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For many years ab initio electronic structure calculations based upon density functional theory have
been one of the main application areas in high performance computing (HPC). Typically, the Kohn–
Sham equations are solved by minimisation of the total energy functional, using a plane wave basis set
for valence electrons and pseudopotentials to obviate the representation of core states. One of the best
known and widely used software for performing this type of calculation is the Vienna Ab initio Simulation
Package, VASP, which currently offers a parallelisation strategy based on the distribution of bands and
plane wave coefficients over the machine processors. We report here an improved parallelisation strategy
that also distributes the k-point sampling workload over different processors, allowing much better
scalability for massively parallel computers. As a result, some difficult problems requiring large k-point
sampling become tractable in current computing facilities. We showcase three important applications:
dielectric function of epitaxially strained indium oxide, solution energies of tetravalent dopants in
metallic VO2, and hydrogen on graphene.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

For many years ab initio electronic structure calculations have
been one of the main application areas in high performance com-
puting (HPC). Whilst the methods used for those calculations have
changed, the approach pioneered by Car and Parrinello in 1985 [1]
has been one of the most common to be employed. The approach
is based upon density functional theory [2]; the Kohn–Sham [3]
equations are solved within a plane wave basis set by minimisation
of the total energy functional, with the use of pseudopotentials
[4,5] to obviate the representation of core states. A review of the
method can be found in Ref. [6]. Such is the importance of these
methods that over 25% of all the cycles used on the phase 2b com-
ponent of HECToR [7], the UK’s high-end computing resource, in
the period from December 2010–July 2011 were for packages per-
forming total energy pseudopotential calculations.

One of the best known and widely used packages for per-
forming this type of calculation is VASP [8–11], the Vienna Ab
initio Simulation Package. Indeed on HECToR it is the most ex-
tensively used package of all; thus maximising its performance
is vital for researchers using this, and related, machines. In this
paper we will briefly describe our recent work on improving the
parallel scalability of the code for certain classes of common prob-
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lems and show three important applications that exploit this new
scalability: dielectric function of epitaxially strained indium oxide,
solution energies of tetravalent dopants in metallic VO2, and hy-
drogen on graphene. We have achieved substantial improvements
by introducing a new level of parallelism based upon the use of
k-point sampling within VASP. Whilst this is common in similar
codes, VASP does not currently support it, and we will show that
through its use, the scalability of total energy calculations can be
markedly improved; which is a particularly important as often the
total energy calculation needs to be performed many times during
geometry optimisation of the atomic and electronic structure. Typ-
ically the total size of the system under study is limited by time
constraints, and so parallel scaling of the calculation on moderate
sized systems must be advantageous if many cores are to be ex-
ploited efficiently.

The remainder of the paper is organised as follows: first the
current parallelisation is briefly described; then we introduce our
parallelisation strategy over k-points; and finally the initial perfor-
mance tests followed by three case applications are presented.

2. Methodology: the parallelisation of VASP

Details of VASP parallelisation are covered in some detail else-
where [12], and here we shall only cover those that are relevant to
the current work.

0010-4655/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cpc.2012.03.009
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VASP 5 offers parallelisation (and data distribution) over bands
and over plane wave coefficients; both may be used together. How
this division occurs is controlled by the NPAR tag in one of the
required VASP input files (namely, the INCAR file). In particular if
there are a total of NPROC cores in the job, each band will be dis-
tributed over NPROC/NPAR cores, where NPAR is defined (chosen)
by the user. Thus if NPAR = 1 all of the bands will be distributed
over all processors, while if NPAR = NPROC the coefficients for a
given band are all associated with one core.

NPAR reflects a tensioning between conflicting requirements. If
bands are distributed across all processors then the communica-
tion costs for the parallel three-dimensional Fast Fourier Trans-
forms (FFTs) required by the plane wave pseudopotential method
are high, but the cost for linear algebra operations required by the
method, such as orthogonalisation and diagonalisation, are rela-
tively low. On the other hand if NPAR = 1 the communication cost
for the FFTs is non-existent but it is high for the linear algebra op-
erations. Thus NPAR must be chosen carefully to obtain the best
performance possible, and importantly it will depend upon the
chemical system being studied, the hardware upon which the run
is being performed, and the number of cores being used (amongst
other possibilities).

Thus the use of NPAR allows a run to either stress the paral-
lel FFT or parallel diagonalisation. Unfortunately neither of these
operations scale well on distributed memory parallel architectures
[13,14], especially for the moderate size grids and matrices used in
many VASP runs.

Parallelisation over bands and over plane waves are not the
only possible ways that ab initio electronic structure codes can
exploit modern HPC resources. Other software can also exploit par-
allelisation over k-points; examples include CASTEP [15,16] and
CRYSTAL [17,18]. k-points arise from the translational symmetry
of the systems being studied [19]. This symmetry also results in
many, but not all, operations at a given k-point being independent
from those at another k-point. This naturally allows another level
of parallelism, and it has been shown that exploitation of k-point
parallelism can greatly increase the scalability – see Ref. [20] for a
recent example. More generally, this use of hierarchical parallelism
is one of the more common methods that aid scaling to very large
numbers of cores [21].

The standard release of VASP is yet, however, to exploit this
possibility. Therefore we have modified the code from VASP 5.2.2
to add this extra level of parallelisation. The code is organised so
that the cores may be split into a number of groups, and each of
these groups performs calculations on a subset of the k-points. The
number of such groups is specified by the new KPAR tag, which is
set in the INCAR file. Thus if the run uses 10 k-points and KPAR
is set to 2 there will be 2 k-point groups each performing calcu-
lations on 5 k-points. Similarly if KPAR is set to 5 there will be 5
groups each with 2 k-points. It can therefore be seen that KPAR
has an analogous rôle to NPAR mentioned above, except that it
applies to k-point parallelism. Currently KPAR is limited to values
that divide exactly both the total number of k-points and the total
number of cores used by the job. It should be noted that NPAR is
also subject to the latter restriction.

The introduction of another level of parallelism through use of
the k-points does potentially greatly increase the scalability of the
code. However, it should not be viewed as a panacea. Not all op-
erations involve k-points, and thus Amdahl’s law [22] effects will
place a limit on the scalability that can be achieved. Furthermore,
some quantities are not perfectly parallel across k-points; evalua-
tion of the Fermi level being an obvious example. And it should be
noted that introduction of k-point parallelism does introduce some
extra communication and synchronisation.

Probably the biggest limitation on the use of k-point parallelism
is that due to system size. On increasing the size of the unit cell

Table 1
Run times for computing the PBE energy for Na3AlH6, with a total of 60 atoms and
10 k-points (first test system), using the implementation of k-point parallelisation
in VASP 5.2.2.

KPAR Cores Time (s) Speed-up

1 64 293 64
2 128 159 118.29
5 320 75 249.61

10 640 47 399.23

used by the calculation, fewer k-points are required in order to
converge the calculation (of energy or structure) to a given preci-
sion; and in the limit only a single k-point may be sufficient to
accurately represent the system. This limits what can be achieved
by k-point parallelism; but there are many examples where more
than one k-point is required [23–26]. In these cases, parallelisa-
tion over k-points is a useful technique as it is more efficient to
use the smallest unit cell and investigate different k-points, rather
than use a supercell. This is especially true when the total energy
calculation is only one part of a larger calculation, for instance in
a geometry optimisation.

3. Results: initial scaling performance

A number of smaller systems were used during the initial test-
ing of the scalability on the UK national HPC resource, HECToR,
before and after implementing the k-point parallelisation. Here we
report on three example cases:

1. A supercell of Na3AlH6, with a total of 60 atoms. Each run
uses 10 k-points and the PBE exchange-correlation functional
[27,28].

2. A unit cell of Litharge (α-PbO); each has only 4 atoms.
Here 108 k-points are used, generated by the Monkhorst–Pack
method, and again the PBE functional is employed.

3. A unit cell of Litharge (α-PbO), again with only 4 atoms, but
this time using 24 k-points and a hybrid functional containing
an exact exchange contribution [29], and where phonons are
calculated.

All runs have been performed on the phase 2b component of
the HECToR system: a large Cray XE6 system managed by UK’s
national supercomputing service HPCx. The nodes are based upon
AMD Magny-Cours processors, and contain 24 cores each clocking
at 2.1 GHz. There is 32 Gbytes of memory associated with each
node, and inter-node communication is via Cray’s Gemini network.
More details may be found at the HECToR web site [30]. To en-
sure a fair comparison of the new k-point parallel code with the
original for each run, an optimal value of NPAR has been found.
All times reported are total run times, i.e. not just the time for the
energy minimisation.

The run times for computing the total energy, based on the PBE
functional, for Na3AlH6, are shown in Table 1. This first test system
contains 60 atoms in the unit cell and 10 k-points. In these runs
the extra parallelism due to k points is exploited over and above
a base run on 64 cores of the original code, and speed-ups are
measured relative to this run where we assume perfect scaling.
The optimal value of NPAR for the all runs was found to be 4. It can
be seen that the speed-up obtained for this test case is very good,
and remarkably better than that previously obtained – see Fig. 1.
Without exploiting the extra level of parallelism over k-points, the
optimal values of NPAR were found to be 4, 8, 32 and 32 for 64,
128, 320 and 640 cores, respectively.

Similar behaviour is found for our second test system, com-
puting the PBE total energy for the four-atom unit cell of α-PbO,
see Table 2 and Fig. 2. A larger number of 108 k-points facilitate
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Fig. 1. Speed-up obtained on HECToR before (blue squares) and after (red diamonds)
implementation of k-point parallelisation within VASP 5.2.2 for computing the PBE
energy for Na3AlH6, with a 60-atom unit cell and 10 k-points.

Table 2
Run times for computing the PBE total energy for α-PbO with a unit cell of 4 atoms
and a Monkhorst–Pack set of 108 k-points (second test system) and using the im-
plementation of k-point parallelisation in VASP 5.2.2.

KPAR Cores Time (s) Speed-up

1 144 2141 144
2 288 1098 280.82
3 432 766 402.42
4 576 608 507.38
6 865 410 752.00
9 1296 279 1106.78

12 1728 216 1429.07
18 2592 150 2053.15
27 3888 106 2920.85
36 5184 88 3521.04
54 7776 65 4719.49

108 15,552 41 7510.26

Fig. 2. Speed-up obtained on HECToR before (blue squares) and after (red diamonds)
implementation of k-point parallelisation within VASP 5.2.2 for computing the PBE
energy for α-PbO, with a 4-atom unit cell and 108 k-points.

the exploitation of k-point parallelism. In fact excellent scaling is
observed up to around 4000 cores, and even above that notable in-
creases in speed are seen all the way up to 15,552 cores, whereas
without the level of parallelism over k-points there is no signifi-
cant reduction in CPU time when using more cores. Note that the
optimal values of NPAR for the latter runs were found to be 18,
18, 18, 36, 36 and 36 for 144, 288, 432, 576, 864 and 1728 cores,
respectively.

If the functional used includes a non-local Hartree–Fock exact
exchange term, which in itself is expensive to compute, it also cou-
ples together different k-points. Thus, additional communications

Table 3
Run times for computing the total energy using hybrid functional for the α-PbO
system with a unit cell of 4 atoms and a Monkhorst–Pack set of 108 k-points (third
test system) and using the implementation of k-point parallelisation in VASP 5.2.2.

KPAR Cores Time (s) Speed-up

1 256 14,674 256
2 512 7579 495.69
3 768 4979 764.44
4 1024 3790 991.19
6 1536 2552 1471.69
8 2048 1944 1932.04

12 3072 1400 2683.73
24 6144 1053 3567.13

between sub-groups of cores is required. However, as can be seen
from Table 3, the scaling is still extremely good up to 3000 cores.
Comparison of the scaling of our k-point implementation with the
original version of the code was, unfortunately, not possible as we
were unable to run the original on more than 256 cores. However
it is unlikely that its scaling will be as good as that seen for the
k-point code, and further illustrates how the implementation of
k-point parallelism allows the efficient exploitation of many more
cores.

4. Results

4.1. Dielectric function of epitaxially strained indium oxide

The calculation of optical properties is one of the most slowly
converging with respect to k-point sampling in the Brillouin zone
[31,32], which is a particular issue for semiconducting materials
with low carrier effective masses (high band dispersion), where va-
lence to conduction band separations vary greatly across k-space.
Therefore, ensuring that the calculated optical properties are con-
verged with respect to k-points is essential. Here, we are con-
cerned with indium oxide, which is primarily used as a transparent
conducting oxide in optoelectronic devices. Through a combina-
tion of computational and experimental studies, we have devel-
oped a deep understanding of the materials structural [33], elec-
tronic [34] and optical [35] properties. Of recent interest has been
the change in optical response for ultra-thin epitaxially strained
(111) In2O3 grown on a Y-stabilised ZrO2 substrate [36]. We have
modelled the system using a (111) oriented supercell, which is
strained in the ab plane (120-atom unit cell, 1056 valence elec-
trons, 1200 bands). The dielectric function is calculated within the
independent-particle approximation (based on the longitudinal ap-
proximation [31,37]) using the PBE exchange-correlation functional
[27]. We can assess the convergence through the change in the
high-frequency dielectric constant (ε∞) with respect to k-point
sampling. On the phase 2b HECToR system, using a standard com-
pilation of VASP 5.2, the maximum-point density possible within
the queue limit of twelve hours is 2 × 2 × 2 using 96 cores, while
using k-point parallelism this can be increased to 6 × 6 × 6 and
scale up to 1536 cores. As shown in Table 4, sampling at the
gamma point only results in a very poor result (ε∞ = 8.58), and
the value converges for denser k-point meshes towards a value
of ε∞ = 5.78 (in the hexagonal ab plane). The anisotropy is also
slow to converge: for coarser k-point meshes, the in-plane value
is smaller than the out-of-plane, which is reversed for the more
dense meshes. This case demonstrates very well the utility of
k-point parallelism in VASP for calculating the optical properties
of solids.

4.2. Solution energies of tetravalent dopants in metallic VO2

Vanadium oxide VO2 undergoes a transition from a monoclinic
structure to a rutile-like tetragonal structure when heated above
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Table 4
Calculated high-frequency dielectric constant of epitaxially strained indium oxide
(PBE functional) as a function of k-point sampling of the first Brillouin zone.

High-frequency dielectric
constant

k-point grid
(Gamma centred)

Irreducible
k-point grids

8.576 (ε⊥∞), 8.729 (ε‖∞) 1 × 1 × 1 1
5.927 (ε⊥∞), 5.996 (ε‖∞) 2 × 2 × 2 8
5.782 (ε⊥∞), 5.755 (ε‖∞) 4 × 4 × 4 36
5.781 (ε⊥∞), 5.743 (ε‖∞) 6 × 6 × 6 112

∼ 340 K [38,39]. While the low temperature phase is a semicon-
ductor, the high temperature phase is metallic, which is the basis
for the potential application of VO2 as a smart window coating:
in hot weather, the coating is metallic and will reflect most of the
infrared radiation, keeping the interior cool, while still letting the
visible light pass through; conversely, in cold weather the semi-
conducting film will allow the heat-carrying infrared radiation to
enter the building, reducing the need for heating. The transition
temperature of pure VO2 is clearly too high for room tempera-
ture regulation, but it can be decreased by doping with certain
elements, e.g. tungsten [40–42]. There is also considerable interest
in finding other stable dopants, which besides switching the tran-
sition temperature, are simultaneously capable of improving the
colour and optical behaviour of the VO2 films [43,44].

We consider here the stabilities of different tetravalent dopants
(M = Ti, Zr and Hf) in rutile VO2 in the dilute limit, with respect
to the formation of a separate oxide phase MO2, which can be
assessed by evaluating the solution energies:

W = E[Vn−1MO2n] − n − 1

n
E[VnO2n] − 1

m
E[MmO2m]

where n and m represent the number of formula units in the sim-
ulation cells for VO2 and MO2, respectively, and the total (free
electronic) energies E are calculated at the DFT level with peri-
odic boundary conditions, using VASP and the gradient-corrected
PBE functional [27]. In order to avoid interactions of the dopant
ion with its periodic images, a relatively large 2 × 2 × 3 supercell
was chosen for the simulation of pure and doped VO2. This sys-
tem contains 24 formula units and has a minimum dopant–dopant
separation of about 10 Å along the crystal axes. Furthermore, since
this phase is metallic, a dense k-point mesh is required for inte-
grations in the reciprocal space. Using the k-point parallelism in
VASP, we tested 4 × 4 × 4 (18 irreducible k-points) and 8 × 8 × 8
(75 irreducible k-points) meshes for pure VO2. The latter calcula-
tion was performed over 360 processors on the HECToR phase 2b
system, with a speed-up factor of approximately 13 compared to
the standard version running on 24 processors (ideal scaling would
correspond to a speed-up factor of 15). Since we found a difference
of less than 1 meV in the total energy of the supercell calcu-
lated using the two different meshes, the lower density (4 × 4 × 4)
mesh was employed for the doped cells. The reduction in symme-
try introduced by the dopant increases the number of irreducible
k-points from 18 to 21, and therefore the calculations of the doped
cell were performed on 168 processors, with KPAR = 7 groups (of
3 k-points each) running in parallel, on 24 processors each. All ge-
ometries were optimised until the forces on the ions were all less
than 0.01 eV/Å.

The calculated solution energies of Ti, Zr and Hf in VO2, with
respect to tetragonal (rutile) TiO2 and monoclinic (baddeleyite)
ZrO2 and HfO2 are shown in Table 5. We also show the relaxed
inter-atomic distances within the first coordination sphere of the
dopants. Of the three dopants considered, Ti4+ is the one that
incorporates more easily in the VO2 structure, which is not surpris-
ing considering that it has similar radius (0.60 Å) to V4+ (0.58 Å)
and that it forms an oxide with the same structure. The reversal
in the trend down the group between Zr4+ and Hf4+ is explained

Table 5
Solution energies and local geometry of tetravalent dopants in rutile VO2 – for com-
parison, the equilibrium V–O distances in pure VO2 are 2 × 1.95 Å and 4 × 1.91 Å.

Dopant W (eV) d(M–O) (Å)

Ti4+ 0.28 2 × 2.01, 4 × 1.95
Zr4+ 1.23 2 × 2.10, 4 × 2.07
Hf4+ 1.03 2 × 2.08, 4 × 2.04

Fig. 3. Equilibrium solubility limits of M = Ti, Hf and Zr in V1−xMxO2 with respect
to separation into MO2 phases.

by the lanthanide contraction effect [45], which leads to Hf–O dis-
tances shorter than expected. The calculated solution energies can
be employed to estimate the equilibrium solubility limits of the
dopants [46,47], that is, the maximum x in V1−xMxO2 that is ther-
modynamically stable with respect to MO2 phase separation, as
xs = exp(−W /kBT ), where kB is Boltzmann’s constant and T is
the temperature (Fig. 3). Of course, it is possible experimentally
to dope beyond the equilibrium limit using metastable synthesis
routes. However, the further from the equilibrium the more diffi-
cult it is in practice to achieve the desired dopant concentrations,
and therefore it can be expected that, while doping VO2 with Ti
is relatively easy (Ti-doped VO2 has been studied experimentally
by several authors, for example, see Ref. [48]), Hf and Zr doping
will be more problematic due to the formation of competing oxide
phases. This factor should be taken into account when consider-
ing the use of these dopants as a route to influence the luminous
transmittance of VO2 in the visible wavelength range [49].

4.3. Scaling of hydrogen on graphene with parallel k-points

Graphene has generated a huge interest from the materials sci-
ence community; for example, each year there are several thou-
sand papers mentioning graphene in the abstract. As a material,
graphene is very strong (some 100 times stronger than steel) [50].
Graphene is also a semi-metal (a semiconductor with zero band
gap) due to the touching of the conduction and valence bands at
the Fermi level. To be useful in semiconductor electronics, a band
gap is required, which can be created by chemical doping. Adsorp-
tion of hydrogen opens the band gap and, in particular, graphane,
which is fully hydrogenated graphene, has been shown theoreti-
cally and experimentally to have a finite band gap. Hydrogen at
graphene is also used as an important model system for formation
of molecular hydrogen in the interstellar medium of space.

DFT is frequently used to study the physical and electronic
properties of graphene. However, the presence of a complex elec-
tronic structure and a Dirac point at the Fermi level mean that
accurate calculations frequently require the sampling of large
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Fig. 4. The effect of KPAR on wall-clock time for a p(3×3) sheet of graphene, where
the relative time is (wall-clock time)/(wall-clock time with KPAR = 1); KPAR has
values of 1 (no parallelism over k-points), 2, 3 and 6 and where a total of 6 k-
points was used in the calculations. The red (solid) line is for the number of MPI
processes kept constant, and KPAR is changed. The green (dashed) line is for the
number of MPI processes scaled with the value of KPAR. In both cases the NPAR
parameter is set to 2.

number of k-points in the Brillouin zone. Furthermore, a large
(usually 15 Å) vacuum, required in plane wave codes to isolate
the periodic images of graphene in the direction normal to the
surface plane, makes calculations relatively expensive for larger su-
percells. By conducting DFT calculations with varying cell sizes and
k-points of a hydrogen adatom chemisorbed on graphene, Hammer
et al. [51] found that the supercell size can be kept small as long
as enough k-points are used.

We use a p(3 × 3) cell which contains 18 carbon atoms and a
vacuum in the z-direction of 15 Å. Sampling of reciprocal space
was done using a 5 × 5 × 1 Monkhorst–Pack grid which is con-
sidered well converged, since it gives a binding energy for a
chemisorbed hydrogen atom within 20 meV of the p(7 × 7) cell
[51]. We also used a 13 × 13 × 1 k-points mesh, which gives a
binding energy within 10 meV of the p(7 × 7) cell. This results
in 5 irreducible k-points for the 5 × 5 × 1 mesh, and 21 for the
13 × 13 × 1 mesh; however to allow us to consider more values
of KPAR we add in an extra k-point in each case. We made use of
the PBE exchange-correlation functional throughout [27]. Projector
augmented wave (PAW) potentials were used [52], and the wave-
functions of the valence electrons were expanded in terms of a
plane wave basis set. We used 48 cores with an NPAR of 2, which
we found to be the maximum number of parallel processes we
could use while still achieving acceptable scaling. We will report
on two types of efficiency for this system: the effect on scaling
when using the k-points parallelism without increasing the num-
ber of CPUs, and the scaling when the number of CPUs is increased
in line with the number of k-point parallel groups (KPAR).

The relative times (i.e. the wall-clock time relative to the time
for KPAR = 1) for both cases are shown in Figs. 4 and 5. When the
number of cores is kept constant (solid red line) at KPAR of 2 the
wall-clock time decreases slightly; however larger values decrease
the parallel efficiency. It should be noted that changing KPAR, but
keeping the number of cores constant will probably require that
NPAR is changed to achieve optimal results, which, however, goes
beyond the scope of the current work. When the number of cores
is scaled relative to KPAR (dashed green lines of Figs. 4 and 5)
the wall-clock time is considerably reduced. At KPAR = 2 scaling
is very good; however, at higher KPAR values the scaling efficiency
is poor, but the time-to-science wall-clock time of the code is still
reduced.

Fig. 5. The effect of KPAR on wall-clock time for a p(3×3) sheet of graphene, where
the relative time is (wall-clock time)/(wall-clock time with KPAR = 1), KPAR has
values of 1 (no parallelism over k-points), 2, 11 and 22 and where a total of 22
k-points are used in the calculations. The red (solid) line is for the number of MPI
processes kept constant, and KPAR is changed. The green (dashed) line is for the
number of MPI processes scaled with the value of KPAR. In both cases the NPAR
parameter is set to 2.

There are two ways to use the k-points parallelism: either to
scale an existing calculation to more cores, reducing the time for
the calculation (time-to-science), or to improve the efficiency of a
calculation to keep the overall cost low while still getting good per-
formance, as long as NPAR is also adjusted. In this model k-point
parallelism provides a means to scale beyond 48 cores, when other
modes of parallelism (e.g. over bands and g-vectors) have been
exhausted. This approach is particularly useful in situations where
a job cannot finish before the maximum permitted run time for a
job on a managed computer, and importantly for the increase in
massively parallel computers.

5. Conclusions

We have introduced k-point parallelism into VASP 5. Initial
results suggest that for small to medium size systems the im-
provement to scaling over many processors, in particular for our
test cases on HECToR, allows many more cores to be exploited
efficiently and a marked reduction in times to solution. This im-
provement will allow modelling of many important systems, and
three topical examples have been presented including the optical
properties of transparent conducting oxide in optoelectronic de-
vices, the solution energies of metallic systems and the electronic
properties of graphene. The implementation allows for efficient us-
age of massively parallel supercomputers.
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