
Design of a HW/SW Communication Infrastructure for a Heterogeneous
Reconfigurable Processor

A. Deledda, C. Mucci, A. Vitkovski
ARCES, University of Bologna, Italy

M. Kuehnle, F. Ries, M. Huebner, J. Becker
ITIV, University of Karlsruhe, Germany

P. Bonnot, A. Grasset, P. Millet
THALES Research and Technology, France

M. Coppola, L. Pieralisi, R. Locatelli, G. Maruccia
STMicroelectronics, France

F. Campi, T. DeMarco
STMicroelectronics, Italy

Abstract

Reconfigurable architectures and NoC (Network-on-
Chip) have introduced new research directions for technol-
ogy and flexibility issues, which have been largely investi-
gated in the last decades. Exploiting run-time adaptivity
opens a new area of research by considering dynamic re-
configuration. In this paper, we present the architecture and
associated development tools of an heterogeneous reconfig-
urable SoC focusing on the chosen communication infras-
tructure. The SOC integrates units of various sizes of recon-
figuration granularity. The included NoC approach demon-
strates the mentioned benefits and scalability for actual and
future SoC design.

On a reference CMOS090 implementation the described
interconnect system works at the system reference frequency
of 200 MHZ sustaining the required run-time bandwidth on
a set of reference applications, at a price 10% in area in
power consumption with respect to the overall system.

1. Introduction

Data intensive processing in embedded systems is re-
ceiving relevant attention, due to rapid advancements
in multimedia computing and high-speed telecommunica-
tions. Applications demand high performance under real-
time requirements, and computation power appetite soars
faster than Moore’s law. Processor efficiency is impaired
by the memory bandwidth problem of traditional Von
Neumann architectures. On the other hand, the conven-
tional way to boost performance through Application Spe-

The work presented in this paper is done within the MORPHEUS
project (IST FP6, project no. 027342), which is sponsored by the Euro-
pean Commission under the 6th Framework program.

cific Integrated Circuits (ASIC) suffers from sky-rocketing
manufacturing costs and long design development cycles.
This results in an increasing need of post-fabrication pro-
grammability at both software and hardware level. Field
Programmable Gate Arrays (FPGA) bring maximum flex-
ibility with their fine grain architecture, but imply severe
overheads in timing, area and consumption. Word or
sub-word oriented Run-time Reconfigurable Architectures
(RAs) [1] offer highly parallel, scalable solutions combin-
ing hardware performance with software flexibility. Their
coarser granularity reduces area, delay, power consumption
and reconfiguration time, but introduces tradeoffs in the de-
sign of the processing elements, that need to be tailored for
a given application domain. A possible way to mitigate this
aspect for building a flexible yet efficient signal processor is
to substitute each ASIC accelerator with a specific domain-
oriented RAs, inducing a graceful shift of SoCs from appli-
cation specific circuits to domain oriented platforms, where
different flavours of reconfigurable hardware, each more
suited to a given application environment, are merged with
ASIC and general purpose processors to provide ideal trade-
off between performance and post-fabrication programma-
bility. The immediate advantage is that the higher compu-
tational density of RAs allows to build networks composed
of a significantly smaller number of nodes. The immediate
drawback is the need to synchronize units that are intrin-
sically different and provide independent application map-
ping styles and entry languages. In this context, critical is-
sues are related to the definition of

a toolset that must be capable to hide RA heterogeneity
and hardware details providing a consistent and homo-
geneous programming model to the end user

a data interconnect infrastructure, that must sustain
the bandwidth requirements of the computation units

978-3-9810801-3-1/DATE08 © 2008 EDAA

while retaining a sufficient level of programmability to
be adapted to all the different data flows defined over
the architecture in its lifetime

These aspects are strictly correlated and their combina-
tion, together with the strategy deployed for RA compu-
tation synchronization represents the signal processor in-
terface toward the end-user. In particular, the architec-
ture view shall be abstracted as much as possible for the
user, providing a programming model looking like purely
functional code. Program parts requiring acceleration on
RAs should be identifiable in the easiest possible way. A
toolset can then handle and program the code correspond-
ing to data movements and reconfigurations related to these
accelerating parts. In this context not only computation
but also communication aspects must indeed be consid-
ered. This will enable performance optimization by mask-
ing communication time by computation time through a
“pipelined” behaviour. The scheduling of these accelerat-
ing parts among each other, including loading configuration
and execution, may be managed at compilation time based
on RTOS-oriented services.

This work was performed in the context of the MOR-
PHEUS project. The project aims at realizing an hetero-
geneous reconfigurable SoC platform, where state-of-the-
art RAs of different size and nature are grouped together
in a processor-controlled system. In particular, this pa-
per aims at describing the most significant challenges and
design choices that have been faced in the deployment of
a well known NoC infrastructure (the ST Spidergon NoC
approach [10]) to the MORPHEUS context and the con-
sequent impact on the architecture and toolset definition.
We believe that the most relevant innovation aspects of this
work are: (1) A significant milestone in the field of Het-
erogeneous multi-core SoCs. (2) The first design-case chal-
lenging the deployment of the NoC concept to a network of
high-bandwidth computation intensive RAs.

2. Related Works

In the case of most of state-of-the art signal processors
(OMAP by TI, Nomadik by ST, PXA by Intel) the inter-
connect strategy is two-fold: a multi-layered bus is uti-
lized to ensure flexible chip level communication, control
and synchronization. Computation intensive sections are
normally implemented on hardwired cores or application-
specific programmable accelerators. In this case the inter-
connect is designed as part of the SoC and optimized for the
specific application domain. In the case of MORPHEUS,
the user is required to partition computational demands of
the application over available units after fabrication. Order,
direction and relative bandwidth of the traffic between each
HREs and to/from IO facilities remains run-time config-
urable and may be required to change significantly between

successive applications and between different stages of the
same computations. Similar specifications constrain the de-
sign of multi-processor Systems-on-chip (MPSoCs): MP-
SoCs are often heterogeneous but differently from MOR-
PHEUS processing nodes tend to provide comparable gran-
ularity and similar IO bandwidths and access patterns to
the communication infrastructure. From the implementa-
tion point of view MPSoCs may be tile-oriented [11, 12] or
randomly placed. In the first case the cores are placed in
a regular Mesh, and interconnect infrastructure is strongly
hierarchical and distributed between the different tiles with
the possible addition of global wires. An example is the
RAW processor: RAW incorporates two types of networks
(dynamic and static) that handle different classes of traf-
fic. The dynamic network is a dimension-ordered worm-
hole network, while the static network implements time-
division multiplexing. Networks-on-Chip [2, 3, 10] are a
largely successful communication pattern for MPSoCs. The
NoC concept in itself can certainly be applied to networks
of heterogeneous processing nodes, but to our knowledge
has never been explicitly applied to nodes that feature com-
putational capability and bandwidth requirements of state-
of-the-art RAs. In [4] a deployment of the NoC concept
for a RA template is described, but in this case the NoC is
used to interconnect different elements of a given RA array
rather than intrinsically different coarser RAs. In [15] also
a NoC based communication infrastructure is introduced
for a multicore runtime reconfigurable System-on-Chip, uti-
lizing packet-switched interconnect with virtual channels.
The design provides guaranteed as well as best effort ser-
vices introducing a significant amount of control overhead
in hardware. A significant feature is that applied RAs are
homogeneous, whereas heterogeneity is one of the major
challenges of MORPHEUS. Pleiades [6, 13] can be consid-
ered the first Heterogeneous Multi-Core SoC appeared in
literature, although it was targeted at low power consump-
tion rather than processing efficiency. It is composed by an
ARM8 core, memory modules, an embedded FPGA and a
set of “general purpose” hardware accelerators fed by ad-
dress generation engines. Interconnect is circuit-switched,
based on a two-level mesh composed of hierarchical switch-
boxes located at key connection points.

3. Proposed Architecture

Figure 1 describes the Morpheus architecture. The main
entities are an ARM9 processor performing control and
synchronization, the interconnect infrastructure, IO facil-
ities, an automated mechanism to handle run-time recon-
figuration and the three main RA units defined in this
context HREs (Heterogeneous Reconfigurable Engines).
HREs have been chosen in order to provide complemen-
tary features that can cover the spectrum of existing RA ap-

Figure 1. Morpheus Architecture

proaches: a stream processor based on coarse grained 16-bit
units [7] suited to data-intensive word-level computation; a
reconfigurable processor (also termed DREAM) [8], that is
a standard RISC processor featuring instruction set exten-
sion on a 4-bit grained run time programmable datapath;
a state-of-the-art embedded FPGA [9]. The MORPHEUS
programming model is based on the Molen paradigm [14]:
HREs provide instruction set extension, and tasks running
on HREs should be seen as operators of the processor. Ex-
tensions are handled by the user only when for optimiza-
tion reason he/she will program manually extension oper-
ations on HREs. Otherwise, they will be handled by spe-
cific libraries or by the MORPHEUS toolset. Increasing
the granularity of operators from ALU-like instructions to
HRE tasks, we are forced to increase accordingly the gran-
ularity of the operands. Operands become structured data
chunks, referenced through their addressing pattern, be it
simple or complex (vectorized and/or circular addressing
based on multi-dimensional step/stride/mask parameters).

As described above, the aim of this work is provide a
consistent interface and programming model to the end user.
This is accomplished by a global toolset for platform-level
design strictly related to a flexible interconnect infrastruc-
ture that can meet the requirements of the HREs. The most
relevant differences between a standard MPSoC environ-
ment and a network of heterogeneous reconfigurable en-
gines can be described as follows:

1. RAs, differently from standard processors, feature
clock speed that depend on their granularity and also
on the chosen application and the strategy deployed in
its mapping. Hence, a multi-core platform based on
RAs should feature run-time programmable, indepen-
dent clock domains associated to each computational
core and “elastic” communication channels to mini-
mize bottlenecks.

2. RAs provide relevant computation capability so a net-
work of HREs will feature a much smaller number of

nodes but relevant bandwidth requirements for each
transfer with respect to a network of processors. Also,
data flows to/from RAs are typically regular, rather
then organized in bursts. As a result congestion issues
should be less frequent, but they should be avoided at
all costs as they could dramatically reduce computa-
tion capabilities starving computation nodes.

3. RAs usually feature long reconfiguration times.
Hence, they tend to iterate the same computation ker-
nel repetitively over large chunks of data. The config-
uration of the interconnect infrastructure can thus be
defined as quasi-static: transfers are normally coarser
than those observed in a MPSoC environment and the
routing can be often maintained identical for a signif-
icant set of consecutive transfers generated by a given
initiator node. As a consequence, a circuit switched
communication pattern appears suitable. On the other
hand, such approach may limit the flexibility of the
communication and is more prone to congestion is-
sues.

4. RAs are often based on streaming data access patterns
[7] or on automated regular addressing mechanisms
[8,15]. They can hardly behave as traffic initiators, be-
cause they rarely provide the addressing and bus man-
agement flexibility of a standard processor. Even in
cases where this may be possible, the end-user would
be forced to design and synchronize the system data
flow programming different heterogeneous machines
with inherently different languages and programming
styles (e.g C, HDL).

According to the points outlined above, the most suit-
able approach to a NoC-based interconnect for a RA-based
signal processor appears to be a network composed by few
nodes, but with relevant bandwidth capabilities for each
node-to-node connection. To avoid congestion, the topol-
ogy should be designed as to provide direct and almost
dedicated connections on the most critical paths. This
notwithstanding, a circuit switched approach appears too
application-specific, and does not provide sufficient guar-
antees for post-fabrication definition of new data-flows. A
packet-switched net is preferable, where some paths are
given absolute priority at design time but alternative mi-
nor connections are still possible and to a given extent can
be eased altering at run-time priority schemes. Moreover,
it is convenient to structure HREs as independent clock
domains. Dual port memory buffers (defined in this con-
text DEB, Data Exchange Buffers), organized as FIFOs
or Scratchpads, can be used as local storage repository,
to hide computation and synchronization latencies and to
ensure safe clock domain crossing. Finally, to allow the
end user a single homogeneous interface when describing

Figure 2. Description of the network inter-
faces for HREs and NIs

data transfers HREs may be provided with local DMA-like
data transfer engines, programmed and controlled at system
level through the toolset. Communication synchronization
and control may be handled by software routines running
on the main processor, but this may impact performance
and impose an awkward programming interface. As sug-
gested in [4] this task can be performed by RTOS services,
and part of the OS can be implemented in hardware: hard-
wired centralized control can be provided to support multi
block transfers as well as of a synchronisation concept and
therefore disburden the processor/user from low-level tasks.
From the application point of view, the programmer may
then choose the preferred approach depending on constrains
such as e.g. transfer data size or the activity level of the con-
trol processor.

Chip level interconnect was organized on two levels:
(a) a communication kernel implementing transfers be-
tween nodes and (b) a HW/SW infrastructure that provides
communication/synchronization towards the processor core
(and thus the end user) and injects/extracts data to/from the
communication kernel. The STNoC/Spidergon [10] con-
cept was adopted as physical layer for the communication.

Spidergon NoC is based on a scalable, regular, point-to-
point topology. The Spidergon network connects an even
number of nodes in the ring in such a way that every node
has three bidirectional connections: two to the neighbour
nodes and one to the opposite node. (Fig.3). The main ad-
vantages of such topology are: regular structure, sufficienly
short network diameter (e.g. minimum amount of hops be-
tween any two nodes in the network); low interconnection
complexity comparing to the other network topologies and
a simple routing mechanism. The Spidergon NoC imple-
ments a packet-based communication, adopting wormhole
switching. Indeed wormhole scheme allows to reduce the
amount of network buffering (queues with the flit granular-
ity instead of packet) and to pipeline packet propagation. A
deterministic, shortest-path routing algorithm has been de-

fined for the Spidergon topology. The relevant implementa-
tion is very simple, without posing the need for expensive
routing tables and ensuring fast processing of the packet
header. The idea is to move along the ring, in the proper di-
rection, to reach nodes which are close to the source node,
otherwise to use the cross link to be in the oppisite part of
the network. Two virtual channels in the ring links (clock-
wise and anticlockwise) guarantee deadlock avoidance. The
concept of the deterministic routing and virtual channel
scheduling avoids costly disordered end-to-end transfers:
the routing path of any packet does not depend on the route
of any other packet.

The NoC structure is specifically designed to hide imple-
mentation details, so that a consistent programming model
can be developed without considering implementation pa-
rameters and may remain valid changing the number or the
nature of HREs. The number of computation nodes and in
particular the number of routers can be changed depending
on architectural choices and floor-plan/timing analysis. A
NoC is by definition a distributed communication platform
with a set of initiator nodes (e.g. processor cores) issuing
transfers and a set of target storage nodes (e.g. memory
units) responding to transfer requests. HREs represent pe-
culiar nodes: they should be both NoC initiators (require
transfers from some storage units such as onchip or of-
fchip RAM), and targets (process external requests such as
a transfer request from another HRE or ARM). This is im-
plemented over the NoC through a distributed DMA pat-
tern: in order to act as traffic initiator each HRE node Net-
work Interface (HRE-NI) is enhanced with a local software
programmable data transfer engine (Fig.2). HRE-NIs are
thus capable to load data chunks from HREs and store them
through the NoC to the target repository and vice-versa.
From the core/user point of view this approach describes
the NoC as an enlarged and highy parallel DMA archi-
tecture. ARM can require any transfer between HREs, as
well as from any HRE to any storage unit (Onchip memory,
Memory controllers). Transfers are initiated programming
specific configuration registers on the HRE network inter-
face, through a specific configuration bus reaching all HRE-
NIs. NoC router priority schemes may also be programmed
through the same configuration bus.

As mentioned above, quasi static data transfers are ex-
pected to be the greatest volume of communication load on
the network. This positively affects system control, per-
formed by ARM by means of RTOS, since transfers can
be issued as standard DMA trasnfers. On the other hand,
since MORPHEUS is a single master system, it may suffer
syncronisation overload due to an intensive interrupt activ-
ity (depending on the granularity of the tasks mapped on
HREs). A possible solution is to map part of the RTOS
services on hardware. A hardwired DNA (Data Network
access) controller has been designed, featuring setup mech-

Entity Size Area Power (Dyn,Leak)
(mm) (W/MHZ-mW)

HRE-NIs 4x90 Kgate 1.58 148 - 1.8
DNA Controller 40 Kgate 0.25 24 - 0.3
NoC Routers 8x44 Kgate 2.8 429 - 5
NoC Initiators 5x18 Kgate
NoC Targets 3x9 Kgate
DREAM Interc. 50 Kgate 2.4 282 - 6
DREAM DEBs 64 KB
M2K Interc. 15 Kgate 1.1 140 - 2
M2K DEBs 32 KB
Pact Interc. 10 Kgate 0.6 198 - 1
Pact DEBs 16 KB
Total Interc. 8.4 217 - 16.1

Table 1. Hardware features of the main com-
ponents of the interconnect infrastructure

anisms for data transfers and a hardware handshake proto-
col that support computation/communication synchroniza-
tion and preserve data flow consistency. Its programming
model is similar to a common DMA interface so that it re-
mains transparent for the end user. Eight concurrent pro-
grammable channels are supported, each capable to con-
trol multiblock transfers. The DNA hides synchroniza-
tion details from the end-user programming and reiterat-
ing NoC transfers configuring independently the HRE-NIs.
The DNA handles interrupt based multiblock transfers with
block sizes of up to 128kbyte by monitoring and evaluating
the status of computation over the HRE nodes and of DMA
transfer channels over the HRE-NIs. Configuration items
for channel setup can be stored in the DNA memory before-
hand and related events will be catched and resolved by the
DNA independently from further ARM commands.

4 Application Mapping on HRE

HRE-specific code can be seen as the code necessary
to compute HRE Instructions in a transparent way for the
user. It includes bitstreams as well as code handling data
transfers. Operators are synthesized from a high-level pro-
gramming model or provided as libraries. They are de-
scribed within the toolset as a data-flow graph where each
subtask is a C function. The synthesis flow relies on the
HRE providers tools to generate an HRE specific bitstream.
ARM code handling communications is automatically gen-
erated and integrated in the application code. HRE operands
are transferred between on-chip system memory and local
HRE memories (DEBs). Being structured data, such as
image frames, their size can be larger than DEB size. In
this case, a specific tool [16] maps Macro-operators on the
HREs. Application kernels have to be computed over many
iterations working on macro-operand fragments. Hence, the
tool designs a sort of lower granularity pipeline inside the

Figure 3. Spidergon topology chosen for the
CMOS090 MORPHEUS demonstrator

HRE. In the data-flow graph of the kernel, each subtask exe-
cutes iteratively a basic function on a data subset. Loop iter-
ations are scheduled in a way that the data subset produced
by the first N iterations of a stage are sufficient for the next
stage to work. The tool assists the user to do it by providing
a framework for loop transformations and loops fusion [16].
As the kernel model includes information on what data are
”consumed” at each iteration, the tool can compute data
transfers parameters. ARM code handling communication
is generated by the compiler using these parameters. The
toolset is also capable to generates HRE bitstreams.

Basic functions of each subtask are synthesized on HREs
and are fed with specific data streams. According to loop
iterations scheduling, specific addressing patterns are pro-
grammed inside the HRE to access to the DEBs. A Fi-
nite State Machine (FSM) is implemented inside each HRE
(in SW or in HW) to control the progress of the pipeline
and to synchronize it with the system. It controls all lev-
els of computation vs data transfer synchronization. The
input for the compilation flow is the C application code to
compile and execute on the ARM processor. When writ-
ting an application, the programmer uses specific #pragma
instructions in its C code to set in the application which
function is accelerated. Doing so, the compiler identifies
which function is to be computed on the HREs and modi-
fies the function calls by generating code to (1) load the de-
fined HRE with the corresponding bitstream, (2) program
the DNA for chunk data movement between memories and
DEBs to feed the accelerated function and (3) load back re-
sults after computation (i.e. DNA configuration). The code
generated by the compiler optimizes scheduling loading the
HRE bitstream as early as possible in order to make avail-
able the accelerated function when the application needs it.
The scheduling is defined at compile time, and can be af-
fected by events such as interrupts or bus congestion. Such
occurrances are handled by RTOS ensuring the correctness
of a part of the schedule at run-time, another part is directly

Application M2K/ DREAM/ M2K/ XPP/ XPP/ XPP/ DREAM/
Onchip RAM Onchip RAM DDRAM Onchip RAM DREAM M2K M2K

OTU-k frame processing 10 Mb/s 10 Mb/s
IEEE 802.11j 312 Mb/s 365.4 Mb/s 288 Mb/s 390.4 Mb/s 24 Mb/s
Motion Detection 354 Mb/s 177 Mb/s 177 Mb/s 22 Mb/s

Table 2. Application Bandwidth Requirements

manages by the hardware with handshaking mechanisms.

5 Quantitative Results

Currently, an instance of MORPHEUS platform is
considered to be implemented for STMicroelectronics
CMOS090 technology: most architectural features were
silicon proven on preliminary test-chips while a complete
prototype of the entire processor is currently under imple-
mentation. For the interconnect infrastructure, an 8-nodes
NoC topology (Fig.3) has been implemented. It includes
five initiator ports to: ARM, XPP In, XPP Out, M2K and
DREAM; and seven target ports to: XPP In, XPP Out,
M2K, DREAM, DDRAM 1, DDRAM 2 and On-chip RAM,
which allow to maintain a tight connections with the com-
munication critical components. As the XPP stream pro-
cessor was reputed to be the most data hungry HRE in the
design, two independent connections were reserved: XPP
In and XPP Out. The nodes related to the same hardware
component are placed close to each other due to the floor
planning reasons. The eFPGA is provided with an addi-
tional direct IO access, so that it can also be used for dy-
namical mapping of IO protocols. For this reason, each of
the other two HREs has a direct connection to eFPGA. Each
link is set at 64-bit width, at the price of significant routing
complexity, in order to sustain the relevant computational
demands of the HREs. It was chosen to run all intercon-
nects at the system reference speed of 200MHZ, discarding
the STNoC intrinsic capability of running physical links at a
different speed with respect to the Network Interfaces. This
decision allows to minimize area overheads and simplify the
implementation phase. More precisely the overheads im-
posed by integration of the three HREs and the NoC from
the computational data side are presented in table 1.

In order to validate the proposed approach several ap-
plications were investigated, as shown in table 2. Their
dataflows were mapped on the described architecture, con-
sidering to implement critical kernels in the most appropri-
ate RA. Each column of table 2 represents the total band-
width required for each physical link. According to the sim-
ulation results the implemented communication infrastruc-
ture is able to satisfy all the real-time constraints imposed
by the mapped applications.

6. Conclusions

In the proposed architecture the combination of an inno-
vative NoC infrastructure togheter with a distribuited mem-
ory subsystem introduces an efficient communication and
storage mechanisms that allow to hide from the end user
heterogeneus specifics of different reconfigurable engines.

Considering that in the MORPHEUS test-chip the esti-
mated area is about 90 and the average power con-
sumption is in the range of 3000 mW, our goal is achieved
with a price of 10% overheads.

References

[1] R.Hartenstein, A decade of Reconfigurable Computing: a vi-
sionary Retrospective, Proceedings DATE 2001

[2] A. Jantsch, H. Tenhunen Networks on Chip Springer, 2003,
ISBN: 978-1-4020-7392-2

[3] G. De Micheli, L. Benini Networks on Chips, Morgan Kauf-
mann, 2006

[4] T.A.Bartic et.al. Topology adaptive NoC design and imple-
mentation IEE Computers and Digital Techniques, July 2005

[5] AMBA Specification, rev. 2.0, ARM Ltd.
http://www.arm.com/products/solutions/AMBA Spec.html

[6] M.Wan et al. Design Methodology for a low-energy reconfig-
urable single-chip DSP JVLSI Signal processing, Jan2001

[7] M. Vorbach, J. Becker, Reconfigurable processor architec-
tures for mobile phones IPDPS, 2003

[8] F.Campi et al A dynamically adaptive DSP for heterogeneous
reconfigurable platforms Proceedings of DATE 2007

[9] M2000 Embedded FPGA http://www.m2000.fr
[10] M.Coppola et al, Spidergon: a novel on-chip communication

network, IEEE SOC 2004
[11] Bedford M. et al, Evaluation of the Raw microprocessor,

Proceedings of ISCA04
[12] R.Baines et al. A total cost approach to evaluate different RA

for baseband processing in wireless receivers IEEE Commu-
nication magazine, Jan 2003

[13] H. Zhang, et al. A 1V Heterogeneus Reconfigurable Proces-
sor IC for Baseband Wireless Applications, Proceeding of
ISSCC 2000, pp 68-69

[14] S. Vassiliadis et al., The MOLEN Polymorphic Processor,
IEEE Transactions on Computers, November 2004

[15] Gerard Smit et al., Overview of the 4S Project, International
Symposium on System-on-Chip, Nov. 2005

[16] E. Lenormand, G. Edelin, An industrial perspective: A
pragmatic high end signal processing design environment at
Thales, SAMOS 2003

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

