestr...

Network

Cited By