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Abstract

In recent decades, discrete choice experiment research applied to food
choices has grown rapidly. Empirical applications include investigations
of consumer preferences and demand for various food attributes, labeling
programs, novel products and applications, and new food technologies.
Methodological contributions include advances in the form of new theories,
elicitation methods, and modeling. This study focuses on the latter and
(a) reviews recent methodological contributions in the food choice exper-
iment literature, (b) examines existing knowledge gaps, and (c) discusses
possible future research directions.
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1. INTRODUCTION

In recent decades, discrete choice experiment (DCE) research has grown rapidly in applied eco-
nomics, particularly so in the subfields of environmental, agricultural, health, and transportation
research. According to the Web of Science, in 2020 alone, 727 DCE articles were published, im-
plying a more than 2,800% increase since 2000 (Figure 1).

The popularity of DCEs has also grown in food preference studies owing to the ability to pro-
duce easy-to-interpret results in terms of probabilistic models of inferential choice. This stems
from the core advantage of DCEs over other nonmarket valuation methods (Lusk & Schroeder
2004) such as contingent valuation (Hanley et al. 2001) and experimental auctions (Lusk &
Shogren 2007): DCEs are consistent with both random utility theory and Lancaster’s theory of
value decomposition in consumer demand, allowing researchers to simultaneously evaluate mul-
tiple food attributes and products. In addition, compared to revealed preference data, DCEs allow
researchers to control and manipulate information provided to participants, to include, for exam-
ple, some features that may not yet be available in markets. Prices are also determined exogenously
by researchers, enabling them to avoid endogeneity issues. Further, their high degree of external
validity and predictive power make food DCEs a suitable substitute for and complement to re-
vealed preference data, such as scanner data (Chang et al. 2009, Brooks & Lusk 2010).

Empirical applications of food DCEs include investigations of consumer preferences and po-
tential demand for various food quality attributes (Darby et al. 2008, Scarpa et al. 2008), labeling
programs (Loureiro & Lotade 2005; Onozaka &McFadden 2011; Aprile et al. 2012; Caputo et al.
2013a,b), novel products (Van Loo et al. 2020), and new food technologies (Caputo 2020, Kilders
&Caputo 2021), as well as ex ante food policy evaluations (Papoutsi et al. 2015, Ahn&Lusk 2021).
Yet, the external validity and reliability of findings from food DCEs depend on whether experi-
ments can accurately predict actual choice behavior in the market from hypothetical choices ob-
tained in experimental conditions. As such, the foodDCE literature has also investigated (a) which
experimental designs can best capture actual food purchasing situations while remaining practical
and affordable and (b) what behavioral assumptions, statistical methods, and hypothetical bias cor-
rection methods can improve the predictive accuracy of choice models in food demand analysis.
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Figure 1

Number of publications and their growth rate on the topic of discrete choice experiments in applied
economics from 2000 to 2020. Based on data from the Web of Science (query executed in September 2021).
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Collectively, this methodological work has led to conceptually novel choice models (Caputo et al.
2018a, 2020), new elicitation methods (Scarpa et al. 2013, 2021a; Malone & Lusk 2018b; Caputo
& Lusk 2020; Dennis et al. 2021), and practical recommendations (Balcombe et al. 2009, Caputo
et al. 2018b) that have improved food DCEs by showing choice determinants including experi-
mental designs, behavioral assumptions, and modeling, among others. Ignoring these factors can
lead to biased estimates of policy-relevant quantities and possibly invalid research findings.

In this article we (a) review recent methodological contributions in the food DCE literature,
(b) attempt to identify existing knowledge gaps, and (c) propose and discuss possible future research
directions.We hope to provide both a comprehensive guide to researchers interested in using the
methodology and information for interested stakeholders on how to evaluate existing and future
results in publications in this area of food research.

The review is organized as follows. In Section 2 we discuss external validity in food DCEs,
which is followed by an evaluation and review of current best practices for the design of DCEs in
Section 3. Section 4 covers the actual modeling of DCE data. Section 5 discusses the behavioral
factors needed to be considered in DCEs, while Section 6 focuses on the relevance of DCEs for
food policy evaluations. Section 7 concludes.

2. EXTERNAL VALIDITY OF FOOD DISCRETE CHOICE
EXPERIMENTS

The validity and reliability of findings from food DCEs depend on whether experiments can
reproduce the essential traits of real-world situations and thereby capture real-world behavior.
Unlike other nonmarket valuation methods such as the contingent valuation of public goods
(Vossler et al. 2003) and experimental auctions (Lusk & Shogren 2007),1 DCEs present subjects
with more familiar choice contexts that mirror more closely what people experience in real-world
food shopping situations. During the experiment, subjects are presented with a hypothetical
market mechanism that mirrors what they would experience in a real food choice: The seller
offers various products at different posted prices and consumers choose which products to buy,
if any. This choice is akin to when consumers select their favorite product alternative from
a supermarket shelf or a market stall displaying various alternatives. Nevertheless, questions
regarding the external validity of DCEs remain. Assessing whether inferences obtainable from
food DCEs are externally valid remains a crucial issue when proposing the use of this method to
inform agribusiness decisions and policy design/implementation. Field studies, like those carried
out for the validation of contingent valuation in the early 2000s, for example, by Vossler et al.
(2003), are still too few and often inconclusive.

External validity can be defined “as the ability to generalize the relationships found in a study to
other persons, times, and settings” (Roe & Just 2009, p. 1267). In the DCE literature, researchers
have used two approaches to study the extent to which stated food choices from DCEs can be
generalized to wider populations or to other choice contexts. The first approach combines stated
food choice data and revealed preference data to determine (a) whether survey-based hypothetical
choices are consistent with people’s revealed preferences, and (b) whether the accuracy of welfare
estimates, and their preference structure, can be improved by doing so. The seminal study by
Brooks & Lusk (2010) combined DCE data with scanner data to determine consumer demand for
organic and cloned milk. Results suggest that DCE data once merged with revealed preference

1Contingent valuations and experimental auctions exemplify experimental settings that consumers are unlikely
to experience in actual shopping situations [e.g., bidding for a good or directly indicating the willingness to
pay (WTP) for it].
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data can substantially improve the out-of-sample prediction performance of the model compared
to either DCE or revealed preference data used in isolation. Most notably, their results show
that models estimated on revealed preference data yield incorrect demand forecasts when used to
predict demand for products with novel features. The second approach compares data from
hypothetical and real choice experiments to assess which type better mirrors actual retail shop-
ping behavior. For example, to predict actual retail shopping behavior in three different product
categories (ground beef, wheat flour, and dishwashing liquid), Chang et al. (2009) compared
three elicitation methods: hypothetical choices, non-hypothetical choices, and non-hypothetical
rankings. They found that the predicted market shares correspond well with the actual market
shares across the three elicitation formats, although the non-hypothetical choices were found to
be a better approximation of true preferences than hypothetical choices, likely due to hypothetical
bias.

Taken together, these initial results suggested that model estimates from stated food choices
may hold substantial validity and could be used to predict food choices in actual food markets and
to complement and improve the predictive power of estimates from revealed preference data. Yet,
the external validity of DCEs remains relatively unexplored within the food choice literature and
beyond, especially over time and over places. A key issue when combining hypothetical choices
from DCEs and real food choices from revealed preference data is to consider the nature and
composition of the two data sets (see Hensher et al. 1998 for a detailed discussion). For example,
factors such as different temporal horizons, data structure, choice set compositions, and biases
from subjective recalls are of concern. Likewise, when comparing DCEs and scanner data, re-
searchers need to make several assumptions regarding the (un)availability of product alternatives,
observed price distributions, and nonpurchases. Further concerns related to scanner data that re-
searchers need to account for include price and expenditure endogeneity (for a review, see Caputo
& Just 2022), and this even before combining or comparing such data with stated choices.

In the light of this, recent research efforts have focused on reevaluating the approaches re-
searchers should follow to best assess the external validity of DCEs. Those used so far have been
inherently backward-looking; they assess whether consumers display the same behavior in real
and hypothetical markets. Lancsar & Swait (2014) propose a more holistic forward-looking ap-
proach, whereby external validity is closely linked to process validity, rather than only being a
comparison of final choice outcomes between stated choices and revealed preference data. The
authors suggest the use of qualitative research to inform DCE design and implementation. They
also outline three key considerations as to why models estimated from DCEs may fail external
validity tests. These include (a) the context in which the study is undertaken, (b) the realism of the
assumptions underpinning the model and validity tests, and (c) the internal validity of the DCE.
In this regard, induced value experiments are emerging as a valid method to assess the validity
of homegrown2 DCEs for both public (Collins & Vossler 2009) and private (Luchini & Watson
2014) goods. As argued by Collins & Vossler (2009), the use of induced value DCEs allows re-
searchers to test whether observed choices align with induced preferences and whether estimated
welfare measures such as WTP are equal to induced values. Indeed, recent studies have used in-
duced value food DCEs to test the assumptions underlying different empirical distributions of
discrete choice models (Bazzani et al. 2018, Carson et al. 2020) and the incentive compatibility3

of DCEs (Cerroni et al. 2019). Further studies using this validation process are recommended.

2Homegrown DCEs focus on private goods, commodities, or policy.
3An elicitation method is considered incentive compatible if it provides incentives for individuals to truthfully
reveal their true preferences/values and imposes a cost for inaccurate value revelation.
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2.1. Hypothetical Bias in Food Choice Experiments

Despite past studies having shown that DCEs display substantial external validity, and new evi-
dence in support of stated preference data [for the specific literature in environmental good val-
uation, see the review by Kling et al. (2012) and the proposed calibration of stated/revealed pref-
erence values by Murphy et al. (2005); for general guidance, refer to Johnston et al. (2017) and
Mariel et al. (2021)], the presence of potential hypothetical bias,4 although thought to be stronger
in the valuation of environmental goods than in private goods because of the higher degree of
familiarity in the latter, remains a major concern across all stated choice data studies. Yet, conclu-
sions drawn from the DCE literature in food preference analysis are less supportive of hypothet-
ical bias and often contradictory. Lusk & Schroeder (2004) compared marginal and total WTP
estimates from hypothetical and non-hypothetical responses to DCE questions on beef steak se-
lection. The authors found that the estimated average total WTP for steaks in the hypothetical
setting was approximately 1.2 times that in the non-hypothetical setting. However, no statisti-
cal differences were found between estimates of averages of marginal WTP across hypothetical
and non-hypothetical experiments. Carlsson &Martinsson (2001) and Cameron et al. (2002) also
found no statistical differences in marginal WTP estimates between real and hypothetical DCE
settings in environmental economics.

Nevertheless, concerns about hypothetical bias have led several authors to introduce various
ex post and ex ante bias-reducing methods. Ex post methods include calibration techniques using
data obtained from hypothetical and non-hypothetical experiments (see, e.g., Fox et al. 1998, List
& Gallet 2001) and the use of certainty follow-up questions (see, e.g., Ready et al. 2010). Ex
ante methods include scripts (or tasks) that survey respondents are asked to read (or complete)
prior to the choice exercise, which act as psychological nudges to avoid hypothetical bias. These
include cheap talk scripts, solemn oaths, honesty priming, consequentiality, opt-out reminders,
and inferred methods. Most of these methods were initially developed for contingent valuation
studies of public goods and subsequentially applied to DCEs. Table 1 outlines seminal studies
and the first fields in which these correction methods were applied.

Since the introduction of the first ex ante hypothetical bias mitigation methods, a large
and growing body of food choice literature has investigated their efficacy and performance. One
strand of the literature compares welfare estimates from non-hypothetical and hypothetical stated
food choices with and without the use of a single ex ante hypothetical bias correctionmethod.This
literature has drawn contradictory findings across correction methods. For example, Moser et al.
(2014) studied apple choices by comparing hypothetical choices with and without ex ante bias-
reduction techniques (cheap talk scripts) with real choices. They found significantly higher WTP
estimates for hypothetical choices and a limited performance of cheap talk in attenuating this
bias. Alemu & Olsen (2018) conducted hypothetical and non-hypothetical field DCEs in Kenya
on choices between attribute quality–differentiated buns. They found a severe hypothetical bias
and that the opt-out reminder effectively reduces or eliminates hypothetical bias, while also atten-
uating or removing negative opt-out effects. Other studies used purely hypothetical experiments
with one of the correction methods.5 Inconclusive findings are often reported in these studies. For
example, Lewis et al. (2016) found that the use of a consequentiality script did not affect welfare
estimates, while Carlsson et al. (2005) found that cheap talk significantly reduces welfare estimates.

4Hypothetical bias is defined as the difference between the amount of money people state they are willing to
pay in hypothetical experiments and what they would actually pay in real purchase situations.
5The studies comparing ex ante correction bias techniques using hypothetical settings assume that the lower
WTP estimates are the ones less affected by hypothetical bias.
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Table 1 The seminal publications introducing ex ante hypothetical bias mitigation methods

Method Seminal studies Field Application Description
Cheap talk Cummings & Taylor

(1999)
Environmental

economics
CV Explains the problem of hypothetical bias

to study participants prior to
administration of a hypothetical
question.

Consequentiality Carson & Groves (2007) Environmental
economics

CV Informs the study participants about the
possibility that results of the study may
affect an outcome they care about.

Opt-out
reminder

Loomis et al. (1994) Food choice CV, DCE Reminds study participants to choose the
opt-out alternative if the prices of the
experimentally designed alternatives are
greater than what one would actually pay
in actual shopping situations.

Solemn oath Jacquemet et al. (2013) Environmental
economics

CV Asks participants to promise that they will
reveal their true preferences when
responding to the choice questions.

Honesty priming De-Magistris et al.
(2013)

Food choice DCE This task induces respondents to reveal
their true preferences as per the effect of
a mental activation process.

Inferred method Lusk & Norwood (2009) Food choice CV Asks respondents to make their choices
based on what they think an average
consumer would choose.

Abbreviations: CV, contingent valuation; DCE, discrete choice experiment.

A second strand of the literature compares multiple correction methods either within purely
hypothetical experimental settings or by comparing real and hypothetical DCEs. These studies
also draw divergent conclusions. De-Magistris & Pascucci (2014) compared the performance of
using oaths or cheap talk scripts using a hypothetical DCE on insect-based food. They found that
using a solemn oath reduced hypothetical bias more than cheap talk scripts. In a Spanish study on
almond choice, De-Magistris et al. (2013) compared honesty priming and cheap talk using both
hypothetical and real DCEs. They report that honesty priming outperforms cheap talk scripts in
reducing hypothetical bias, as it produced lowerWTP estimates in hypothetical settings compared
to real experiments. These findings are confirmed in a purely hypothetical DCE study on tomato
selection in Nigeria by Bello & Abdulai (2016). Together, the evidence from these studies suggests
that honesty priming is more effective than cheap talk scripts at mitigating hypothetical bias. But
cultural and experimental settings might affect results. For example, quite different conclusions
are drawn from research by Lin et al. (2019) who conducted a DCE in China. In an online survey
to assess Chinese consumers’WTP for pork loin, they compared purely hypothetical choices with
and without three correction methods (cheap talk, honesty priming, and oath). Results from this
study showed no significant difference inWTP estimates between the hypothetical stated choices
with and without the three correction methods.

Overall, the results from these two strands of literature suggest that the effectiveness of ex
ante mitigation techniques is both product and context dependent. These results further high-
light other research gaps. For instance, currently there are no studies comparing all existing ex
ante mitigation techniques. Meta-analysis studies allow researchers to combine results from prior
studies and thus compare the performance and efficacy of multiple ex ante correction methods.
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Indeed, a recent meta-analysis study by Penn & Hu (2018) suggests that combining cheap talk,
consequentiality, and certainty follow-up can significantly contribute to mitigating the magnitude
of hypothetical bias in DCEs. Yet, differences in geographical and cultural contexts, research de-
signs, and participant pools can often limit the comparability of study results and thus affect the
external validity of findings generated by meta-analysis studies. Perhaps more importantly, most
of these prior applications have been conducted in developed or western countries. Thus, very
little is currently known about which correction methods reduce or eliminate hypothetical bias in
the operational conditions prevailing in DCEs conducted in developing countries (Scarpa et al.
2013, Bello & Abdulai 2016, Alemu & Olsen 2018). This is despite well-known issues related to
the quality and availability of secondary data and an increasing use of DCEs in developing coun-
tries.The investigation of hypothetical bias in developing countries is an area that deserves further
investigation.

2.2. Real Food Choice Experiments

To avoid hypothetical bias, many researchers use real (or non-hypothetical) discrete choice exper-
iments (R-DCEs) (Lusk & Schroeder 2004; Alfnes et al. 2006; Moser et al. 2014; Bazzani et al.
2017a,b). Participants in R-DCEs are presented with repeated choice tasks, each composed of ex-
perimentally designed alternatives differing by attributes and their levels. An opt-out alternative
is also typically included. However, unlike in DCEs, in R-DCEs subjects are provided with actual
(non-hypothetical) economic incentives, involving real products and real money. At the end of the
choice exercise, one of the choice tasks is randomly selected as a binding choice for payment, and
the respondent is asked to purchase the chosen product unless the opt-out option is selected. It is
expected that the use of actual products and real market incentives, although somewhat diluted by
the randomness factor, provides a sufficient incentive to induce subjects to truthfully reveal their
preferences (Lusk & Schroeder 2004, Alfnes et al. 2006, Chang et al. 2009).

Empirical applications include food preference analyses as well as testing of implications from
economic theory. Examples of R-DCE studies include those by Alfnes et al. (2006), who assessed
consumer’s WTP for salmon with various degrees of flesh redness across different information
settings, and Bazzani et al. (2017b), who tested the commitment cost theory (Zhao & Kling
2004) in static and dynamic choice settings and its effects in food purchasing decisions. However,
R-DCE applications are necessarily limited to private goods and existing food products. This is a
considerable limitation because many food DCEs are implemented to evaluate novel food prod-
ucts and/or food labels not yet available in actual markets as well as new food technologies not
yet fully developed or market ready. More recently, Fang et al. (2021) explored whether the use
of novel technologies such as virtual reality (VR) could reduce or mitigate hypothetical bias and
thus improve the validity of findings from DCEs. Results from this study find that the use of VR
in DCEs does not eliminate hypothetical bias, but it can reduce it significantly, compared to the
more common computer-based delivery of choice questions via pictures and plain text. Yet, this ev-
idence only holds for participants who did not exhibit high VR discomfort. This evidence aligns
well with similar studies in environmental economics based on VR, enhanced reality (Bateman
et al. 2009), and virtual environments (Matthews et al. 2017).

3. FOOD CHOICE DESIGNS AND INTERNAL VALIDITY:
CURRENT PRACTICES AND ISSUES

Devising an experimental design for a DCE that can accurately identify and efficiently estimate all
desired effects requires a sequence ofmany decisions,which aremade at different stages during the
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development of the DCE survey instrument (Louviere et al. 2000, Hensher et al. 2015). This sec-
tion reviews relevant methodological contributions within the food choice domain and discusses
a few issues that we believe can help improve the way food DCEs are designed and implemented.

3.1. Elements of the Experimental Design and Design Dimensionality

The selection of alternatives, attributes, and attribute levels represents the first step researchers
undertake when designing a food DCE study. This step is driven by the research objectives, and it
is typically informed by prior literature, pilot studies, and/or qualitative research as, for example,
the opinions collected during well-organized and conducted focus groups.

Other decisions concern design dimensions, such as the number of choice tasks in the sequence,
the number of alternatives, the number of attributes, the number of attribute levels, and the range
of attribute levels to include in the study. Design dimensions determine choice task complexity
and, when this is high, they may pose a cognitive burden on subjects. Complexity may influ-
ence the way participants respond to the preference-elicitation questions (Swait & Adamowicz
2001, DeShazo & Fermo 2002), inducing them to engage in undesirable practices, such as mak-
ing choices by employing various effort-saving heuristics (Hensher 2006). Indeed, evidence from
the field of transport and environmental economics suggests that different design complexity may
affect welfare estimates and other data quality aspects (Hensher et al. 2001, DeShazo & Fermo
2002, Arentze et al. 2003, Caussade et al. 2005, Rose et al. 2009, Oehlmann et al. 2017, Campbell
et al. 2018).

Understanding the extent to which task complexity affects welfare estimates under standard
econometric assumption (DeShazo & Fermo 2002) is an important methodological issue also in
food DCE applications, as it has significant implications in terms of survey designs and reliability
of estimates.When WTP estimates are sensitive to changes in design dimensionality (Meyerhoff
et al. 2015), researchers should be wary about whether their DCE design provides the optimal level
of complexity. Excess complexity may affect robustness and reliability of findings (Lusk 2003) and
induce tiredness in respondents.The relationship betweenmeasures of choice task complexity and
latency, which is the time respondents take to complete choice tasks, is often taken as evidence of
internal validity (Atzori et al. 2022). The rationale is that as complexity increases, response la-
tency should also increase, everything else equal. These findings provide a criterion for optimally
sequencing choice tasks at the respondent level, suggesting that tasks should be presented in or-
der from the least to the most complex, using ex ante measures of complexity. The following
subsections outline common procedures used by researchers to design food choice studies. We
also discuss recent methodological contributions on survey designs and implementation.

3.1.1. Number of attributes. Only two food choice studies have explicitly addressed the effects
of varying the number of attributes in the food choice literature: those by Gao& Schroeder (2009)
and Caputo et al. (2017). Both studies focus on the effects of varying the number of attribute infor-
mation on the stability of WTP estimates when both cue and independent attributes6 are present
on steak products. Gao & Schroeder (2009) implemented between- and within-subject designs.
The between-subject design consisted of four DCE surveys: two with the presence of independent

6Caputo et al. (2017) define cue and independent food attributes as follows: A cue attribute can be described
as one that embeds quality features of other attribute information that is not explicitly detailed in the product’s
description. For example, country of origin is considered a cue attribute, as it can be seen by consumer as a
proxy of other quality features such as freshness, safety, etc. In contrast, an independent food attribute refers
to physical aspects of a food product and this is not perceived to embed further quality cues by consumers.
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and cue attributes and two without the cue attribute.7 In each of these surveys, respondents faced
two sequences of choice questions (within-subject design): The first sequence of choice questions
was designed with three or four attributes and the corresponding second sequence of choice ques-
tions with four or five attributes. The authors found that (a) the marginal WTP estimates for a
given attribute are sensitive to the number of attributes used to characterize the composite good
of interest and (b) that marginal WTP estimates for cue attributes are more sensitive to changes
in the number of attributes than independent attributes.

Similar results were documented by Caputo et al. (2017). The authors implemented the same
designs and between- and within-subject survey approaches. However, unlike Gao & Schroeder
(2009), they only focused on the effect that adding independent food attributes had on the robust-
ness of the marginal WTP estimates of a cue attribute. They conducted three DCEs, with the
number of attributes increasing from three to four, four to five, and five to six, respectively. Re-
sults from this study, obtained with a sequence-consistent panel estimator, indicate that changes in
marginal WTP estimates depend not only on the number of attributes but also on the functional
role played by the cue and independent attributes. The authors argue that whether the attribute is
perceived by consumers as a quality cue or independently of other quality features is a function of
the design dimension. In a design with a smaller number of attributes (from 3 to 4 and from 4 to 5),
changes in marginal WTP estimates are associated with both cue and independent attributes, but
when the dimension of the attribute space is higher (from 5 to 6), only the cue attribute remains
affected.

Taken together, the results from these two studies show that the way consumers process at-
tribute information depends not only on their number of attributes included in the design but
also on the attribute type (e.g., cue versus independent) and their functional roles (e.g., how con-
sumers perceive the experimentally designed food attributes). More specifically, evidence to date
indicates that the use of small designs (fewer than 5 attributes) can lead to bias estimates (overesti-
mation) of both the cue and independent attributes, if included in the study. Although it is not yet
addressed in the food choice literature, the order of appearance of extreme attribute levels in the
sequence of choice tasks can also influence choice behavior in public goods provision (Day et al.
2012). Therefore, future research could look at the internal dynamic of the sequence of choices
to derive guidance on the adequate sequence of attribute (and level) appearance.

3.1.2. Number of attribute levels and value range. In addition to selecting a suitable number
of attributes for the experiment, it is also important to choose appropriate attribute levels, which
accurately reflect both the context in which the experiment is conducted and the type of inference
the derived choice probability model is meant to inform.

Selection of the number of attribute levels and their value range are critical aspects for the
price attribute, which is generally incorporated in food DCEs as one of the relevant attributes to
translate marginal utility estimates from probabilistic discrete choice models into money metric
WTP estimates. Product price levels are typically selected to encompass the range of actual prices
in grocery stores. These can be obtained from official sources (e.g., the US Department of Agri-
culture/Economic Research Service in the United States, EUROSTAT in the European Union,
and similar national statistical offices) through an exploratory analysis whereby actual prices are
collected in different retail stores (e.g., grocery stores, gas stations, discounts) and/or by conduct-
ing focus groups with consumers. The latter is particularly important when considering DCEs on

7In addition to the price, the authors selected guaranteed tender, guaranteed lean, days before sell-by date,
and enhanced omega-3 fatty acids as independent attributes, and certified US product as the cue attribute.
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novel food products still unavailable in the market and when the focus is on WTP. Yet, research
on the optimal number of price levels and the width covered by the price range is scarce, particu-
larly within the food choice literature. Most food choice studies include three to five price levels
(Chang et al. 2009; Lusk & Schroeder 2004; Scarpa et al. 2013; Caputo et al. 2013a,b; Caputo
2020), although a few studies have also conducted food DCEs with only two price levels (Ahn &
Lusk 2021) or more than five price levels, especially in DCEs on wine selection (Tait et al. 2019).

Only the study byMørkbak et al. (2010) examined the effects of varying price levels onmarginal
WTP for food quality attributes.The authors employed a between-subject approach to investigate
whether increasing the highest price level by 50% in the treated group produces differentmarginal
WTP estimates for quality attributes in minced pork. Results show that such an increase leads to
higherWTP estimates (up to 68%) and are in line with results from studies in other fields such as
environmental economics. Carlsson &Martinsson (2008) and Kragt (2013) found that an upward
shift of the price levels resulted in higher WTP estimates in their estimates of consumer WTP
to reduce unplanned power outages and for natural resource management, respectively. Con-
trasting findings show no differences between estimates of population means of marginal WTP
across different price vectors that are documented in energy economics studies (see, e.g., Aravena
et al. 2014, Glenk et al. 2019). Price vector effects in food choice might benefit from further
research.

3.1.3. Number and types of alternatives and choice tasks. No prior food DCE has examined
the effects of design complexity produced by a different number of choice tasks and/or alternatives
on choice behavior. Most food choice experiment studies have asked respondents to evaluate be-
tween six and twenty-five choice tasks, with eight and twelve tasks being the most frequent. From
a statistical perspective, more tasks are desirable, but from the perspective of the cognitive burden
on respondents the opposite is true.

The number of choice tasks researchers include in DCE designs raises two important issues.
The first is a model identification issue, as the number of choice tasks determines the degrees
of freedom8 required in estimation; a higher number of choice tasks (i.e., a longer panel) im-
plies higher degrees of freedom in the estimation of models. Longer panels are useful especially
when the goal is forecasting individual choice probabilities by each respondent or when individual
marginal WTP estimates of attributes are of interest (Bech et al. 2011, Sarrias & Daziano 2018).
The second issue regards the potential for poor data quality.The length of the choice exercise may
affect the scale of the Gumbel error, inducing heteroskedasticity. The error scale goes quickly up
(variance goes down) after the first choices and then tends to plateau until respondents’ fatigue
kicks in and brings it down again (Scarpa et al. 2011). So, designs with too many choice tasks may
affect the completion rate, induce random choices due to fatigue, and/or lead respondents to deal
with the volume of information they are presented with by employing a coping strategy. For ex-
ample, designs may induce them to ignore some information, which moves away from the desired
behavior of fully compensatory trade-offs.Tired respondents may act as so-called cognitive misers
and use various decision rules to reduce the cost of cognitive effort (Simon 1955). Results from
choice modeling studies outside the food choice literature indicate that subjects can adequately
handle more than 16 choice tasks with minimal or no impact on response rates, fatigue, detach-
ment, and welfare estimates (Hensher et al. 2001, Louviere 2004, Carlsson & Martinsson 2008,
Bech et al. 2011).

8Hensher et al. (2015) define the degree of freedom as S × (J − 1), where S is the number of choice tasks
and J the number of alternatives in each choice task.
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As for the number of alternatives one should use in a DCE context, a similarly careful an-
swer must be given. The number of alternatives is highly dependent on a variety of factors, most
prominently whether the design alternatives are labeled (e.g., immediately recognizable from the
rest because of distinctive features such as their brand or color) or unlabeled (e.g., distinguishable
exclusively on the basis of the attribute levels).9 Labeled designs typically call for a larger number
of alternatives than unlabeled ones. Most unlabeled choice tasks (or choice questions) offer the
respondent only two alternatives to choose from, while labeled choice experiments typically use
between four and nine different alternatives (Lusk 2017; Caputo et al. 2018a, 2020; Van Loo et al.
2020) that respondents can choose from.The inclusion of a none or no-purchase alternative is the
norm in both labeled and unlabeled food choice studies to reflect that some respondents might
choose this option when shopping (Lusk & Schroeder 2004). It is unclear, but certainly worth in-
vestigating, whether the source of biases discussed in other fields (Oehlmann et al. 2017, Carson
et al. 2020) and related to the presence of opt-outs, such as no-choice or status-quo, in the choice
task maintain their relevance in food DCEs. Evidence from induced-value experiments in the en-
vironmental economics literature indicates that choice questions with three and two alternatives
(a) provide convergent estimates of WTP to induced values, and (b) nonstatus quo alternatives
are associated with lower WTP estimates. This is in keeping with the experimental results and
the suggested mechanism associated with designs including status-quo/no-buy alternatives in all
choice tasks proposed by Carson et al. (2020). This theme is in need of further investigation in
food choice studies.

3.2. Experimental Designs

To generate choice tasks (or choice questions) to use during experiments, the DCE literature
proposes various experimental designs including only a subset (or fraction) of choice tasks from
the full factorial design. These designs differ depending on how attributes and attribute levels
are combined across alternatives and subsets of repeated choice tasks and whether designs
are generated to incorporate only attribute main effects or also their interaction effects (see
ChoiceMetrics 2021). The fractional factorial orthogonal design is the most used design in food
choice studies. This design generates uncorrelated and balanced attribute levels. Limitations
of this design include (a) a likely loss of orthogonality in the final sample, due to incomplete
responses across the sequence of choice questions, (b) presence of dominant alternatives that
imply no trade-offs, and (c) existence of duplicates. Both (b) and (c) limit the amount of preference
information gained from the observed choices.10 The study by Lusk & Norwood (2005) is the
only food choice study investigating the impact of random and fractional orthogonal designs on
welfare estimates from the multinomial logit (MNL) model. Using a Monte Carlo simulation,
the authors documented three key findings: (a) Experimental design can influence the accuracy

9In a labeled design the purchase alternatives represent specific products (i.e., ketchup, mustard, mayonnaise,
and ranch dressing) or brands of the same product (for ketchup: Del Monte, Red Gold, Heinz, and Hunt’s).
These product/brand alternatives do not change across choice questions. In each choice question respon-
dents are asked to evaluate the product/brand alternatives at the posted price and the presence/absence of the
other attribute levels included in the experimental design. In an unlabeled design, the purchase alternatives
are generic; i.e., they do not refer to any specific product or brand. In each choice question, respondents are
asked to evaluate different purchase alternatives, which are characterized by the presence/absence of the ex-
perimentally designed attribute levels. Therefore, they are typically labeled as Product A and Product B or
Option A and Option B.
10Researchers could discard replications and/or dominant choice tasks. Yet, incomplete fractional orthogonal
designs are found to underperform compared with other designs (Walker et al. 2018).
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of WTP estimates, although none of the studied designs produce biased WTP estimates; (b)
designs incorporating attribute interactions generate more precise WTP estimates than designs
without interactions, especially in the case of a random design;11 and (c) large sample sizes increase
efficiency and hence can mitigate issues arising from poor experimental designs.

More recent food choice applications proposed alternative methods to extract practical frac-
tions from the full factorial. These include experimental designs that are D-optimal and efficient
designs.TheD-optimal design is constructed to maximize the differences in attribute levels across
alternatives. This is achieved using algorithms called design generators (see Street et al. 2005).
This approach implies that the generated design is free of duplicates and respondents are forced
to make trade-offs (this may lead to lexicographic choice behavior). From a statistical perspective,
D-optimal designs are limited orthogonal designs in that they are orthogonal within an alternative
but have (often perfect negative) correlations across levels in the alternatives.

Of great interest are design generators specific for increasing the efficiency of theMNL,which
is the workhorse model used in data analysis from DCEs.MNL D-efficient designs minimize the
determinant of the variance-covariance matrix of the model parameter estimates (or functions
thereof ) within the set of the design choice tasks. The computation of such determinants requires
some assumptions about the values of the utility parameters, the values of which are the final goal
of estimation. These designs can be generated using two different approaches. The first approach
assumes that the parameter priors are nonzero and known with exact certainty by the researchers
(e.g., Bliemer & Rose 2005, Scarpa & Rose 2008). Therefore, these designs are truly efficient only
in ex ante sample data collection, because after the collection of the data the estimates of the utility
parameters may significantly depart from the assumed values (or priors). Hence, wrongly speci-
fied priors typically lead to some degree of inefficiency ex post (i.e., after the sample is collected;
see Walker et al. 2018). The second approach relaxes the assumption of perfect a priori knowl-
edge of the parameter priors and assumes, using a Bayesian approach, that prior parameter values
are distributed ex ante according to some parametric distribution to be specified by the researcher
(Sándor & Wedel 2001). This approach attenuates the potential bias due to incorrect a priori as-
sumptions on parameter values by formally addressing ex ante uncertainty. Findings from previous
studies have shown that Bayesian efficient designs derived under mildly correct a priori assump-
tions are able to produce greater precision in functions of parameter estimates, such as marginal
WTPs with smaller standard errors even at smallish sample sizes (Scarpa et al. 2007). However,
evidence from recent studies reminded practitioners that wrongly specified priors may lead to a
significant loss in efficiency also in Bayesian D-efficient designs (Walker et al. 2018).

Although precision of parameter estimates is a good design criterion, sometimes other features
are of interest to researchers. Efficient designs can also be derived for specific parameter functions,
such as marginal rates of substitutions (e.g., WTP for attributes) as shown by Scarpa & Rose
(2008), and Bayesian efficient designs can be specialized to marginal WTP estimates, as shown by
Vermeulen et al. (2011). D-efficient designs minimize the determinant of the variance covariance
matrix of the parameter estimates for the MNL model and are often used in choice experiments
because they have recently been found to also be efficient in semiparametric estimation (Scarpa
et al. 2021b). Similarly, for accurate parameter estimates the A-optimality criterion can be used,
which minimizes the average of the parameter variances and, unlike D-efficiency, A-optimality
ignores the covariance factors. Other criteria, such as G- and V-optimality, focus on accuracy
of predictions, rather than utility parameters or marginal WTPs (Kessels et al. 2006). While
G-optimality focuses on minimization of the maximum of prediction variance, V-optimality

11The random design consists of randomly drawn choice tasks from a full factorial design.
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focuses on minimization of the average of prediction variance. All of these criteria can be given a
Bayesian form, once assumptions on prior distributions are feasible. Despite their evident advan-
tages, none of the above criteria are of common use in food DCEs. Although efficient algorithms
exist for their derivation (Kessels et al. 2009), these are complex and time consuming to execute.

3.3. Sample Size Requirements and Statistical Power

Sampling theory for maximum likelihood estimates can be used to define sample size require-
ments in terms of statistical significance of the estimates produced from MNL models. Bliemer
& Rose (2005) proposed a number of measures that can be used to evaluate a priori the statistical
efficiency of the parameter estimates an experimental design generates, while Scarpa & Rose
(2008) provided guidance on how to evaluate the performance of a design after sample collection.
Among others, the S-error is a statistical measure that provides the theoretical minimum sample
size necessary to obtain asymptotically significant parameter estimates (assuming a given confi-
dence level or t-value and a set of parameter values) of the MNLmodel. These are a priori sample
size indications and specifically derived from data collected from a given experimental design and
set of parameter assumptions (see Bliemer & Rose 2005). The Supplemental Appendix provides
an illustrative example on how to obtain the S-statistics in Ngene, software for designing choice
experiments.

Of course, in the context of food choice, researchers can be interested in obtaining indications
about adequate sample sizes for identifying treatment effects above given thresholds (effect size
for the power of the identification test) for marginalWTPs, probabilities of selection, or marginal
effects. Given model specifications and associated variances for the estimates at hand, the con-
cept of the S-statistic can be adapted to all these cases. When moving away from the standard
MNL model specifications and venturing, for example, in mixed logit (MXL) models of various
types, efficient experimental designs and power tests for effect identification become considerably
more complicated owing to the additional sources of estimation variance. For example, apart from
sampling variance, other sources of variation include simulation draws, alternative distributional
assumptions of random parameters, different correlation structures between random parameters,
and the choice of convergence algorithm, iteration stopping rules, and order of variables (Palma
et al. 2020).However, guidance on sample size requirements can still be obtained from adequately
designed Monte Carlo experiments. Indeed, further work is required to establish standard prac-
tices to establish sample size requirements and statistical power in DCEs in general and food
DCEs in particular.

4. MODELING

A steady stream of research from the fields of transportation, environmental, and health economics
has examined different discrete choice models and utility specifications to provide more reliable,
behaviorally credible, and reasonable estimates of WTP.Discrete choice models with random co-
efficients for panel data, such as the repeated choice MXL model (Revelt & Train 1998; Train
1998, 2009) and its expansion, the MXL model with an error component for the no-choice/no-
buy alternative model (MXL-EC) (Scarpa et al. 2005, 2007), now represent the state of the art in
the broader field of choice modeling and food choice (Lusk & Schroeder 2004; Alfnes et al. 2006;
Caputo et al. 2013a; Scarpa et al. 2013) and are also available for Bayesian estimation (Balcombe
et al. 2009, 2014, 2015). Researchers utilizing MXL models face two main issues: whether models
should be specified in preference space or WTP space and whether parametric or more flexible
nonparametric distributions should be used for random taste coefficients. The following subsec-
tion discusses these two issues in more detail.
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4.1. Preference Space Models and Parametric Distributions

Most food choice studies utilizing MXL models are estimated using utility functions specified in
preference space and assume parametric distributions for random parameters.12 The coefficients
of nonprice food quality attributes are usually treated as random and assumed to follow a normal
distribution to accommodate positive or negative values of preferences for food product attributes.
The task then becomes that of estimating a mean vector and a variance-covariance matrix. The
price coefficient, in contrast, is often assumed to be fixed across individuals. After estimation, these
coefficients are used to derive marginal WTP estimate for each attribute, which is obtained as
the negative ratio of the nonprice food attribute coefficient and the price coefficient (Train &
Weeks 2005). The assumption of a fixed price coefficient facilitates estimation and allows the dis-
tribution of WTP values to be the same as the one for nonprice attribute coefficients (normal
distribution). However, a constant price coefficient presents two main limitations: (a) It implies a
constant marginal utility of money across individuals, which runs counter to economic intuition
given that the same monetary unit can have different values for individuals with different endow-
ments and budget constraints, household composition, and stage in life; and (b) it implies a constant
standard deviation of unobserved utility (i.e., the scale parameter) over individuals (Scarpa et al.
2008).

To overcome these limitations within a preference space framework, two different approaches
have been adopted in the food choice modeling literature so far. The first pertains to the speci-
fications of utilities in preference space where the price coefficient is also assumed to vary across
individuals in an unobserved manner, according to same distribution. The second approach fol-
lows that of Morey et al. (2003), who use group-specific price coefficients, where the group can
be defined as belonging to a specific income class, household size, etc.

When treating the price coefficient as random in a preference space framework (the first ap-
proach), researchers need to select a distribution for the price coefficient and estimate the param-
eters of such distribution. In food DCE studies, the price coefficient is generally expected to be
negative because higher prices are generally perceived as bad, which is accompanied by a compar-
atively lower likelihood of purchase.13 Therefore, bounded (below zero) distributions, such as the
lognormal or the constrained triangular, might be more desirable, as they constrain the param-
eter sign to be positive. To achieve the required negative value, the price variable can simply be
specified as negative. However, the presence of fat tails in lognormal distributions and a positive
density close to zero do not elude the problem of obtaining implausible distributions of marginal
WTPs when computing the ratio between the attribute coefficient and the price coefficient. This
is the so-called exploding implicit price problem (Giergiczny et al. 2012). As such, the assumption
of a price (or cost) coefficient following a constrained triangular distribution (Hensher & Greene
2003) is also common in food choice studies (Alfnes et al. 2006, Scarpa et al. 2013, Van Loo et al.
2020). Such a distribution limits the range of variation and ensures that the sign of the price es-
timate is behaviorally plausible throughout the entire distribution (Hensher et al. 2015). When

12The distributions of the food attribute coefficients or marginal utilities are assumed ex ante by the re-
searchers according to their expectations.
13Conversely, it is also possible that some individuals may view product price as a proxy for food quality and
therefore value high prices more than low prices. If such a “mixed price effect” is expected, then a normal
distribution (or truncated normal, −1.96 to 1.96) could be empirically appropriate to use when modeling the
price coefficient in food choice models; a normal distribution is unbounded, implying that some share of the
population actually prefers higher prices. However, it is well known in the choice modeling literature that
because the normal distribution assigns positive density around zero, this can preclude the calculation of finite
moments for the marginal WTP distribution.
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estimating choicemodels with a price coefficient assumed to be triangularly distributed, the spread
can be constrained to equal the mean. Hence, only a single parameter is estimated that represents
both the mean and the spread. Therefore, one limitation of such distributions is that they prevent
the analysis of correlation patterns across attributes and subsequently also preclude testing the
statistical significance of the scale parameters because the location parameter is constrained to be
equal to its scale (Campbell et al. 2009).Day et al. (2012) present a theorem that allows researchers
to test whether the derived WTP distributions have finite moments when assuming random co-
efficient for the price/cost attribute.14 They show that (a) the normal distribution implies infinite
moments for the distribution of respondent’s WTP; (b) in the truncated normal and constrained
triangular distributions, the existence of the inverse moments depends on the actual estimated
parameters of the distribution; and (c) the lognormal distribution has all inverse moments in their
basic specifications (i.e., with the domains between 0 and infinity for the lognormal). A recent
proposal to use the (negative) shifted lognormal as a distributional assumption for random price
in models with preference-space utility looks promising (Crastes dit Sourd 2021).

4.2. WTP-Space Models

Daly et al. (2012) suggest that models specified in the WTP space represent the most straightfor-
ward solution to ensure distributions of WTP values that have finite moments, as this avoids the
need to consider the distribution of an inverse coefficient. In addition, the utility coefficients of
choice models in the WTP space can be directly interpreted as marginal WTP estimates. Results
from a number of studies in the fields of transportation and environmental economics suggest
that the use of WTP-space estimation (a) is more practical for derivations of welfare estimates
and for accounting for interpersonal scale variation (Scarpa et al. 2008); (b) provides more rea-
sonable distributions of WTP (Train & Weeks 2005) and stable WTP estimates (Balcombe et al.
2009); (c) may result in a significant improvement in model fit (Scarpa et al. 2008); and (d) may be
used to test restrictions on the dispersion of random parameters directly during estimation using
standard MXL tests (Thiene & Scarpa 2009), such as the Wald, score, and likelihood ratio tests.
Other studies, however, have shown that models in the WTP-space underperform in terms of fit
to the data relative to those with utility in the conventional preference space estimation (Train
& Weeks 2005). According to Rose & Masiero (2010), differences across these studies might be
due to the nature of the data set used or to the experimental contexts. Differences might also be
due to the various assumptions underlying the distribution of the price coefficient. As pointed out
by Train &Weeks (2005), research is needed to identify distributions that fit the data better when
applied in theWTP space and/or provide more reasonable distributions ofWTP when applied in
the preference space.Which specification works better remains a data set–specific empirical ques-
tion at this stage. All of these models require sufficiently large sample sizes and adequate designs
to capture preference heterogeneity and potentially test alternative distributional assumptions for
random taste parameters.

4.3. Semiparametric Distributions in the Preference and WTP Spaces

Recent developments in the choicemodeling literature include the logit-mixed logit (LML)model
developed by Train (2016). The model allows for semiparametric mixing distributions, thus ac-
counting for asymmetry and multimodality, and it is computationally much easier to implement

14They showed that if the distribution of the price/cost parameter has a positive density at zero, then the
resulting ratio distribution for WTP does not have finite moments.
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than previous semiparametric models with the same capacity (Scarpa et al. 2008).The LMLmodel
has been used in food choice studies by Bazzani et al. (2018), Caputo et al. (2018b), Kilders &
Caputo (2021), and Scarpa et al. (2021b). Collectively these studies suggest that (a) preferences
for food quality attributes are unlikely to be normally distributed. Indeed, they can often display
bimodality and asymmetry (Caputo et al. 2018b), especially in the case of preferences for new
food technologies (Kilders & Caputo 2021). (b) Flexible distributions can provide more reliable
and insightful estimates ofWTP distributions (Bazzani et al. 2018). Scarpa et al. (2021b) study the
trade-off between bias and variance in the choice between the MXL model with random normal
parameters and a semiparametric LMLmodel.They show that, under frequent operational condi-
tions in terms of attributes and levels, the sample size at which the trade-off moves in favor of the
LML is likely to be more than 500 respondents. At smaller sample sizes the effect of the variance
of the estimator dominates the reduction in bias, and one is likely to be better off using the MXL.
Although all studies using LML models in food choice studies have used the WTP-space utility,
there is no reason to believe that similar conclusions should not extend to preference-space utility
specifications, which have been explored by Bansal et al. (2018).

5. BEHAVIORAL INSIGHTS

This section discusses other modeling approaches that food economists have employed to in-
corporate behavioral insights into discrete choice models. Given existing high-quality reviews of
neuro-economics research (see, e.g., Palma 2022 for a review on neurophysiological measures that
could be used in consumer food choice and Van Loo et al. 2018a for a review on the relationship
between visual attention and food choice), here we focus on behavioral factors that stem from the
psychology and behavioral economics literature.

5.1. Behavioral Factors Influencing Decision-Making Processes

Modeling food choices requires an adequate understanding of the processes underlying human
decision making. For instance, an implicit assumption in DCEs is that individuals make choices
only based on prices and food product attributes included in the experiment. However, individual
choices can be influenced by other factors that even well-designed experiments cannot easily
control for. Caputo et al. (2018a) show that prior knowledge and expectations by subjects, such
as subjective reference points (e.g., benchmark prices) and external pricing information, can
significantly affect choice. This evidence has significant implications for the design and practice
of DCEs, as they show that experiments are not conducted in a vacuum. In addition, given
fluctuations in market prices, when shopping for groceries, consumers often face uncertainty
over whether they are indeed getting a good deal. Caputo et al. (2020) move from this concept
and develop a novel model that incorporates reference price uncertainty into food choice.
The authors show that ignoring reference price uncertainty in food demand analysis leads to
biased market share estimates. They offer a new empirical framework to model uncertainty in
food choice studies. Collectively, results from these studies indicate that food DCE applications
should consider reference points as an explicit aspect of experimental designs to prevent pricing
bias and account for reference price uncertainty when estimation of market shares is the focus of
the study. Both aspects should be taken into consideration and further evaluated in future research.
Along the same vein, but with a slightly different perspective on the sources of uncertainty, Scarpa
et al. (2021a) adopt the approach suggested by Manski (1999, 2004) and operationalized by Blass
et al. (2010) in the context of choosing extra virgin olive oils. They explore the notion of resolvable
uncertainty, which is due to differences in information sets faced by respondents between two
types of choice: stated and real. They focus on inferring the information gap between knowledge
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available to subjects at the time when choice statements are collected and when making a real
purchase, making use of statements on probabilities of choice, rather than preferred choice.

In addition, how research subjects process food product information during DCEs depends
on the complexity of the experimental design. Although complex designs that resemble actual
shopping situations can increase realism and hence be tempting to researchers, they also challenge
respondents and complicate both survey operations and statistical estimation. Evidence from both
psychology and behavioral economics indicates that consumers may use heuristics (Simon 1955,
Payne et al. 1992), a mental shortcut that allows people to make quick and effortless decisions.
Indeed, several DCEs have shown that consumers tend to ignore (not attend to) some of the
attribute information presented to them during the choice exercises (Gilbride & Allenby 2004,
Scarpa et al. 2010, Hensher et al. 2012). This behavior, known in the choice modeling literature
as attribute-nonattendance (ANA) behavior, can lead to inadequate model specification and thus
produce poorer statistical fit and biasedWTP estimates (Campbell et al. 2008, Scarpa et al. 2010).

Methodological contributions in this research domain include various methods developed by
researchers from different fields to model and infer information on ANA. Some studies propose
the use of self-reported ANA statements that can be collected at the end of the choice exercise
(stated serial ANA) or at the end of each choice tasks (stated task ANA). Other studies, follow-
ing Scarpa et al. (2009), suggest inferring ANA behavior using suitable latent class models based
on panel data (Caputo et al. 2013a). A much-debated issue in food choice research and else-
where concerns the validity of stated serial and choice task ANA elicitation methods, as well as
the concordance between stated and inferred ANA and their relationship with design complexity.
Food choice applications include those by Scarpa et al. (2013), Balcombe et al. (2015),Caputo et al.
(2018c), and Van Loo et al. (2018b). Scarpa et al. (2013) explored the validity of stated serial ANA
on beef and chicken selection and its concordance with inferred ANA. Results from this study
show that that the constrained latent class panel models outperform MXL models with random
parameters in terms of fit to the data and correct downward marginal WTP estimates for food
attributes. Caputo et al. (2018c) validated self-reported ANA statements for serial choice tasks and
explored the concordance of stated methods with that of the inferred ANA.Results show that self-
reported measures on choice task ANA are more congruent with model estimates than those for
serial ANA, as well as with inferred ANA. In aDCEon potato preferences,Kaye-Blake et al. (2009)
developed an elegant computer-based survey in which respondents were given choice tasks with
concealed attribute levels that could be disclosed on demand by respondents if they were found of
interest. By doing so, respondents disclosed the structure of their individual utility showing to the
researcher what attributes mattered at each choice task. Their work is a precursor of eye-tracking
methods and demonstrates that respondent-specific utility structures can be retrieved with careful
data collection. Balcombe et al. (2015) and Van Loo et al. (2018b) used various eye-tracking mea-
sures (e.g., fixation count cutoffs) to account for visual ANA. Balcombe et al. (2015) found that
although informative, stated ANA statements diverge from visual ANA statements. Van Loo et al.
(2018b) found that visual ANA is attribute dependent and concluded that using eye tracking does
not always provide an adequate measure of ANA. More recently the inferred ANA approach was
used to measure inattention bias in food DCEs. For instance,Malone & Lusk (2018a) estimated a
latent class logit model with all parameters in one class restricted to zero. The authors then used
the estimated share of observations falling in the class with null parameters (representing totally
random choices) as a diagnostic measure of total inattention to food attribute levels in the choice
task alternatives.

Other behavioral factors have been found to influence food decision making. These include
personal values (Grebitus et al. 2013b), personality traits (Grebitus et al. 2013a, Bazzani et al.
2017a), time preferences (De Marchi et al. 2016), beliefs/perceptions (Lusk et al. 2014,Malone &
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Lusk 2018b), and ethnocentrism (Van Loo et al. 2019), among others. For example, De Marchi
et al. (2016) demonstrate that consumer demand for healthy and environmentally friendly food
products is driven by time preferences, that is, how consumers weigh the value of future events.
These authors discuss the importance of developing food policies and programs that can edu-
cate people about the long-term benefits of healthier and more sustainable foods. Grebitus et al.
(2013a) show that consumers’ personalities influence choice behavior differently in real and hy-
pothetical food choice environments, suggesting that personality could explain a significant por-
tion of hypothetical bias. Van Loo et al. (2019) find that high consumer ethnocentrism leads to
higher preferences for domestic food, as also evidenced by early food choice studies documenting
home-biased and patriotic preferences (Scarpa & Del Giudice 2004, Loureiro & Umberger 2007,
Menapace et al. 2011). Taken together, these results clearly show that researchers need to be wary
of potential behavioral influences on their DCE and, if possible, take appropriate steps to account
for those influences within their experimental design and/or modeling approach.

5.2. Endogeneity Bias in Choice Experiments

Most research investigating whether and how behavioral factors influence food choice behavior
used self-reported auxiliary data collected during the experiment in the form of Likert or semantic
scales, probability statements, or multiple-choice questions. For example, Grebitus et al. (2013a)
employed a validated scale to determine consumer personality traits, Lusk et al. (2014) devel-
oped probability statements to elicit consumers’ subjective beliefs, and Scarpa et al. (2013) and
Caputo et al. (2018c) utilized Likert scales and multiple-choice questions to collect and explain
self-reported ANA statements.

The incorporation of self-reported auxiliary data as “error-free exploratory predictors of
choices” (Hensher et al. 2015, p. 929) into random utility models can raise endogeneity problems.
In random utility models, endogeneity arises if variables that enter systematic utility components
are correlated with random utility components due to measurement errors and/or the built-in
causal effect between food choices and latent variables, such as beliefs/perceptions/self-reported
ANA. However, the definition of endogeneity is complicated when choice data are generated
through an experimental design, and its identification can be problematic due to the challenge
of finding plausible instrumental variables that allow researchers to distinguish behavioral drivers
from preferences. Recent food choice studies have employed various empirical strategies to incor-
porate behavioral auxiliary data into choice models while also correcting for potential endogeneity
problems. Some food choice studies utilized the control function approach introduced by Petrin
& Train (2010). For example, Malone & Lusk (2018b) used the control function approach to dis-
tinguish perceptions from preferences for beer brands. The authors identified perceptions about
other brands as instruments to explain perceptions of the studied brand. They found that per-
ceived taste and brand familiarity are key determinants of choice. Other food choice studies have
used hybrid choice models (HCMs), which were introduced by Ben-Akiva et al. (2002) to account
for potential endogeneity problems.15 For instance, Yangui et al. (2016) employed the HCM to
investigate the effect of personality traits, lifestyles, and purchasing habits on consumer purchase
behavior regarding extra virgin olive oil. Results from this study highlight the importance of be-
havioral factors for policy design and implementation.

15The HCM contains observed choices and additional sets of exploratory variables or latent constructs rep-
resenting behavioral factors. This allows researchers to simultaneously estimate coefficients for the structural
equation, the measurement equation, and the choice model components (see Ben-Akiva et al. 2002, Bolduc
et al. 2005).
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An HCM approach has also been proposed by Hess & Hensher (2013) to model self-reported
ANA statements into discrete choice models. The authors addressed endogeneity in ANA by in-
troducing a hybrid model that simultaneously fits socioeconomic covariates to ANA variables.We
argue that the socioeconomic covariates used in this manner would not be a defensible instrument
because they would not satisfy the exclusion restriction. For instance, why should a person with a
given socioeconomic profile systematically engage in a different form of ANA from others with
different socioeconomic profiles? Instead, their inclusion is expected to reduce heterogeneity, as
socioeconomic covariates are typically used to condition at least part of the unobservable affecting
preference variability. As a result, endogeneity correction can be confused with heterogeneity cor-
rection at a high computational cost and requiring substantial coding effort. Furthermore,HCMs
require the simultaneous satisfaction of several specification assumptions and generate substan-
tially lower sample likelihoods. Further still, previous studies using the HCM approach to model
ANA behavior have found only a modest impact on implied WTP estimates. Examples include
studies by Hess &Hensher (2013) and Bello & Abdulai (2016).The latter study uses this approach
to study Nigerian consumer preferences for organic food. The authors report no substantial dif-
ferences in WTP estimates between the hybrid and standard ANA model when the percentages
of the self-reported ANA are quite high across attributes. Alternative solutions with the potential
to address endogeneity issues in choice modeling are still unexplored in the food choice literature.
These include the use of attention allocation functions (Cameron & De Shazo 2010) or context
function for shrinkage factors (separately introduced in different forms by Collins 2012 and Hole
2011). All of these, however, are options involving some caveats and, so far, none is emerging as
generally accepted as superior. There is, therefore, a definite need for further research in this area.

6. FOOD POLICY EVALUATIONS AND DISCRETE
CHOICE EXPERIMENTS

The DCE method is also emerging as a valid tool to evaluate ex ante the effectiveness of food
policies. Early research in this domain has focused on evaluating various nutritional food labeling
programs, including front-of-package nutritional labels and health claims (Van Wezemael et al.
2014, Thiene et al. 2018). For example, Thiene et al. (2018) looked at different formats of nutri-
tional signals in front-of-package labels of food baskets, linking preference heterogeneity to age
groups and self-reported body weight measures, whereas Van Wezemael et al. (2014) conducted
a multicountry DCE study on lean beef steak selection to investigate whether front-of-package
nutritional labels and health claims are appealing to European consumers.

More recent applications evaluated the effects of fiscal policies on choice outcomes and welfare
estimates. For example, Papoutsi et al. (2015) conducted a laboratory-based R-DCE to examine
the effects of both a fat tax to discourage unhealthy diets and a subsidy to encourage a healthy
diet. The study included a control and both within- and between-subject experiments depending
on the price variations induced by the fiscal policies (fat tax and/or subsidy), the decision envi-
ronment (pestering or pestering), and information provision (information about the fiscal policy
intervention or no information). The authors found that the strongest shifts in parental choices
toward healthier food products occur when the fat tax and food subsidy are implemented simul-
taneously, although child pestering can reduce the effect the intervention has on parent’s food
choices. Ahn & Lusk (2021) used an online DCE to examine the size and direction of the non-
pecuniary effect of sugar-sweetened beverage taxes and a size ban. In the experiment, 1,300 US
consumers were asked to make beverage choices before and after a price increase or before and
after a beverage volume (size) decrease (within-subject comparison) with alternative explanations
for the change (between-subject comparison). The design employed by the authors enabled them
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to compare the difference in sugar-sweetened soda market share before and after a policy across
information treatments by exogenously changing the prices or size.Data collected in 2016 showed
significant nonpecuniary effects on soda choices, but a replication study in 2019 was unable to find
consistent nonpecuniary effects, and the data generally displayed substantial heterogeneity across
respondents in the difference-in-difference estimates.

However, the use of DCEs in policy evaluations remains limited. The most limiting factor in
standard foodDCEs is that respondents are typically asked to only select one of the experimentally
designed product alternatives (the preferred one). As illustrated by Caputo & Lusk (2022), this
implies that product alternatives are forced to be demand substitutes, and cross-price elasticities
are forced to be positive (see Louviere et al. 2000,Hensher et al. 2015).Therefore, if we implement
a food policy that is targeted toward meat, for example, we might also affect the demand for pasta
or salad. Those relationships, however, fail to be captured by standard DCEs. Caputo & Lusk
(2022) propose a basket-based choice experiment approach, which allows researchers to capture
both substitution and complementarity patterns owing to its increased flexibility. The authors
show that the basket-based choice experiment is an ideal method to measure various food-related
policies, with the potential to contribute to the discussion of broader societal significance.

Another limiting factor in food DCEs is that the product quantity is often predefined by the
researcher and held constant across choice questions. For example, in typical food DCEs respon-
dents are asked to select their preferred product alternative, but they cannot freely choose the
desired consumption level for the selected alternative (Corsi 2007). This obviously prevents re-
searchers from capturing individual satiating behavior, which may have a pivotal role in the study
of nutrition and health-related food policies. Corsi (2007) presents alternative theoretical and
econometric approaches to incorporate quantity in nonmarket valuation studies.Open-ended and
closed-ended formats are discussed by the author as possible methods to incorporate choice quan-
tity in nonmarket valuation studies.A recent foodDCE study byDennis et al. (2021) introduced an
open-ended DCE method, called an OECE, and compared it to a standard DCE. Using meat se-
lection as the empirical application, the authors asked survey respondents to select their preferred
meat alternative (sameweight) or none of them in the standardDCE. In theOECE survey, respon-
dents were presented with different quantity levels and asked to select the number of pounds of
each meat product they would purchase, if any, with the selection of zero pounds considered as the
no-purchase option. Findings from this study highlight the importance of incorporating quantity
as an explicit aspect of the decision-making process in foodDCEs.Recent modeling developments
allow researchers to model food basket choices by also accounting for satiation effects. Examples
include the multiple discrete continuous extreme value model proposed by Bhat (2005, 2008).

Further, most food DCEs are conducted at only one point in time, preventing the study of the
evolution (i.e., the dynamics) of preferences. The FooDS series developed by Lusk (2017) is the
only research program that uses food DCEs to track consumer preferences over time, enabling
researchers to test preference stability over time and possibly its dynamics. Indeed,with the FooDS
study focusing on meat selection, the results clearly show that consumer preferences change over
time owing to various internal and external factors (Lusk &Tonsor 2016, Lusk 2017). Still, despite
its broader societal impact, FooDS remains one of the few studies exploring consumer dynamics
using DCEs.

7. FINAL REMARKS AND CONCLUSION

We reviewed the recent methodological progress in food DCEs. We note that despite the
substantive progress made, especially in survey design and data modeling, many important
conceptual and methodological questions remain unresolved. We hence conclude by making
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some recommendations and suggesting some promising directions. These could be embraced by
future empirical and methodological research to provide much-needed, policy-relevant evidence.

Our first recommendation pertains to ex ante statistical power analysis for treatment effects.
Although currently underdeveloped, at least in the context of food DCEs, power analysis can
guide the selection of the experimental design and the sampling strategy (Palm-Forster &Messer
2021). This could also be coupled with the use of hybrid experimental designs, where designs are
derived to address more than one issue, for example, WTP estimation and prediction. Second,
most food choice studies are based on random utility theory. Other theoretical choice frameworks
should be explored, such as those based on regret minimization (Chorus 2010) that may be
particularly useful when looking at food choices of those concerned with health and nutrition
outcomes. Regret minimization may be applied either on its own or simultaneously with random
utility models by using finite mixtures, as done by Boeri et al. (2014). Another promising but
understudied method for future food choice research concerns the conceptual models based on
resolvable uncertainty introduced by Manski (2004) and implemented by Blass et al. (2010). This
approach can be implemented by eliciting consumer’s probability of selecting each alternative
in the choice set, rather than the preferred choice. This approach was implemented in olive oil
choice analysis by Scarpa et al. (2021a) and can be useful to separate the effects of the informa-
tion sets that characterize hypothetical and real choices. The data collected in this context are
amenable to robust estimation practices and may be attractive even in small sample contexts,
although they require binary decisions.

There is also a broad scope for more DCEs directed to specific food policy evaluations. The
food basket approach proposed by Caputo & Lusk (2022) could be extended to also include other
choice determinants (quantity) and food choice environments (food consumed away from home).
This would allow researchers to create data sets that mimic the type of revealed preference data
(e.g., scanner data) more closely.With data frommore realistic choice contexts, researchers will be
able to evaluate policies by looking specifically at relationships of substitution/complementarity
within food choice patterns and at satiation behavior, while avoiding endogeneity issues. As men-
tioned earlier in this review, this new line of research could also be supported by recent develop-
ments in the random utility modeling of multiple discrete-continuous data by means of extreme
value analysis, as developed by Bhat (2005, 2008). Future food policy–based research should also
focus on determining the effects of internal and external reference prices on fiscal policy eval-
uations (e.g., soda taxes). For example, prior research shows poor consumer knowledge on soda
taxes, which may be driven by high levels of uncertainty about market price distributions (for a
discussion, see Caputo & Just 2022).

Finally, while the studies and findings discussed in this review are mostly focused on food
DCEs, we are hopeful that the careful reader from other fields interested in DCE applications
will find inspiration and practical insights that are transferable to their respective fields of study.
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