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Abstract

The effect of coastal upwelling on the recruitment and connectivity of coastal marine populations has rarely been
characterized to a level of detail to be included into sound fishery management strategies. The gooseneck barnacle
(Pollicipes pollicipes) fishery at the Cantabrian Coast (Northern Spain) is located at the fringes of the NW Spanish Upwelling
system. This fishery is being co-managed through a fine-scale, interspersed set of protected rocks where each rock receives
a distinct level of protection. Such interspersion is potentially beneficial, but the extent to which such spacing is consistent
with mean larval dispersal distances is as yet unknown. We have simulated the spread of gooseneck barnacle larvae in the
Central Cantabrian Coast using a high-resolution time-series of current profiles measured at a nearshore location. During a
year of high upwelling activity (2009), theoretical recruitment success was 94% with peak recruitment predicted 56 km west
of the emission point. However, for a year of low upwelling activity (2011) theoretical recruitment success dropped to 15.4%
and peak recruitment was expected 13 km east of the emission point. This is consistent with a positive correlation between
catch rates and the Integrated Upwelling Index, using a 4-year lag to allow recruits to reach commercial size. Furthermore, a
net long-term westward larval transport was estimated by means of mitochondrial cytochrome c oxidase subunit I (COI)
sequences for five populations in the Cantabrian Sea. Our results call into question the role of long distance dispersal, driven
by the mesoscale processes in the area, in gooseneck barnacle populations and point to the prevalent role of small-scale,
asymmetric connectivity more consistent with the typical scale of the co-management process in this fishery.
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Introduction

Most marine benthic species have a pelagic dispersal stage

which is essential for their persistence. Dispersal and further

recruitment to the benthic habitat allows for connectivity among

disjunct populations, leading to metapopulations which are

globally viable in spite of the possibility of local extinctions [1,2].

Thus, connectivity is a key factor for population persistence, which

explains the rapid expansion of research on larval dispersal and

connectivity in marine populations [3]. Much of this research has

been focused on large and mesoscale (100s of km) connectivity

[4,5], but less on scales of a few kilometers [6,7]. Mesoscale

connectivity is consistent with the typical management scale of

finfish populations [8]. However, for coastal benthic organisms,

the concept of connectivity includes post-dispersal processes (such

as settlement, survival of early stages and reproduction) which take

place at the shore and could be totally decoupled from those

affecting larvae in the pelagic realm. In fact, many benthic

populations are generally managed at much smaller scales and do

not adapt well to finfish management tools [9]. For example, an

emerging trend in the conservation of benthic resources incorpo-

rates co-management practices involving exclusive Territorial

User Rights for Fishing (TURFs) in exchange for shared

responsibility on resource management [10,11]. This kind of

management practices favor the incorporation of local ecological

knowledge into the regulations, which very often comprises aspects

of the spatial distribution of the resource and of the fishermen’s

activity spanning a fine scale from a few meters to several

kilometers. But, does the management scale in these TURF

systems have the potential to interact with the connectivity

patterns of the resource? And, are the dispersal scales of benthic

resources consistent with the scale of co-management practices?

The gooseneck barnacle (Pollicipes pollicipes) fishery in the

Cantabrian Sea offers a good opportunity to test these ideas.

The fishery is located at the fringe of the NW Spanish Upwelling

system, where frequent summer northeast winds cause the
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westward movement of surface waters and the vertical advection

of deep water towards the coast [12,13]. This economically

important fishery is currently being managed across all the

Atlantic Iberian Coast, including Portugal, Galicia (NW coast of

Spain) and the Northern Spanish Cantabrian Coast which

comprises Asturias, Cantabria and the Basque Country

[10,14,15,16]. In the Asturian coast (Cantabrian Sea), the resource

is being co-managed at a remarkably fine-scale, with regulations

affecting the status of single rocks as small as 30 m (Fig. 1). The co-

management regime requires that the fishermen keep daily records

of barnacle landings within each rock, offering an invaluable

resource for research.

Apart from direct fishery data, a previous analysis of sequences

of Cytochrome Oxidase subunit I of the mitochondrial DNA

(COI) suggested that gene flow within Cantabrian gooseneck

barnacle populations is governed by mesoscale hydrographic

processes [17]. According to these authors, an eastwards net larval

flow should be associated to the existence of the Iberian Poleward

Current (IPC), a high salinity filament which flows from south to

north along the slope of the Portuguese, Spanish and French

shelves. Later work on the genetic structure and phylogeography

of P. pollicipes, using a finer sampling scheme, confirmed that NW

Atlantic populations are highly connected, pointing to local drift

events and isolation-by-distance as the main causes behind the

population structure [18].

A different approximation to the question of population

connectivity has also been undertaken by the construction of

biophysical models, where larval dispersion is simulated in a

measured or reconstructed oceanographic flow field [19,20]. With

some level of simplification, these models have been used to

extract major patterns of dispersal among populations of marine

organisms (see [21] for a review). However, these models have yet

to be implemented in the Cantabrian Sea.

In this paper, we address the potential effects of Ekman

transport on larval dispersal and productivity of gooseneck

barnacle populations. First, we have used data collected with a

moored current meter placed at the Central Cantabrian Coast to

simulate the dispersal of P. pollicipes larvae. The simulations have

been done for one summer of high (2009) and one summer of low

(2011) upwelling activity, assuming the most likely stage-specific

vertical distribution of the larvae. This procedure provided insight

into both alongshore and cross-shore flow components associated

with Ekman transport. Additionally, the predicted cross-shore

component, responsible for larval recruitment to the coast, was

estimated using catch rate records collected by the fishermen.

Finally, the alongshore component, responsible for population

connectivity along the coast, was inferred by estimation of the

population migration rates according to previously published COI

sequences. Our results indicate a small-scale, asymmetric connec-

tivity in gooseneck barnacle populations, which matches the

current co-management scale in the area.

Materials and Methods

Biological background for the larval dispersal model
We have simulated the dispersal of P. pollicipes larvae following

the advection-diffusion model by White et al. [20] and Siegel et al.

[19]. In essence, they modeled the trajectory of the larvae as

embedded in a 2D horizontal flow field. We have modified this

approach by including a surface and a deep layer separated by the

thermocline, because those layers may experience contrasting

water circulation associated to coastal upwelling [22] and because

Figure 1. Map of the Asturian gooseneck barnacle management plan. Frames represent the seven fishers’ guilds. Grey dots indicate fishing
areas with no bans and red dots areas with a total ban. The light grey square indicates the meteorological station and the light grey triangle the
location of the ADCP. Background colors indicate the 2009 (upper map) and 2011 (lower map) Sea Surface Temperature (SST) averaged for the period
incorporated in our model (see methods). SST data were obtained from the Terra MODIS satellite at a 4 km resolution.
doi:10.1371/journal.pone.0078482.g001
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there is evidence of ontogenetic vertical migration behavior in

barnacle larvae [23].

Gooseneck barnacle reproduction is asynchronous [16,24]; each

individual may brood up to 4 times per spawning season [24]. For

the model, we have assumed a uniform release of larvae from the

1st of July to the 2nd of October, a period which roughly covers the

main spawning peak [25]. In the simulations, a constant number

of larvae were released every 30 minutes and their movement

followed during 60 days, which corresponds to the pelagic larval

duration according to life cycle studies [16,26]. Thus, a total of

4465 larval release events were followed each year and their

diffusive and advective movements averaged to arrive at a global

dispersal kernel.

P. pollicipes larvae go through six naupliar stages which are

adapted for dispersal, and one cyprid stage which does not feed

and specializes in settlement [27]. There is evidence of ontogenetic

vertical migration in some species of decapods [28] and in other

stalked barnacles, with nauplii and cyprids occupying the surface

and bottom layers, respectively (i.e. Pollicipes polymerus) [23].

Moreover, P. pollicipes nauplii exhibit both positive phototaxis

and negative geotaxis (Gonzalo Macho, personal communication).

Accordingly, in our simulations we have allowed the larvae to

spend their six naupliar stages (approximately 30 days) [29] at the

surface layer (0–10 m) and to sink and remain at the bottom layer

(10–20 m) until completion of the planktonic phase as cyprids

(Fig. 2).

Physical background for the dispersal model
The larval dispersal process was simulated by means of a

Gaussian probability density function, defined as

Dij~(1=(LS

ffiffiffiffiffiffi
2p
p

)) exp ((dij{LA)2=(2LS
2))

where Dij is the probability density that a larvae released at point i

reaches point j, dij is the distance between points i and j, LS is the

stochastic length scale and LA is the advective length scale [20].

The advective length scale refers to the net displacement of the

larval population along the coast and across the shelf due to the

directional (advective) component of the flow. The diffusive or

stochastic distance indicates the extent to which the bulk of larvae

have been spread around their average position by the turbulent

component of the flow, given a certain decorrelation time scale

(12 h at the coast) [19]. Separate simulations were run for the

alongshore (X) and the cross-shore (Y) components of the flow,

and the resulting probability fields were then combined to

generate a 2D dispersal kernel. The probability function on the

X-Y plane was calculated as the product of the proportion density

functions on X and Y assuming they were uncorrelated [30]. This

assumption was checked by means of linear regression analyses

between currents on both axes for all depths during the 2009 and

2011 larval seasons (R2<0 in all the cases). The total area under

the normal curve must equal 1, i.e.

X
(Dijdx)~1 or

X
(Dijdy)~1

being dx and dy distances on X and Y, respectively.

In the across shelf direction, the coast is considered a ‘‘sticky

boundary’’, that is, a domain where larvae are retained by means

of active settlement behavior and/or reduced water motion [31].

Thus, inland (south of the shoreline) probability densities Dij (i.e.,

Y,0) were removed and added to those at the coast to preserve

the
X

(Dijdy)~1 condition.

In situ current measurements can be used to estimate the

advective and diffusive length scales of the dispersal process. Our

Figure 2. Schematic representation of gooseneck barnacle larvae transport. Nauplii (days 0 to 30, surface layer) and cyprids (days 30 to 60,
bottom layer) are transported by the prevailing nearshore currents during high (left) and low (right) upwelling periods. Arrow thickness and symbol
sizes are proportional to the average current velocities obtained from actual measurements (see figure 3). During day 0, stage I nauplii are released
from the adult habitat to the surface layer. At day 30, stage VI nauplii turn into cyprids and experience an ontogenic vertical migration to the bottom
water layer. At the end of their pelagic life at day 60, competent cyprids are transported to the adult habitat by southbound currents.
doi:10.1371/journal.pone.0078482.g002
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larval dispersal models were fed with in situ current velocities

measured every 30 minutes in 10 two-meter depth cells using a

Nortek Aquadopp Acoustic Doppler Current Profiler (ADCP)

moored at 400 m off the Cudillero coast, N. Spain (43u 34.189N

6u8.439W; Fig. 1) at a 20 m depth. ADCPs do not capture the

entire water column; therefore, we extrapolated the nearest

measurements (2–4 m depth cell) to the surface cell (0–2 m)

[32]. We then calculated the mean alongshore and cross-shore

currents experienced by P. pollicipes larvae and their standard

deviations for every possible spawning event during the 2009 and

2011 spawning seasons, that is, one event every 30 minutes taking

into account their position in the water column (see preceding

section). The currents experienced by each group of larvae during

their pelagic larval duration (30 days in the surface layer followed

by 30 days in the bottom layer) were averaged to obtain a mean

advective length scale (LA), and its standard deviation was used to

calculate the stochastic (LS) length scale [20].

Dispersal kernels for 2009 and 2011 were determined by

ensemble averaging for all events in search of inter-annual

differences in spatial dispersal patterns. In addition, to observe

the general flow structure, alongshore and cross-shore velocity

profiles were generated for both years using currents averaged

over the entire larval season (1 July-31 November) for every 2 m

depth cell (Fig. 3). Calculations and data processing were done

with R 2.15.3 (R Development Core Team 2012), using the

package ggplot2 (Wickham 2009) for plotting.

Characterization of the upwelling activity
Ekman transport in this region was characterized using two

indexes: a daily upwelling index (DUI) and an integrated

upwelling index (IUI). DUI is the average volume of water

displaced per second and kilometer of coastline (m3 s21 km21). To

calculate the DUI we have followed Bakun [33] as in Llope et al.

[34] for the Cantabrian Coast, by using wind data collected at the

Asturias airport meteorological station (43u339N, 06u019W, 127 m

above sea level; Fig. 1) between 1969 and 2011. Wind intensities

below 7 km h21 were set to 0, since these velocities were below the

detection of early sensors. Positive upwelling index indicates that

the surface layer is displaced off the coast and replaced by deeper

water (i.e. upwelling process) while negative values indicate the

reverse (i.e. downwelling). To summarize seasonal oscillations in

the upwelling activity DUI data were fitted to a Generalized

Additive Model (GAM)

DUIt~f (t)z"t

Where t is the day of year, f represents the smooth term (a thin

plate regression spline), and et is the noise term [35]. To make the

annual cycles comparable, we fixed the effective degrees of

freedom of the model at 4, resulting in relatively smooth curves

that give the general seasonal pattern. Model fitting was done

using the mgcv package for R [36,37]. The IUI (total net volume of

water displaced per kilometer of coastline per gooseneck barnacle

recruitment season) was obtained by adding all daily cross-shelf

Ekman transport measurements from June to October.

Gooseneck barnacle catch rates
Monthly gooseneck barnacle landings and effort (days per

fisherman) data collected during the fishing season (October-April)

by the fishermen within each of 6 Asturian co-management plans

were obtained from 1998 to 2011 (Fig. 1). The Luarca co-

management plan dataset was incomplete and therefore had to be

excluded from the analysis. Total catch rates for all 6 plans were

determined as the sum of the landings divided by the sum of the

effort in each fishing season. In the 2004–2005 fishing season a

2 kg reduction in the Total Allowable Catch (TAC) per fisherman

was decreed. Thus, we modeled the effect of TAC change and IUI

on catch rates using multiple linear regression models where data

pre and post TAC change were identified with a dummy variable.

The estimated time between settlement and commercial size in

gooseneck barnacles (21.50 mm rostro-carinal length) [38] ranges

between 1 [26] and 5 years [39]. Thus, models were generated

with lags between 1–5 years. A Bonferroni correction was applied

to avoid excessive Type I error [40]. To ensure the accuracy of the

coefficients, we tested that all the assumptions of a linear regression

were met. Additionally, a model selection was performed using the

adjusted R2, the Akaike Information Criterion (AIC) and the

Akaike weights. The variance explained purely by the IUI was

determined by variance partitioning analysis following the

approach by Legendre and Legendre [41]. Analyses were done

using the stats package in R.

Gene flow estimation and model comparison
P. pollicipes mitochondrial cytochrome c oxidase subunit I (COI)

sequences from 5 locations of the Cantabrian coast were obtained

from a previous study of Campo et al. [18]. Overall, we used 243

sequences coming from 2 populations of the Basque Country

(Jaizkibel and Monpas); 2 populations of Asturias (Ribadesella and

Punta de la Cruz) and 1 population from Galicia (Corme) (Fig. 4).

To estimate migration between populations we applied a Bayesian

approach to the COI sequences using software MIGRATE-N

v3.216 [42,43]. Migration rates were estimated as the effective

female population size in each sampling site (Nef) multiplied by the

migration rate (m) from and towards each site. Effective number of

females in each population was estimated by the software,

computing the Watterson estimator (h~Nef
:m) using coalescent

equations [44], which does not need a priori knowledge of the

Figure 3. Mean alongshore and cross-shore in situ current
velocities. Current velocity measurements for the gooseneck barnacle
main spawning season (July-November) during a year of high (2009)
and low (2011) upwelling. Vertical dashed lines separate westward
(negative) from eastward (positive) alongshore currents and southward
(negative) from northward (positive) cross-shore currents. The horizon-
tal line separates the two water layers considered in the models.
doi:10.1371/journal.pone.0078482.g003
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mutation rate of the locus (m). Migration rate from and towards

each site was derived from its mutation-scaled migration rate value

(M~m:m).

Analyses were first run with a full migration matrix in which

gene flow was unrestricted between neighboring populations. To

explicitly test for eastward or westward larval dispersion, we also

tested two custom unidirectional matrices in which gene flow was

only allowed in one direction in every population. All computa-

tions on these matrices were performed with two long Markov

chains of 10 million generations and a static four-chain scheme

with default heating values. Default uniform priors and slice

samplers were used for the M and h parameters, and starting run

values were estimated from the FST measure as computed by the

software.

Finally, likelihood scores for all migration models were obtained

by a thermodynamic integration with Bezier approximation [45],

as implemented in the software. Direct comparison of models was

then assessed by manually transforming these likelihood scores into

Bayes Factors [46] which was performed using the method

described in Beerli and Palczewski [47].

Results

Upwelling regime in the Central Cantabrian Coast
The fitted DUI general cycle in the Cantabrian coast for the last

40 years is a unimodal curve with positive values during the

gooseneck barnacle recruitment season (p-value ,0.0001; Fig. 5).

This process has been observed by other authors who have stated

the appearance of upwelling processes throughout the summer

period in the Cantabrian Sea [12,48]. The values for 2009 follow

the general pattern (p-value ,0.0001); in contrast, 2011 presents a

bimodal shape with positive values both at the beginning and the

end of the recruitment season, but negative in the middle (p-value

,0.0001) (Fig. 5). This difference is also apparent in the sea

surface temperature, which was approximately 3uC higher in 2011

than in 2009 (Fig. 1). In 2011, upwelled water masses and their

characteristic onshore flow were restricted to the bottom water

layer (Fig. 2, Fig. 3) and offshore exportation at the upper layer of

the naupliar stages may occur. In contrast, upwelled waters

moving westwards and shorewards spanned almost the entire

water column in 2009 (Fig. 2, Fig. 3) due to the intense upwelling

activity registered (Fig. 1, Fig. 3).

Simulations of larval dispersal
Simulated net mean displacement of the larval population for

2009 was westwards (alongshore LA = 256.12621.8 km,

mean6SD) and landwards (cross-shore LA = 267.79647.3 km),

while in 2011 it was slightly eastwards (alongshore

LA = 12.9569.8 km) and seawards (cross-shore LA = 31.616

8.4 km). 2011 experienced lower flow variability than 2009, with

alongshore LS (24.29462.15, 42.79067.77, respectively) and

cross-shore LS (28.47863.57, 46.64569.17), leading to less

dispersed larval distributions (Fig. 6). Examples of the modeled

larval dispersal events can be viewed in the animations (time-series

of raster images) for the first event of each season (July 1st to

August 29th 2009 and 2011; see Animations S1 and S2).

High probability densities (Dij) were obtained far from the coast

in 2011 (22.8861025 km22), which entails potential larval losses

to the adult population (Fig. 6). However, due to the ‘‘sticky

boundary’’ condition imposed to the shoreline in our models (see

Figure 4. Schematic diagram of the MIGRATE model results superimposed on a map of the Cantabrian Coast. The map shows the
effective number of migrants per generation (Nef?m, numbers within squares) and the direction of migration (arrows). A: Full model; B: Eastward
model, westward dispersal set to zero; C: Westward model, eastward dispersal set to zero.
doi:10.1371/journal.pone.0078482.g004
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methods) Dij maximum values (49.961025 km22) were reached at

the coast (Fig. 6). In 2009 the probability density function was

constrained to the coast and displaced 56 km westwards of the

release point. Maximum Dij values for both breeding seasons were

reached at the shore indicating potential recruitment to the adult

populations. However, Dij values at the coast in 2009 were 3 times

higher than in 2011 (173.861025 km22 compared with

49.961025 km22, Fig. 6), entailing a greater theoretical recruit-

ment success in 2009 (94%) than 2011 (15.4%). We tested the

hypotheses of our models, westward bias and increased recruit-

ment during upwelling years, through gene flow patterns and

catch rate data.

Migration rates for Cantabrian gooseneck barnacle populations

were estimated to test the alongshore component obtained from

our simulations. Gene flow patterns inferred by MIGRATE are

shown in Figure 4 for the three computed models. Migration rates,

being far higher than one individual per generation, are indicative

of a high historical connectivity between all populations [49], but

values estimated in the full model (A) suggest a dispersal pattern

biased towards the west. Comparison of all models indicate that

the full model is the most appropriate for our dataset followed by

the westward and eastward models according to their likelihood

(21945.63, 21984.14, 22009.86, respectively), the natural

logarithm of their Bayes factors (0, 277.02, 2128.47) and their

resultant Bezier probability (<1, 3.54610234, 1.612610254).

The effect of upwelling intensity on population recruitment (i.e.

cross-shore component in our simulation) was inferred through

catch rate data. Using Akaike Information Criteria (AIC) and

adjusted R2 for model selection, we determined that the 4 year

lag model best describes the relationship between IUI and catch

rates using TAC as a dummy variable (Table 1). The model

explains 94% of the variability in catch rates. After applying a

Figure 5. Fitted, Daily Upwelling Index vs. Julian Day GAM
regression lines. Regression lines represent the whole wind data
series (1969 to 2011, black) and years of high (2009, blue) and low
upwelling activity (2011, red). Dotted lines depict the associated
standard error. The grey horizontal line covers the gooseneck barnacle
recruitment season.
doi:10.1371/journal.pone.0078482.g005

Figure 6. Distribution kernels for P. pollicipes larvae. Distribution of the proportion of gooseneck barnacle larvae (km226105) released at the
origin of coordinates which are competent to settle after completing their pelagic larval duration (60 days, see methods). Larvae not located at the
coast are considered lost to the population. Each pixel has 5 km2.
doi:10.1371/journal.pone.0078482.g006

Figure 7. Relationship between catch rates per fishing season
and the Integrated Upwelling Index 4 years before. Dots
represent years before the change in TAC (hollow) and after (shaded).
Dashed lines indicate the standard error.
doi:10.1371/journal.pone.0078482.g007

Gooseneck Barnacle Dispersal and Productivity
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Bonferroni correction both explanatory variables TAC (p-

value = ,0.00001) and IUI (p-value = 0.005), remained sig-

fnificant. IUI displayed a significant positive correlation with

catch rates (Fig. 7). The results from our model were

Catch rates~f0:24|IUIz6:125 if TAC~6kg

0:24|IUIz6:918 if TAC~8kg
This corresponds with an increase in catch rates of 0.24 kg

day21 for every km3 displaced per km of coastline during the

recruitment season 4 years before. According to the variance

partitioning analysis, TAC explains 90% and IUI 12% of the

variance in catch rates.

Discussion

Asymmetric connectivity patterns within gooseneck
barnacle populations

Our genetically inferred migration rates (Fig. 4) indicate a high

level of gene flow among Cantabrian Sea P. pollicipes populations; a

conclusion consistent with those of Campo et al. [18], using

phylogenetic methods on the same dataset, and Quinteiro et al.

[17], based on samples collected along the full geographical range

of the species. Although any inferences of gene flow based on a

single locus should be taken with caution [50], the absence of

recombination and high mutability of mitochondrial loci, such as

COI, makes them useful for inferring patterns at local scales [51],

especially when testing the fit of particular models [52], as is our

case.

According to Quinteiro et al. [17], genetic patterning of P.

pollicipes is a consequence of long range larval dispersal driven by

the IPC, a slope current which circulates in an eastwards direction

in the Cantabrian coast. However, this hypothesis is at odds with

the result of our migration rate analysis, which points to the

prevalence of a westwards flow. Certainly, the IPC is a major

structuring agent of planktonic populations in the Central

Cantabrian Sea [34,53,54]. It is a seasonal structure characteristic

of late autumn and winter that reaches its maximum extension by

the end of the year [55,56]. However, gooseneck barnacles

reproduce and release their larvae mainly between April and

September [16,24], a period when the IPC is at its lowest and

coastal upwelling at its highest [13,57]. Furthermore, the IPC is

usually far from the thin strip of nearshore water where the larvae

are released and recruited. Thus, it is unlikely that the IPC plays a

major role in larval dispersal of this species, which rather depends

on summer hydrography, and more specifically on the activity of

the NW Spanish Upwelling system, which in this area is highly

variable both within and between years [57].

The westward-biased connectivity pattern, which is even seen in

the unrestricted migration rate model, suggests that the structure

observed in the larval dispersal kernel persists in the adult

population. Thus, the recurrence of upwelling may not only define

the spatial scale and direction of the dispersal process but also the

genetic structure of the barnacle metapopulation. Such an effect of

environmental oceanic conditions on genetic patterning has been

observed in other species with a pelagic dispersal stage [58,59,60],

and while its influence does not seem remarkable in mesoscale or

large-scale space [61], it might have also been underestimated in

local processes of population differentiation and patterning for

several species [62].

The asymmetrical connectivity pattern observed in our results is

consistent with recent findings by Nolasco et al. [63] and

Domingues et al. [64] in the western Iberian Peninsula. These

authors employed a biophysical simulation to analyze connectivity

among populations of Carcinus maenas. Their results indicate a

southward bias of approximately 61 km in a 9-year average

dispersal kernel. Larval dispersal patterns are attributed to the

effect of summer upwelling events in the area. Our results for a

year of high upwelling activity (2009) match both the magnitude

(56 km) and asymmetry in larval dispersal (Fig. 6) determined by

these authors; providing further evidence against IPC-mediated

connectivity patterns for gooseneck barnacle populations in the

Iberian Peninsula.

Upwelling and recruitment
Active coastal upwelling during the gooseneck barnacle

recruitment season has been the most frequent situation during

the last 40 years in the Cantabrian Sea (Fig. 5). Other authors

have stated the appearance of upwelling processes throughout the

summer period in the Cantabrian Sea [12,48]. Typical summer

upwelling circulation in the region is characterized by a westward

flow driven by northeasterly winds [65]. This is consistent with the

direction of alongshore dispersal calculated with the ADCP data

for both years (Fig. 6). However, although they agree with the

expected oceanographic patterns, it must be taken into account

that the dispersal kernels are based on current measurements for

only 2 years, 2009 and 2011, at a single location. Coastal

dynamics are highly variable in our system [34]; hence, a single

mooring 400 m away from the coast might not be able to

accurately represent the nearshore dynamics for the entire coast.

According to the classical paradigm of upwelling circulation,

strong advective surface flow off the coast associated with

upwelling activity leads to larval export towards the open ocean.

In this scheme, it is only through relaxation of the upwelling that

the exported larvae have any chances of recruiting to the coastline

by reversion of the surface water flow [66,67]. In contrast, our

biophysical simulation predicts increased recruitment during

strong upwelling years (Fig. 6). In situ current measurements for

2009 (intense upwelling year) reveal an onshore return flow across

the water column (Fig. 3) which should promote a nearshore

retention of larvae. This type of flow during intense upwelling

events has been previously documented in the area [68]. In fact,

this onshore return flow is common in some upwelling systems at

narrow shelves and sloping bottom profiles [69], such as the

Cantabrian Sea. Our results agree with recent findings in the

western Iberian Peninsula [63] and northern California [70],

where the interaction between upwelling activity and active

vertical swimming behavior favors recruitment by retaining larvae

close to the coast.

Furthermore, Pavón [16] observed a strong correlation between

northeasterly winds, responsible for summer upwelling episodes in

the Cantabrian Sea, and recruitment of P. pollicipes in 2 locations at

the western Asturian coast. Likewise, a correlation between

recruitment and upwelling has been observed for P. pollicipes in

Cabo Sines, Portugal [39] and for P. polymerus in the Southern

Table 1. Comparisons for the model (catch ratesi = a+ bIUIi
+TACi+ei) using 1–5 year lags in IUI.

Model p-value Adj. R2 AIC AIC weight

1 year lag 0.0002 0.7891 20.7664 0.0007

2 year lag 0.0001 0.8058 21.8366 0.0012

3 year lag 0.0001 0.7964 21.2270 0.0009

4 year lag ,0.0001 0.9308 215.2442 0.9961

5 year lag 0.0001 0.8011 21.5263 0.0010

doi:10.1371/journal.pone.0078482.t001
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California Bight [71]. Thus, our results point to the importance of

the vertical distribution of barnacle larvae and of its interactions

with the nearshore hydrography as a determinant of their

recruitment.

Our results also indicate that the effect of upwelling on

gooseneck barnacle recruitment will have consequences on the

productivity of this species in the area. Most of the variability

found in Asturian gooseneck barnacle catch rates is explained by

changes in the total allowable daily catch, which changed in 2005

from 8 to 6 kg per day per fisherman (Fig. 7). However, all the

remaining variability (12%) is explained by the IUI, which suggests

that fluctuations in recruitment rates predicted by our biophysical

model and those observed by Pavón [16] in the Asturian Coast

translate to variations in the adult population. In our optimal

model, a time lag of 4 years was allowed between the IUI (i.e.

recruitment of the larvae) and the catch rate series (Table 1).

Unlike P. polymerus, whose age at sexual maturity and commercial

size are known (1 and 5 years, respectively) [72], estimates of age

at commercial size in P. pollicipes are highly variable [16,26,38,39],

with an average of 3.4 years, when considering their different

growth rates estimates. This is fairly consistent with the time lag of

the best scored of our alternative models (Table 1). Therefore, a

year of active upwelling should enhance the production of

catchable P. pollicipes 4 years afterwards.

Management implications
Sustainable management of gooseneck barnacle fisheries in the

western Cantabric coast is carried out through individual daily

quotas and partial closures of groups of rocks [10,16]. The timing

and exact location of each closure is decided each year through

consensus among the administration and the fishermen belonging

to each of the 7 co-management plans, demonstrating a model

example of adaptative management. Total bans are spaced

heterogeneously from 0.2–20 km with a length between 0.1 and

3 km for each area. These bans are implemented exclusively in

overharvested or economically important areas to prevent over

exploitation (Fig. 1). This strategy avoids a decrease in the

exploitable stock and protects from population ‘‘washout’’ [73] in

the target area, thanks to the effect of the diffusive component of

the flow which allows a small proportion of larvae to settle at the

emission point (Fig. 6).

Despite the continuous efforts to prevent the overexploitation of

gooseneck barnacle fisheries, aspects such as larval dispersal scale

and direction have not been taken into account in the co-

management system. Our results suggest that when developing

management guidelines concerning the location and distribution

of bans, a geographically biased dispersal pattern should be

acknowledged. Protection of specific target areas by means of

closures should be complemented with bans in rocks located to the

east of those areas. Likewise, to determine areas with a high yield,

catch rates for the fishing season can be estimated using the TAC

for the year and the IUI in the recruitment season 4 years before.

Furthermore, in our biophysical simulations typical P. pollicipes

dispersal distances ranged between 10 and 60 km (Fig. 6), thus

local conservation strategies have the potential to interact with

population persistence. The Asturian gooseneck barnacle man-

agement plan is an ideal place to develop these strategies

considering the active co-management system in the area and

their rotating rock closure strategy (Fig. 1). A network of total bans

can be established in the co-management system by retaining their

current size but redistributing the bans from clusters to evenly

spaced rock closures at the gooseneck barnacle dispersal scales.

These areas can act as temporal small-scale marine protected

areas where larvae can disperse among reserves, ensuring the

persistence of the population. A similar reserve distribution has

been suggested by Hastings and Botsford [74], for species with a

pelagic larval stage and sessile adults, as the optimal reserve

arrangement to achieve an increased fisheries yield and at the

same time ensuring the sustainability of populations. This is also

consistent with findings in Gaines et al. [75], which indicate that

multiple reserves are more effective than single reserves of the

same total size in areas strongly affected by currents, such as the

Cantabrian Sea.

Our results reveal a clear role of upwelling on P. pollicipes larval

dispersal and population connectivity in the Cantabrian Sea.

However, considering the inherent variability in the NW Spanish

Upwelling system, continuously changing management guidelines

need to be employed to incorporate such effect. In this regard, the

current adaptative character of the Asturian co-management

system favors the incorporation of these measures.

Conclusions
Our results reveal a clear imprint of upwelling on the genetic

structure and productivity patterns of gooseneck barnacle meta-

populations. In spite of being produced by a hydrographic

structure on a scale of a few hundred kilometers, the scale of

these effects (10–60 km) is perfectly consistent with the manage-

ment units. Such effects should therefore be incorporated in a

sound management strategy. In this paper we have suggested

possible management measures, according to the dispersal scales

and connectivity patterns obtained through our biophysical

simulations, which could be advisable to incorporate in the local

gooseneck barnacle co-management system.

Supporting Information

Animation S1 Daily time-series of the first larval
dispersal event in the Asturian coast for 2009. In the first

event considered in our model (see methods) larvae are released on

July 1st, they finish their naupliar stage and turn into cyprids on

July 31st and finalize their pelagic larval duration on August 29th.

The cross indicates the emission and maximum recruitment

points. Users can view the daily progression of Dij values for these

points by clicking on the cross.

(KMZ)

Animation S2 Daily time-series of the first larval
dispersal event in the Asturian coast for 2011. In the first

event considered in our model (see methods) larvae are released on

July 1st, they finish their naupliar stage and turn into cyprids on

July 31st and finalize their pelagic larval duration on August 29th.

The cross indicates the emission and maximum recruitment

points. Users can view the daily progression of Dij values for these

points by clicking on the cross.

(KMZ)
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A general view of the hydrographic and dynamical patterns of the Rı́as Baixas

adjacent sea area. Journal of Marine Systems 54: 97–113.

66. Farrell TM, Bracher D, Roughgarden J (1991) Cross-shelf transport causes

recruitment to intertidal populations in central California. Limnology and

Oceanography 36: 279–288.

67. Roughgarden J, Gaines S, Possingham H (1988) Recruitment dynamics in

complex life cycles. Science 241: 1460.

68. Weidberg N, Acuña JL, Lobón C (2013) Seasonality and fine-scale meroplank-

ton distribution off the central Cantabrian Coast. Journal of Experimental

Marine Biology and Ecology 442: 47–57.

69. Lentz SJ, Chapman DC (2004) The Importance of Nonlinear Cross-Shelf

Momentum Flux during Wind-Driven Coastal Upwelling. Journal of Physical

Oceanography 34: 2444–2457.

70. Morgan SG, Fisher JL, Miller SH, McAfee ST, Largier JL (2009) Nearshore

larval retention in a region of strong upwelling and recruitment limitation.

Ecology 90: 3489–3502.
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