Riccardo Natoli

Riccardo Natoli
  • PhD
  • Reasearcher at Australian National University

About

98
Publications
19,345
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,903
Citations
Current institution
Australian National University
Current position
  • Reasearcher
Additional affiliations
March 2012 - April 2017
Australian National University
Position
  • Reasearcher

Publications

Publications (98)
Article
Full-text available
Photoreceptor cell death is a hallmark of age-related macular degeneration. Environmental, lifestyle and genetic risk factors are known contributors to disease progression, whilst at the molecular level, oxidative stress and inflammation are central pathogenetic drivers. However, the spatial and cellular origins of these molecular mechanisms remain...
Article
Full-text available
Inflammasome sensors activate cellular signaling machineries to drive inflammation and cell death processes. Inflammasomes also control the development of certain diseases independently of canonical functions. Here, we show that the inflammasome protein NLR family CARD domain-containing protein 4 (NLRC4) attenuated the development of tumors in the...
Preprint
Neuroinflammation is a pathological process mediated through immune cell activation and pro-inflammatory cytokine release, resulting in neuronal cell death. In the central nervous system (CNS), neuroinflammation is a characteristic feature underlying the onset and progression of retinal and neurodegenerative diseases. Targeting neuroinflammation to...
Article
Full-text available
In the central nervous system (CNS), including in the retina, neuronal‐to‐glial communication is critical for maintaining tissue homeostasis including signal transmission, transfer of trophic factors, and in the modulation of inflammation. Extracellular vesicle (EV)‐mediated transport of molecular messages to regulate these processes has been sugge...
Article
Full-text available
Background Inflammasome activation and the subsequent release of pro-inflammatory cytokines including Interleukin 1β (IL-1β) have been widely reported to contribute to the progression of retinal degenerations, including age-related macular degeneration (AMD), the leading cause of blindness in the Western World. The role of Gasdermin D (GSDMD), a ke...
Article
Extracellular vesicles (EV) are nanosized delivery vehicles that participate in cell-to-cell communication through the selective transfer of molecular materials including RNA, DNA, lipids, and proteins. In the retina, the role of EV proteins is largely unclear, in part due to the lack of studies and the depth of proteomic analyses of EV cargo. This...
Article
Immune privilege in the eye involves physical barriers, immune regulation and secreted proteins that together limit the damaging effects of intraocular immune responses and inflammation. The neuropeptide alpha-melanocyte stimulating hormone (α-MSH) normally circulates in the aqueous humour of the anterior chamber and the vitreous fluid, secreted by...
Article
Full-text available
Introduction Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, currently affecting over 350 billion people globally. For the most prevalent late-stage form of this disease, atrophic AMD, there are no available prevention strategies or treatments, in part due to inherent difficulties in early-stage diag...
Article
Full-text available
Background: Exercise has been shown to promote a healthier and longer life and linked to a reduced risk of developing neurodegenerative diseases including retinal degenerations. However, the molecular pathways underpinning exercise-induced cellular protection are not well understood. In this work we aim to profile the molecular changes underlying e...
Article
Full-text available
Background: Age-related macular degeneration (AMD) is the leading cause of vision loss in the developed world and the detection of its onset and progression are based on retinal morphological assessments. MicroRNA (miRNA) have been explored extensively as biomarkers for a range of neurological diseases including AMD, however differences in experim...
Article
Full-text available
Interneurons are fundamental cells for maintaining the excitation-inhibition balance in the brain in health and disease. While interneurons have been shown to play a key role in the pathophysiology of autism spectrum disorder (ASD) in adult mice, little is known about how their maturation is altered in the developing striatum in ASD. Here, we aimed...
Preprint
Full-text available
Background: Age-related macular degeneration (AMD) is the leading cause of vision loss in the developed world and the detection of its onset and progression are based on retinal morphological assessments. MicroRNA (miRNA) have been explored extensively as biomarkers for a range of neurological diseases including AMD, however differences in experime...
Article
Electrochemical aptasensors are a versatile tool for detecting miRNA biomarkers associated with several diseases. However, most aptasensors require complex surface and probe modifications to achieve sufficiently high sensitivity and selectivity. Here, we introduce a simple yet ultrasensitive electrochemical aptasensor architecture for the rapid and...
Article
Full-text available
Rationale: Müller cells play an essential role in maintaining the health of retinal photoreceptors. Dysfunction of stressed Müller cells often results in photoreceptor degeneration. However, how these cells communicate under stress and the signalling pathways involved remain unclear. In this study, we inhibited the MAPK (ERK1/2) signalling, mainly...
Article
Full-text available
Introduction Sports-related concussion (SRC) is a common form of brain injury that lacks reliable methods to guide clinical decisions. MicroRNAs (miRNAs) can influence biological processes involved in SRC, and measurement of miRNAs in biological fluids may provide objective diagnostic and return to play/recovery biomarkers. Therefore, this prospect...
Article
Full-text available
Background MicroRNA (miRNA) play a significant role in the pathogenesis of complex neurodegenerative diseases including age-related macular degeneration (AMD), acting as post-transcriptional gene suppressors through their association with argonaute 2 (AGO2) - a key member of the RNA Induced Silencing Complex (RISC). Identifying the retinal miRNA/mR...
Article
The benefits of exercise to human health have long been recognised. However only in the past decade have researchers started to discover the molecular benefits that exercise confers, especially to the central nervous system. These discoveries include the magnitude of molecular messages that are communicated from skeletal muscle to the central nervo...
Article
Full-text available
The pathogenesis of outer retinal degenerations has been linked to the elevation of cytokines that orchestrate pro-inflammatory responses within the retinal milieu, and which are thought to play a role in diseases such as geographic atrophy (GA), an advanced form of AMD. Here we sought investigate the anti-inflammatory and mechanistic properties of...
Article
Full-text available
The choroid within the human eye contains a rich milieu of cells including melanocytes. Human Choroidal Melanocytes (HCMs) absorb light, regulate free radical production and were recently shown to modulate inflammation. This study aimed to identify key genes and pathways involved in the inflammatory response of HCMs through the use of RNA‐seq. Prim...
Article
Interphotoreceptor retinoid-binding protein (IRBP), also known as retinol binding protein 3 (RBP3), is a lipophilic glycoprotein specifically secreted by photoreceptors. Enriched in the interphotoreceptor matrix (IPM) and recycled by the retinal pigment epithelium (RPE), IRBP is essential for the vision of all vertebrates as it facilitates the tran...
Article
Full-text available
Purpose: Dysregulation of the complement cascade contributes to a variety of retinal dystrophies, including age-related macular degeneration (AMD). The central component of complement, C3, is expressed in abundance by macrophages in the outer retina, and its ablation suppresses photoreceptor death in experimental photo-oxidative damage. Whether th...
Article
Full-text available
Although extensively investigated in inflammatory conditions, the role of pro-inflammatory microRNAs (miRNAs), miR-155 and miR-146a, has not been well-studied in retinal degenerative diseases. We therefore aimed to explore the role and regulation of these miRNA in the degenerating retina, with a focus on miR-155. C57BL/6J mice were subjected to pho...
Article
Full-text available
Introduction MicroRNAs (miRNAs) are small, non-coding RNA molecules that have powerful regulatory properties, with the ability to regulate multiple messenger RNAs (mRNAs) and biological pathways. MicroRNA-223-3p (miR-223) is known to be a critical regulator of the innate immune response, and its dysregulation is thought to play a role in inflammato...
Article
Full-text available
Photoreceptor cell death and inflammation are known to occur progressively in retinal degenerative diseases such as age-related macular degeneration (AMD). However, the molecular mechanisms underlying these biological processes are largely unknown. Extracellular vesicles (EV) are essential mediators of cell-to-cell communication with emerging roles...
Preprint
Full-text available
MicroRNA (miRNA) play a significant role in the pathogenesis of complex neurodegenerative diseases, including age-related macular degeneration, acting as post-transcriptional gene suppressors through their association with argonaute (AGO) protein family members. However, to understand their role in disease, investigation into the regulatory nature...
Preprint
Full-text available
Purpose Photoreceptor cell death and inflammation are known to occur progressively in retinal degenerative diseases, however the molecular mechanisms underlying these biological processes are largely unknown. Extracellular vesicles (EV) are essential mediators of cell-to-cell communication with emerging roles in the modulation of immune responses....
Article
Full-text available
Purpose: The use of small non-coding nucleic acids, such as siRNA and miRNA, has allowed for a deeper understanding of gene functions, as well as for development of gene therapies for complex neurodegenerative diseases, including retinal degeneration. For effective delivery into the eye and transfection of the retina, suitable transfection methods...
Article
Full-text available
Activation of the inflammasome is involved in the progression of retinal degenerative diseases, in particular, in the pathogenesis of Age-Related Macular Degeneration (AMD), with NLRP3 activation the focus of many investigations. In this study, we used genetic and pharmacological approaches to explore the role of the inflammasome in a mouse model o...
Article
Full-text available
Retinal degeneration is a form of neurodegenerative disease and is the leading cause of vision loss globally. The Toll-like receptors (TLRs) are primary components of the innate immune system involved in signal transduction. Here we show that TLR2 induces complement factors C3 and CFB, the common and rate-limiting factors of the alternative pathway...
Article
The diversity of colour vision systems found in extant vertebrates suggests that different evolutionary selection pressures have driven specialisations in photoreceptor complement and visual pigment spectral tuning appropriate for an animal's behaviour, habitat and life history. Aquatic vertebrates in particular show high variability in chromatic v...
Article
Background: Photobiomodulation by 670 nm red light in animal models reduced severity of ROP and improved survival. This pilot randomised controlled trial aimed to provide data on 670 nm red light exposure for prevention of ROP and survival for a larger randomised trial. Methods: Neonates <30 weeks gestation or <1150 g at birth were randomised to...
Article
Full-text available
Inflammation underpins and contributes to the pathogenesis of many retinal degenerative diseases. The recruitment and activation of both resident microglia and recruited macrophages, as well as the production of cytokines, are key contributing factors for progressive cell death in these diseases. In particular, the interleukin 1 (IL-1) family consi...
Article
Full-text available
Background: The role of the alternative complement pathway and its mediation by retinal microglia and macrophages, is well-established in the pathogenesis of Age-Related Macular Degeneration (AMD). However, the contribution of the classical complement pathway towards the progression of retinal degenerations is not fully understood, including the r...
Article
Purpose: Glutathione-S-transferase omega 1-1 (GSTO1-1) is a cytosolic glutathione transferase enzyme, involved in glutathionylation, toll-like receptor signaling, and calcium channel regulation. GSTO1-1 dysregulation has been implicated in oxidative stress and inflammation, and contributes to the pathogenesis of several diseases and neurological d...
Article
Full-text available
Purpose: We sought to determine the role and retinal cellular location of microRNA-124 (miR-124) in a neuroinflammatory model of retinal degeneration. Further, we explored the anti-inflammatory relationship of miR-124 with a predicted messenger RNA (mRNA) binding partner, chemokine (C-C motif) ligand 2 (Ccl2), which is crucially involved in inflam...
Article
Full-text available
The pathogenesis of many retinal degenerations, such as age-related macular degeneration (AMD), is punctuated by an ill-defined network of sterile inflammatory responses. The delineation of innate and adaptive immune milieu among the broad leukocyte infiltrate, and the gene networks, which construct these responses, are poorly described in the eye....
Article
Full-text available
The complement system is highly implicated in both the prevalence and progression of Age-Related Macular Degeneration (AMD). Complement system inhibitors therefore have potential therapeutic value in managing excessive activation of the complement pathways in retinal degenerations. The vaccinia virus complement control protein (VCP) has been shown...
Article
Full-text available
Purpose Systemic increases in reactive oxygen species, and their association with inflammation, have been proposed as an underlying mechanism linking obesity and age-related macular degeneration (AMD). Studies have found increased levels of oxidative stress biomarkers and inflammatory cytokines in obese individuals; however, the correlation between...
Preprint
Full-text available
The pathogenesis of many retinal degenerations, such as age-related macular degeneration (AMD), is punctuated by an ill-defined network of sterile inflammatory responses. The delineation of innate and adaptive immune milieu amongst the broad leukocyte infiltrate, and the gene networks which construct these responses, are poorly described in the eye...
Article
Photobiomodulation (PBM) with 670 nm light has been shown to accelerate wound healing in soft tissue injuries, and also to protect neuronal tissues. However, little data exist on its effects on the non-neuronal components of the retina, such as Müller cells (MCs), which are the principal macroglia of the retina that play a role in maintaining retin...
Chapter
MicroRNA (miRNA) are a class of endogenously expressed small non-coding RNA molecules that function by repressing or silencing post-transcriptional gene expression. While miRNAs were only identified in humans as recently as the turn of this century, some miRNA-based agents are already in Phase 2 clinical trials (Christopher et al. 2016). This rapid...
Article
Background Chemokine signalling is required for the homing of leukocytes during retinal inflammation, and is associated with pathogenesis of diseases such as age-related macular degeneration (AMD). Here, we explore the role of interleukin-1β (IL-1β) in modulating AMD-associated chemokines Ccl2, Cxcl1, and Cxcl10 during photo-oxidative retinal damag...
Article
Müller cells, the supporting cells of the retina, play a key role in responding to retinal stress by releasing chemokines, including CCL2, to recruit microglia and macrophages (MG/MΦ) into the damaged retina. Photobiomodulation (PBM) with 670 nm light has been shown to reduce inflammation in models of retinal degeneration. In this study, we aimed t...
Article
Purpose: Complement system dysregulation is strongly linked to the progression of age-related macular degeneration (AMD). Deposition of complement including C3 within the lesions in atrophic AMD is thought to contribute to lesion growth, although the contribution of local cellular sources remains unclear. We investigated the role of retinal microg...
Article
Full-text available
IntroductionLight is the primary stimulus for vision, but may also cause damage to the retina. Pre-exposing the retina to sub-lethal amount of light (or preconditioning) improves chances for retinal cells to survive acute damaging light stress. Objectives This study aims at exploring the changes in retinal metabolome after mild light stress and ide...
Article
Purpose: Light is a requirement for the function of photoreceptors in visual processing. However, prolonged light exposure can be toxic to photoreceptors, leading to increased reactive oxygen species (ROS), lipid peroxidation, and photoreceptor cell death. We used the 661W mouse cone photoreceptor-like cell line to study the effects of pyruvate in...
Article
Full-text available
We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analysed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are co...
Article
Light–induced degeneration in rodent retinas is an established model for of retinal degeneration, including the roles of oxidative stress and neuroinflammatory activity. In these models, photoreceptor death is elicited via photo-oxidative stress, and is exacerbated by recruitment of subretinal macrophages and activation of immune pathways including...
Article
Full-text available
The activity of macrophages is implicated in the progression of retinal pathologies such as atrophic age-related macular degeneration (AMD), where they accumulate among the photoreceptor layer and subretinal space. This process is aided by the local expression of chemokines, which furnish these cells with directional cues that augment their migrati...
Article
Full-text available
Photobiomodulation at a wavelength of 670 nm has been shown to be effective in preventing photoreceptor cell death in the retina. We treated Sprague-Dawley (SD) rats with varying doses of 670 nm light (9; 18; 36; 90 J/cm 2 ) before exposing them to different intensities of damaging white light (750; 1000; 1500 lux). 670 nm light exhibited a biphasi...
Article
Full-text available
The recruitment of macrophages accompanies almost every pathogenic state of the retina, and their excessive activation in the subretinal space is thought to contribute to the progression of diseases including age-related macular degeneration. Previously, we have shown that macrophages aggregate in the outer retina following damage elicited by photo...
Article
Full-text available
Purpose:To investigate the expression profile of and identify all miRNAs that potentially regulate inflammation in a light-induced model of focal retinal degeneration. Methods:Sprague Dawley (SD) rats aged 90-140 post-natal days were exposed to 1000 lux white fluorescent light for 24 hours. At 24 hours and 3, 7 days post exposure the animals were e...
Article
Objective: Retinopathy of prematurity (ROP) is a vasoproliferative disorder of the retina affecting extremely preterm or low birth weight infants The aim of this study was to assess the feasibility and safety of 670 nm red light use in a neonatal intensive care unit. Study design: Neonates <30 weeks gestation and <1150 g were enrolled within 48...
Article
Full-text available
Background Monocyte infiltration is involved in the pathogenesis of many retinal degenerative conditions. This process traditionally depends on local expression of chemokines, though the roles of many of these in the degenerating retina are unclear. Here, we investigate expression and in situ localization of the broad chemokine response in a light-...
Article
Full-text available
Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment of neurotrauma has been hampered by lack of comparative information regarding the degree of penetration of the delivered irradiati...
Article
Full-text available
The morphological characterization of quasi-planar structures represented by gray-scale images is challenging when object identification is sub-optimal due to registration artifacts. We propose two alternative procedures that enhances object identification in the integral-geometry morphological image analysis (MIA) framework. The first variant stre...
Article
Full-text available
Complement activation is thought to contribute to the pathogenesis of age-related macular degeneration (AMD), which may be mediated in part by para-inflammatory processes. We aimed to investigate the expression and localization of C3, a crucial component of the complement system, in the retina during the course of aging. SD rats were born and reare...
Article
Full-text available
Irradiation with light wavelengths from the far red (FR) to the near infrared (NIR) spectrum (600 nm -1000 nm) has been shown to have beneficial effects in several disease models. In this study, we aim to examine whether 670 nm red light pretreatment can provide protection against hyperoxia-induced damage in the C57BL/6 J mouse retina. Adult mice (...
Article
Full-text available
To investigate the validity of using 670nm red light as a preventative treatment for Retinopathy of Prematurity in two animal models of oxygen-induced retinopathy (OIR). During and post exposure to hyperoxia, C57BL/6J mice or Sprague-Dawley rats were exposed to 670nm light for 3 minutes a day (9J/cm(2)). Whole mounted retinas were investigated for...
Article
Full-text available
Abstract Irradiation in the red/near-infrared spectrum (R/NIR, 630-1000 nm) has been used to treat a wide range of clinical conditions, including disorders of the central nervous system (CNS), with several clinical trials currently underway for stroke and macular degeneration. However, R/NIR irradiation therapy (R/NIR-IT) has not been widely adopte...
Article
Retinopathy of prematurity (ROP) is a vasoproliferative disorder that can lead to blindness. Red light irradiation at 670 nm wavelength promotes cellular differentiation, proliferation and wound repair. 670 nm light is believed to stimulate mitochondrial function by increasing cytochrome oxidase efficiency and ATP production. In the retina, 670 nm...
Article
Full-text available
Irradiation in the red/near-infrared spectrum (R/NIR, 630-1000 nm) has been used to treat a wide range of clinical conditions, including disorders of the central nervous system (CNS), with several clinical trials currently underway for stroke and macular degeneration. However, R/NIR irradiation therapy (R/NIR-IT) has not been widely adopted in clin...
Article
Full-text available
Aim Complement activation is associated with the pathogenesis of age-related macular degeneration (AMD). We aimed to investigate whether 670-nm light treatment reduces the propagation of complement in a light-induced model of atrophic AMD. Methods Sprague–Dawley (SD) rats were pretreated with 9 J/cm2 670-nm light for 3 minutes daily over 5 days; o...
Article
Our aim is to investigate a common role of the complement system in the pathogenesis of retinal disease, by assessing the expression profile of complement component 3 (C3) in three mechanistically distinct models of retinal degeneration: light-damage, hyperoxia and the degenerative P23H-3 rodent strain. In the light damage model, young adult albino...
Article
Background Retinopathy of prematurity is a vasoproliferative disorder that can cause blindness and adverse visual outcomes in extremely premature neonates. Red light at 670nm wavelength promotes cellular differentiation, proliferation and wound repair. Aims To determine whether 670nm light promotes normal retinal vessel development in a mouse model...
Article
Full-text available
Background The recruitment and activation of inflammatory cells is thought to exacerbate photoreceptor death in retinal degenerative conditions such as age-related macular degeneration (AMD). We investigated the role of Müller cell-derived chemokine (C-C motif) ligand (Ccl)2 expression on monocyte/microglia infiltration and photoreceptor death in l...
Article
Full-text available
To identify key genes differentially expressed in the human retinal pigment epithelium (hRPE) following low-level West Nile virus (WNV) infection. Primary hRPE and retinal pigment epithelium cell line (ARPE-19) cells were infected with WNV (multiplicity of infection 1). RNA extracted from mock-infected and WNV-infected cells was assessed for differ...
Article
Full-text available
To investigate the expression and localization of complement system mRNA and protein in a light-induced model of progressive retinal degeneration. Sprague-Dawley (SD) rats were exposed to 1000 lux of bright continuous light (BCL) for up to 24 hours. At time points during (1-24 hours) and after (3 and 7 days) exposure, the animals were euthanatized...
Article
Full-text available
To investigate the time course and localization of Ccl2 expression and recruitment of inflammatory cells associated with light-induced photoreceptor degeneration. Sprague-Dawley (SD) rats were exposed to 1000 lux light for up to 24 hours, after which some animals were allowed to recover in dim light (5 lux) for 3 or 7 days. During and after exposur...
Article
This study examined the impact of prolonged (up to 35 day) exposure to hyperoxia on the morphology and function of the retina, in the C57BL/6J mouse, as a basis for interpretation of gene expression changes. Mice of the C57BL/6J strain were raised from birth in dim cyclic illumination (12 h 5 lux, 12 h dark). Adult animals (90-110 days) were expose...
Article
Full-text available
Color vision in marsupials has recently emerged as a particularly interesting case among mammals. It appears that there are both dichromats and trichromats among closely related species. In contrast to primates, marsupials seem to have evolved a different type of trichromacy that is not linked to the X-chromosome. Based on microspectrophotometry an...
Article
Full-text available
To identify the genes and noncoding RNAs (ncRNAs) involved in the neuroprotective actions of a dietary antioxidant (saffron) and of photobiomodulation (PBM). We used a previously published assay of photoreceptor damage, in which albino Sprague Dawley rats raised in dim cyclic illumination (12 h 5 lux, 12 h darkness) were challenged by 24 h exposure...
Article
Full-text available
In the C57BL/6J mouse retina, hyperoxia-induced degeneration of photoreceptors shows strong regional variation, beginning at a locus ~0.5 mm inferior to the optic disc. To identify gene expression differences that might underlie this variability in vulnerability, we have used microarray techniques to describe regional (superior-inferior) variations...
Article
Full-text available
To characterize the cellular expression patterns of antiangiogenic factors differentially regulated in the fetal human macula. RNA was extracted from macular, nasal, and surround biopsies of three human fetal retinas at midgestation. Relative levels of expression of pigment epithelium-derived factor (PEDF), brain natriuretic peptide (BNP), collagen...
Article
Hyperoxia-induced photoreceptor degeneration occurs preferentially in the inferior retina of C57BL/6 J mice. This study investigates differential gene expression in the inferior and superior retina of C57BL/6 J mouse, before and after hyperoxic stress. At the age of P (postnatal day) 83-90, mice were placed in constant normoxia or hyperoxia (75% O(...
Article
Full-text available
Recently we identified high levels of expression of Eph-A6 in the macula of developing human retina and showed localization of Eph-A6 to ganglion cells (GC). In the present study we investigated the expression of some members of the ephrin family in developing primate retina, including the topography of Eph-A6 expression, and its ligands, in develo...
Article
Full-text available
To examine the morphological features of macular photoreceptors in histologically normal retina from normal donor eyes and eyes with age-related macular degeneration (AMD). The macular region was excised from 18 donor eyes (aged 22-96 years) and cryosectioned. Sections were stained with hematoxylin-eosin or double immunolabeled using opsin antibodi...
Article
Full-text available
The primate retina contains a specialized, cone-rich macula, which mediates high acuity and color vision. The spatial resolution provided by the neural retina at the macula is optimized by stereotyped retinal blood vessel and ganglion cell axon patterning, which radiate away from the macula and reduce shadowing of macular photoreceptors. However, t...
Article
Full-text available
Human rods and cones are arranged in a precise spatial mosaic that is critical for optimal functioning of the visual system. However, the molecular processes that underpin specification of cell types within the mosaic are poorly understood. The progressive differentiation of human rods was tracked from fetal week (Fwk) 9 to postnatal (P) 8 months u...
Article
Full-text available
To examine the response of mouse retina to sustained hyperoxia. Hyperoxia is toxic to photoreceptors after sustained exposure (7-14 days in the C57BL/6J mouse) but has been reported to enhance photoreceptor function after short-term exposure. Retinas from the hyperoxia-vulnerable C57BL/6J mouse and from the hyperoxia-resistant BALB/cJ mouse were ex...
Article
Full-text available
Hyperoxia is specifically toxic to photoreceptors, and this toxicity may be important in the progress of retinal dystrophies. This study examines gene expression induced in the C57BL/6J mouse retina by hyperoxia over the 14-day period during which photoreceptors first resist, then succumb to, hyperoxia. Young adult C57BL/6J mice were exposed to hyp...
Article
Full-text available
Cones in the foveola of adult primate retina are narrower and more elongated than cones on the foveal rim, which in turn, are narrower and more elongated than those located more eccentric. This gradient of cone morphology is directly correlated with cone density and acuity. Here we investigate the hypothesis that fibroblast growth factor (FGF) sign...
Article
Full-text available
Relatively little is known of the expression and distribution of FGF receptors (FGFR) in the primate retina. We investigated expression of FGFRs in developing and adult Macaca monkey retina, paying particular attention to the cone rich, macular region. One fetal human retina was used for diagnostic PCR using primers designed for FGFR1, FGFR2, FGFR3...
Article
Purpose: The transforming growth factor ß(TGF- ß) gene superfamily codes for multifunctional cytokines important in cell growth and differentiation, extracellular matrix deposition, wound healing, hematopoiesis, angiogenesis, chemotaxis, immunity functions and apoptosis. Three TGF- ß isoforms are known to exist in mammals: TGF- ß 1,TGF- ß 2 and TGF...

Network

Cited By