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Abstract
A new method for learning variational autoen-
coders is developed, based on an application of
Stein’s operator. The framework represents the
encoder as a deep nonlinear function through
which samples from a simple distribution are
fed. One need not make parametric assumptions
about the form of the encoder distribution, and
performance is further enhanced by integrating
the proposed encoder with importance sampling.
Example results are demonstrated across multi-
ple unsupervised and semi-supervised problems,
including semi-supervised analysis of the Ima-
geNet data, demonstrating the scalability of the
model to large datasets.

1. Introduction
The autoencoder (Vincent et al., 2010) is a widely em-
ployed unsupervised framework to learn (typically) low-
dimensional features from complex data. There has been
significant recent interests in the variational autoencoder
(VAE) (Kingma & Welling, 2014), which generalizes the
original autoencoder in several ways. The VAE encodes
input data to a distribution of codes (latent features). Fur-
ther, the VAE decoder is a generative model, specifying
a probabilistic representation of the data via a likelihood
function. Another advantage of the VAE is that it yields ef-
ficient estimation of the often intractable latent-feature pos-
terior via an approximate model, i.e., the recognition net-
work (Kingma & Welling, 2014; Mnih & Gregor, 2014).
As a result, the encoder yields efficient inference of the la-
tent features of the generative model (decoder), which is
critical for fast computation at test time. The VAE may
also be scaled to handle massive amounts of data, such as
ImageNet (Pu et al., 2016).

The VAE is a powerful framework for unsupervised learn-
ing. Additionally, when given labels on a subset of data, a
classifier may be associated with the latent features, allow-
ing for semi-supervised learning (Kingma et al., 2014; Pu
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et al., 2016). Further, the latent features (codes) may be as-
sociated with state-of-the-art natural-language-processing
models, such as the Long Short-Term Memory (LSTM)
network, for semi-supervised learning of text captions from
an image (Pu et al., 2016).

VAEs are typically trained by maximizing a variational
lower bound of the data log-likelihood (Kingma & Welling,
2014; Mnih & Gregor, 2014; Rezende et al., 2014; Kingma
et al., 2014; Ranganath et al., 2016; Pu et al., 2016; Kingma
et al., 2016). This lower bound is maximized by alter-
nating between optimizing the parameters of the recogni-
tion model (encoder) and the parameters of the generative
model (decoder). For evaluation of the variational expres-
sion, being able to sample efficiently from the encoder is
not sufficient; one must be able to explicitly evaluate the
associated distribution of latent features. This requirement
has motivated design of encoders in which a neural net-
work maps input data to the parameters of a distribution in
the exponential family (Kingma & Welling, 2014; Rezende
et al., 2014), which serves as the latent-features distribu-
tion. For example, Gaussian distributions have been widely
utilized (Kingma & Welling, 2014; Rezende et al., 2014;
Ranganath et al., 2016; Burda et al., 2016).

The Gaussian assumption may be too restrictive in some
cases (Rezende & Mohamed, 2015). Consequently, recent
work has considered normalizing flows (Rezende & Mo-
hamed, 2015), in which random variables from (for ex-
ample) a Gaussian distribution are fed through a series of
nonlinear functions to increase the complexity and repre-
sentational power of the distribution over latent features.
However, because of the need to explicitly evaluate the dis-
tribution within the variational expression, these nonlinear
functions must be relatively simple, e.g., planar flows. In
this framework, a sequence of relatively simple nonlinear
functions are “stacked” atop a probabilistic (Gaussian) en-
coder. However, because of the simple nature of these func-
tions, one may require many layers to achieve the desired
representational power.

Researchers have recently considered the idea of view-
ing the encoder as a proposal distribution for the latent
features, thus using importance weighting when sampling
from this distribution (Burda et al., 2016). This idea has
been demonstrated to significantly improve the variational
lower bound. Although importance sampling is useful to
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improve performance, it does not address the fundamental
limitation associated with the simple form of the encoder
distribution (required for explicit evaluation of the varia-
tional bound).

From a different perspective, recent work extended ideas
from Stein’s identity and operator to machine learn-
ing (Chwialkowski et al., 2016; Liu et al., 2016). Motivated
by these ideas, we present a new approach for learning the
distribution of latent features within a VAE framework. We
recognize that the need for an explicit form for the encoder
distribution is only a consequence of the fact that learning
is performed based on the variational lower bound. For in-
ference (e.g., at test time), we do not need an explicit form
for the distribution of latent features, we only require fast
sampling from the encoder. Consequently, in the proposed
approach, we no longer explicitly use the variational lower
bound to train the encoder. Rather, we seek an encoder that
minimizes the Kullback-Leibler (KL) distance between the
distribution of codes and the true (posterior) distribution on
the latent features. To minimize this KL distance, we gen-
eralize use of Stein’s identity, and employ ideas associated
with a reproducing kernel Hilbert space (RKHS). Analo-
gous work was introduced by Liu & Wang (2016); Wang
& Liu (2016); however, they considered sampling from a
general unnormalized distribution. They did not consider
an autoencoder, and they didn’t use Stein’s identity to de-
sign a nonparametric recognition model (encoder).

A key contribution of this paper concerns integrating Stein-
based sampling with importance sampling, for learning
VAE parameters. An advantage of using the Stein formula-
tion with importance sampling is that we need not assume
a form (e.g., Gaussian) for the distribution of the encoder,
and hence we yield an improved proposal distribution.

The concepts developed here are demonstrated on a wide
range of unsupervised and semi-supervised learning prob-
lems, including a large-scale semi-supervised analysis of
the ImageNet dataset. These experimental results illus-
trate the advantage of a Stein VAE with nonparametric
recognition model, relative to the traditional VAE that as-
sumes a Gaussian form of encoder. Moreover, the results
demonstrate further improvements realized by integrating
the Stein VAE with importance sampling.

2. Stein Variational Autoencoder (Stein VAE)
Consider data D = {xn}Nn=1, where xn are modeled as
xn|zn ∼ p(x|zn;θ). Distribution p(x|zn;θ) may be
viewed as a probabilistic decoder of latent code zn, and
θ represents the decoder parameters. The set of codes as-
sociated with all xn ∈ D is represented Z = {zn}Nn=1.
In Bayesian statistics, one sets a prior on {θ,Z}, here rep-
resented p(θ,Z) = p(θ)

∏N
n=1 p(zn). We desire the pos-

Algorithm 1 Stein Variational Autoencoder.
Require: Input data D and number of samples M .

1: Initialize samples {θ0j}Mj=1 from p(θ) and η0.
2: for t = 1 to Maximum Iterations do
3: Sample {ξj}Mj=1 from q0(ξ).
4: Draw minibatch from D.
5: Evaluate samples z(t)jn = fη(xn, ξj).

6: Update samples θ(t+1)
j ← θ

(t)
j according to (3) and

ẑ
(t)
jn ← z

(t)
jn according to (4).

7: for k = 1 to K do
8: Update η(t,k) ← η(t,k−1) according to (7).
9: end for

10: end for

terior p(θ,Z|D), which we approximate here via samples,
without imposing an explicit form for the posterior distri-
bution (as is common in existing VAE work (Kingma &
Welling, 2014)). We generalize concepts in Liu & Wang
(2016) to manifest the approximate posterior samples.

2.1. Stein Variational Gradient Descent (SVGD)

Assume we have samples {θj}Mj=1 drawn from distribution
q(θ), and samples {zjn}Mj=1 drawn from distribution q(Z).
The distribution q(θ)q(Z) is some KL distance from the
true posterior p(θ,Z|D). We wish to transform {θj}Mj=1

by pushing them through a function, and the corresponding
transformed distribution from which they are drawn is de-
noted qT (θ). It is desired that, in a KL sense, qT (θ)q(Z)
is closer to p(θ,Z|D) than was q(θ)q(Z). The following
theorem is useful for defining how best to update {θj}Mj=1.

Theorem 1 Assume θ and Z are Random Variables (RVs)
drawn from distributions q(θ) and q(Z), respectively. Con-
sider the transformation T (θ) = θ + εψ(θ;D) and let
qT (θ) represent the distribution of θ′ = T (θ). We have

∇ε
(

KL(qT ‖p)
)
|ε=0 = −Eθ∼q(θ)

(
trace(Ap(θ;D))

)
, (1)

where qT = qT (θ)q(Z), p = p(θ,Z|D), and

Ap(θ;D) =∇θ log p̃(θ;D)ψ(θ;D)T +∇θψ(θ;D)

log p̃(θ;D) = EZ∼q(Z)[log p(D,Z,θ)] .

The proof is provided in Appendix A. Following Liu &
Wang (2016), we assume ψ(θ;D) lives in a reproducing
kernel Hilbert space (RKHS) with kernel k(·, ·). Under
this assumption, the solution for ψ(θ;D) that maximizes
the decrease in the KL distance (1) is

ψ∗(·;D) = Eq(θ)[k(θ, ·)∇θ log p̃(θ;D) +∇θk(θ, ·)] . (2)
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Theorem 1 concerns updating samples from q(θ) assuming
fixed q(Z). To similarly update q(Z) with q(θ) fixed, we
employ a complementary form of Theorem 1 (omitted for
brevity); in that case we consider transformation T (Z) =
Z + εψ(Z;D), with Z ∼ q(Z). The function ψ(Z;D) is
also assumed to be in a RKHS.

The expectations in (1) and (2) are approximated by sam-
ples, and we have

θ
(t+1)
j = θ

(t)
j + ε∆θ

(t)
j , (3)

with

∆θ
(t)
j ≈

1

M

M∑
j′=1

[kθ(θ
(t)

j′ ,θ
(t)
j )∇

θ
(t)

j′
log p̃(θ

(t)

j′ ;D)

+∇
θ
(t)

j′
kθ(θ

(t)

j′ ,θ
(t)
j ))].

∇θ log p̃(θ;D) ≈ 1

M

∑N
n=1

∑M
j=1∇θ log p(xn|zjn,θ)p(θ) ,

Similarly, when updating samples of the latent variables,
we have

z
(t+1)
jn = z

(t)
jn + ε∆z

(t)
jn , (4)

with

∆z
(t)
jn =

1

M

M∑
j′=1

[kz(z
(t)

j′n,z
(t)
jn )∇

z
(t)

j′n
log p̃(z

(t)

j′n;D)

+∇
z
(t)

j′n
kz(z

(t)

j′n,z
(t)
jn )] (5)

∇zn log p̃(zn;D) ≈ 1
M

∑M
j=1∇zn log p(xn|zn,θ′j)p(zn) ,

The kernels used to update samples of θ and zn are in gen-
eral different, denoted respectively kθ(·, ·) and kz(·, ·). ε is
a small step size.

2.2. Stein Recognition Model

At iteration t of the above learning procedure, we real-
ize a set of latent-variable (code) samples {z(t)jn}Mj=1 for
each xn ∈ D under analysis. For large N this training
may be computationally expensive. Further, the need to
evolve (learn) samples {zj∗}Mj=1 for each new test sam-
ple x∗ is undesirable. We therefore develop a recognition
model that efficiently computes samples of codes for a data
sample of interest. The recognition model draws samples
via zjn = fη(xn, ξjn) with ξjn ∼ q0(ξ). Distribution
q0(ξ) is selected such that it may be sampled easily, e.g.,
isotropic Gaussian.

After each iteration of Algorithm 1, we refine recognition
model fη(x, ξ) to mimic the Stein sample dynamics. As-
sume recognition-model parameters η(t) have been learned
thus far. Using η(t), latent codes for iteration t are consti-
tuted as z(t)jn = fη(t)(xn, ξjn), with ξjn ∼ q0(ξ). These

codes are computed for all data xn ∈ Bt, where Bt ⊂ D
is the minibatch of data at iteration t. The change in the
codes is ∆z

(t)
jn , as defined (5). We then update η to match

the refined codes, as

η(t+1) = arg min
η

∑
xn∈Bt

M∑
j=1

‖fη(xn, ξjn)− z(t+1)
jn ‖2 . (6)

The analytic solution of (6) is intractable. We update η
with K steps of gradient descent as

η(t,k) = η(t,k−1) − δ
∑
xn∈Bt

∑M
j=1 ∆η

(t,k−1)
jn (7)

∆η
(t,k−1)
jn = ∂ηfη(xn, ξjn)(fη(xn, ξjn)− z(t+1)

jn )|η=η(t,k−1)

where δ is a small step size, η(t) = η(t,0) and η(t+1) =
η(t,K), and ∂ηfη(xn, ξjn) is the transpose of the Jacobian
of fη(xn, ξjn) w.r.t. η. Note that the use of minibatches
mitigates challenges of training with large training sets, D.

A similar concept to the above was developed in Wang
& Liu (2016), although in that work neither the VAE nor
recognition model were considered.

3. Stein Variational Importance Weighted
Autoencoder (Stein VIWAE)

3.1. Multi-sample importance-weighted KL divergence

Consider a known joint distribution p(x, z), where x is
observed and z is latent (e.g., corresponding to the code
discussed above). The marginal log-likelihood log p(x) =
log
∫
p(x, z)dz is typically intractable. One often seeks to

bound log p(x) via an approximation q(z|x) to the poste-
rior p(z|x):

L(x) = Eq(z|x){log[p(x, z)/q(z|x)]} ≤ log p(x) .

This lower bound plays a pivotal in the VAE (Kingma &
Welling, 2014), and q(z|x) is analogous to the encoder
discussed above. Recently, Burda et al. (2016); Mnih &
Rezende (2016) showed that the multi-sample (k samples)
importance-weighted estimator

Lk(x) = Ez1,...,zk∼q(z|x)

[
log 1

k

∑k
i=1

p(x,zi)
q(zi|x)

]
, (8)

provides a tighter lower bound and a better proxy for
the log-likelihood, where z1, . . . ,zk are random variables
sampled independently from q(z|x).

Recall from (1) that the KL divergence played a key role in
the Stein-based learning of Sec. 2. Equation (8) motivates
replacement of the KL objective function with the multi-
sample importance-weighted KL divergence

KLkq,p(Θ;D) , −EΘ1:k∼q(Θ)

[
log 1

k

∑k
i=1

p(Θi|D)

q(Θi)

]
, (9)
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where Θ = (θ,Z) and Θ1:k = Θ1, . . . ,Θk are indepen-
dent samples from q(θ,Z). Note that the special case of
k = 1 recovers the standard KL divergence.

Inspired by Burda et al. (2016), the following theorem
(proved in Appendix A) shows that increasing the number
of samples k is guaranteed to reduce the KL divergence and
provide a better approximation of target distribution.

Theorem 2 For any natural number k, we have

KLkq,p(Θ;D) ≥ KLk+1
q,p (Θ;D) ≥ 0 ,

and if q(Θ)/p(Θ|D) is bounded

limk→∞ KLkq,p(Θ;D) = 0 .

Simliar to the Stein autoencoder, we minimize (9) with
a sample transformation based on Stein’s operator (de-
tailed in Sec. 3.2) and the recognition model is trained in
the same way as Sec. 2.2. Specifically, we first draw
samples {θ1:kj }Mj=1 and {z1:kjn }Mj=1 from a simple distribu-
tion q0(·), and convert these to approximate draws from
p(θ1:k,Z1:k|D) by minimizing the multi-sample impor-
tance weighted KL divergence via nonlinear functional
transformation.

3.2. Importance-weighted learning procedure

Theorem 3 Let Θ1:k be RVs drawn independently from
distribution q(Θ) and KLkq,p(Θ,D) is the multi-sample im-
portance weighted KL divergence in (9). Let T (Θ) =
Θ + εψ(Θ;D) and qT (Θ) represent the distribution of
Θ′ = T (Θ). We have

∇ε
(

KLkq,p(Θ
′;D)

)
|ε=0 = −EΘ1:k∼q(Θ)(Akp(Θ1:k;D)) ,

where

Akp(Θ1:k;D) = 1
ω̃

∑k
i=1 ωi

(
trace

(
Ap(Θi;D)

))

ωi = p(Θi;D)/q(Θi), ω̃ =
∑k
i=1 ωi

Ap(Θ;D) = ∇Θ log p̃(Θ;D)ψ(Θ;D)T +∇Θψ(Θ;D) .

The proof is provided in Appendix A.

The following corollary generalizes Theorem 1 via use of
importance sampling.

Corollary 3.1 θ1:k andZ1:k are RVs drawn independently
from distributions q(θ) and q(Z), respectively. Let T (θ) =
θ + εψ(θ;D), qT (θ) represent the distribution of θ′ =
T (θ), and Θ′ = (θ′,Z) . We have

∇ε
(

KLkqT ,p(Θ
′;D)

)
|ε=0 = −Eθ1:k∼q(θ)(A

k
p(θ1:k;D)) (10)

where

qT = qT (θ)q(Z), p = p(θ,Z|D)

Akp(θ1:k;D) = 1
ω̃

∑k
i=1 ωiAp(θi;D)

ωi = EZi∼q(Z)

[
p(θi,Zi,D)
q(θi)q(Zi)

]
, ω̃ =

∑k
i=1 ωi

Ap(θ;D) = ∇θ log p̃(θ;D)ψ(θ;D)T +∇θψ(θ;D)

log p̃(θ;D) = EZ∼q(Z)[log p(D,Z,θ)] .

The following corollary generalizes (2).

Corollary 3.2 Assume ψ(θ;D) lives in a reproducing ker-
nel Hilbert space (RKHS) with kernel kθ(·, ·). The solution
for ψ(θ;D) that maximizes the decrease in the KL distance
(10) is

ψ∗(·;D) = Eθ1:k∼q(θ)

[
1
ω̃

∑k
i=1 ωi

(
∇θikθ(θi, ·)

+ kθ(θi, ·)∇θi log p̃(θi;D)
)]
. (11)

Corollary 3.1 and Corollary 3.2 provide a means of updat-
ing multiple samples {θ1:kj }Mj=1 from q(θ) via T (θi) =

θi + εψ(θi;D). The expectation wrt q(Z) is approxi-
mated via samples drawn from q(Z). Similarly, we can
employ a complementary form of Corollary 3.1 and Corol-
lary 3.2 to update multiple samples {Z1:k

j }Mj=1 from q(Z).
This suggests an importance-weighted learning procedure
that alternates between update of particles {θ1:kj }Mj=1 and
{Z1:k

j }Mj=1, which is similiar as Sec. 2.1.

Specifically, let {θ1:k,tj }Mj=1 and {z1:k,tjn }Mj=1 denote the
samples acquired at iteration t of the learning procedure.
To update samples of θ1:k, we apply the transformation
θ
(i,t+1)
j = T (θ

(i,t)
j ;D) = θ

(i,t)
j + εψ(θ

(i,t)
j ;D), for

i = 1, . . . , k, by approximating the expectation by samples
{z1:kjn }Mj=1, and we have

θ
(i,t+1)
j = θ

(i,t)
j + ε∆θ

(i,t)
j , for i = 1, . . . , k, (12)

with

∆θ
(i,t)
j ≈ 1

M

∑M
j′=1

[
1
ω̃

∑k
i′=1 ωi

(
∇
θ
(i′,t)
j′

kθ(θ
(i′,t)
j′ ,θ

(i,t)
j ))

+ k(θ
(i′,t)
j′ ,θ

(i,t)
j )∇

θ
(i′,t)
j′

log p̃(θ
(i′,t)
j′ ;D)

]
ωi ≈ 1

M

∑N
n=1

∑M
j=1

p(θi,zijn,xn)

q(θi)q(zijn)
, ω̃ =

∑k
i=1 ωi

∇θ log p̃(θ;D) ≈ 1
M

∑N
n=1

∑M
j=1∇θ log p(xn|zjn,θ)p(θ) .

Similarly, when updating samples of the latent variables,
we have

z
(i,t+1)
jn = z

(i,t)
jn + ε∆z

(i,t)
jn , for i = 1, . . . , k, (13)
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with

∆z
(i,t)
jn ≈ 1

M

∑M
j′=1

[
1
ω̃n

∑k
i′=1 ωin

(
∇
z
(i′,t)
j′n

kz(z
(i′,t)
j′n ,z

(i,t)
jn ))

+ kz(z
(i′,t)
j′n ,z

(i,t)
jn )∇

z
(i′,t)
j′n

log p̃(z
(i′,t)
j′n ;D)

]
ωin ≈ 1

M

∑M
j=1

p(θi,zijn,xn)

q(θi)q(zijn)
, ω̃n =

∑k
i=1 ωin

∇zn log p̃(zn;D) ≈ 1
M

∑M
j=1∇zn log p(xn|zn,θ′j)p(zn)

One may worry about the variance of this gradient. How-
ever, Burda et al. (2016) has showed that the estimator
based on log of importance weighted average will not lead
to high variance.

4. Semi-supervised Learning with Stein VAE
and Stein VIWAE

We extend our model to semi-supervised learning. Con-
sider labeled data as pairs Dl = {xn,yn}Nl

n=1, where the
label yn ∈ {1, . . . , C} and the decoder is modeled as
(xn,yn|zn) ∼ p(x,y|zn;θ, θ̃) = p(x|zn;θ)p(y|zn; θ̃),
where θ̃ represents the parameters of the decoder for labels.
The set of codes associated with all labeled data is repre-
sented Zl = {zn}Nl

n=1. We desire to approximate the pos-
terior distribution on the entire dataset p(θ, θ̃,Z,Zl|D,Dl)
via samples, where D represents the unlabeled data, and Z
is the set of codes associated with D. In the following, we
will only discuss how to update the samples of θ, θ̃ and Zl.
Updating samples Z is the same as (4) and (13) for Stein
VAE and Stein VIWAE, respectively.

To make the following discussion concrete, we describe
learning within the context of Stein VAE, generalizing the
models in Sec. 2. This setup is also applied to Stein VI-
WAE, generalizing the models in Sec. 3. Assume {θj}Mj=1

drawn from distribution q(θ), {θ̃j}Mj=1 drawn from dis-
tribution q(θ̃), and samples {zjn}Mj=1 drawn from (dis-
tinct) distribution q(Zl). The following corollary gener-
alizes Theorem 1 and (2), which is useful for defining how
best to update {θj}Mj=1.

Corollary 3.3 Assume θ, θ̃, Z and Zl are RVs drawn from
distributions q(θ), q(θ̃), q(Z) and q(Zl), respectively.
Consider the transformation T (θ) = θ + εψ(θ;D,Dl)
where ψ(θ;D,Dl) lives in a RKHS with kernel kθ(·, ·). Let
qT (θ) represent the distribution of θ′ = T (θ). We have

∇ε
(

KL(qT ‖p)
)
|ε=0 = −Eθ∼q(θ)(Ap(θ;D,Dl)) , (14)

and the solution for ψ(θ;D,Dl) that maximizes the change
in the KL distance (14) is

ψ∗(·; D̂) = Eq(θ)[k(θ, ·)∇θ log p̃(θ; D̂) +∇θk(θ, ·)] , (15)

where D̂ = (D,Dl), and

qT = qT (θ)q(Z)q(θ̃), p = p(θ, θ̃,Z|D,Dl)
Ap(θ;D,Dl) = ∇θ log p̃(θ;D,Dl)ψ(θ;D,Dl)T

+∇θψ(θ;D,Dl)
log p̃(θ;D,Dl) = EZ∼q(Z)[log p(D|Z,θ)]

+ EZl∼q(Zl)[log p(Dl|Zl,θ)] .

The expectations in (14) and (15) are approximated by sam-
ples. Updating samples θ and θ̃ is similar to (3), with de-
tails provided in Appendix B. Samples of zn ∈ Zl are up-
dated

z
(t+1)
jn = z

(t)
jn + ε∆z

(t)
jn ,

with

∆z
(t)
jn = 1

M

∑M
j′=1[kz(z

(t)
j′n, z

(t)
jn)∇

z
(t)

j′n
log p̃(z

(t)
j′n;Dl)

+∇
z
(t)

j′n
kz(z

(t)
j′n, z

(t)
jn))]

∇zn log p̃(zn;Dl) ≈ 1
M

∑M
j=1∇znp(zn)

{
log p(xn|zn,θ′j)

+ ζ log p(yn|zn, θ̃
′
j)
}
,

where ζ is a tuning parameter that balances the two com-
ponents. Motivated by assigning the same weight to every
data point (Pu et al., 2016), we set ζ = NX/(Cρ) in the
experiments, where NX is the dimension of xn, C is the
number of categories for the corresponding label and ρ is
the proportion of labeled data in the mini-batch.

5. Experiments
For all experiments, we use a radial basis-function (RBF)
kernel as in Liu & Wang (2016), i.e., k(x,x′) =
exp(− 1

h‖x − x′‖22), where the bandwidth, h, is the me-
dian of pairwise distances between current samples. q0(θ)
and q0(ξ) are set to isotropic Gaussian distributions. We
share the samples of ξ across data points, i.e., ξjn = ξj ,
for n = 1, . . . , N (this is not necessary, but it saves com-
putation). The samples of θ and z, and parameters of the
recognition model, η, are optimized via Adam (Kingma &
Ba, 2015) with learning rate 0.0002, and with the gradient
approximations in (3), (4), (7), (12) and (13). We do not
perform any dataset-specific tuning or regularization other
than dropout (Srivastava et al., 2014) and early stopping
on validation sets. We set M = 100 and k = 50, and use
minibatches of size 64 for all experiments, unless otherwise
specified.

5.1. Expressive power of Stein recognition model

We first evaluate the expressive power of non-Gaussian
posterior approximation based on the Stein recognition
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Figure 1. Approximation of posterior distribution: Stein VAE vs.
VAE. The figures represent different samples of Stein VAE. (Top-
left) 10 samples. (Top-right) 20 samples. (Bottom-left) 50 sam-
ples. (Bottom-right) 100 samples.

model developed in Section 2.2. This is done generat-
ing samples of z using standard VAE (Kingma & Welling,
2014) and via the proposed Stein VAE, with each compared
to ground truth on testing data (considering a non-trivial ex-
ample for which the exact posterior is available). We fix the
decoder (generative model) parameters θ, and only gener-
ate samples of z and update encoder parameters η during
training, for both standard VAE and Stein VAE.

Gaussian Mixture Model We synthesize data by (i)
drawing zn ∼ 1

2N (µ1, I) + 1
2N (µ2, I), where µ1 =

[5, 5]T , µ2 = [−5,−5]T ; (ii) drawing xn ∼
N (θzn, σ

2I), where θ =
(
2 −1
1 −2

)
and σ = 0.1. The recog-

nition model fη(xn, ξj) is specified as a multi-layer per-
ceptron (MLP) with 100 hidden units, by first concatenat-
ing ξj and xn into a long vector. The dimension of ξj is
set to 2. The recognition model for standard VAE is also
an MLP with 100 hidden units, and with the assumption
of a Gaussian distribution for the latent codes (Kingma &
Welling, 2014).

We generate N = 10, 000 data points for training and 10
data points for testing. The analytic form of true posterior
distribution is provided in Appendix C. Figure 1 shows the
performance of Stein VAE approximations for the true pos-
terior using M = 10, 20, 50 and 100 samples on one test
data; other similar examples are provided in Appendix D.
Our Stein recognition model is able to capture the multi-
modal posterior and produce accurate density approxima-
tion. As the number of samplesM is increased, we observe
a substantial improvement in the approximation quality. By
contrast, the Gaussian form of the standard VAE posterior
is incapable of capturing the multimodal form of the true
posterior.

Figure 2. Univariate marginals and pairwise posteriors. Purple,
red and green represent the distribution inferred from MCMC,
standard VAE and Stein VAE, respectively.

Poisson Factor Analysis Given a discrete vector xn ∈
ZP+, Poisson factor analysis (Zhou et al., 2012) assumes
xn is a weighted combination of V latent factors xn ∼
Pois(θzn), where θ ∈ RP×V+ is the factor loadings matrix
and zn ∈ RV+ is the vector of factor scores. We consider
topic modeling with Dirichlet priors on θv (v-th column of
θ) and gamma priors on each component of zn.

We evaluate our model on the 20 Newsgroups dataset con-
taining N = 18, 845 documents with a vocabulary of
P = 2, 000. The data are partitioned into 10,314 training,
1,000 validation and 7,531 test documents. The number of
factors (topics) is set to V = 128. θ is first learned by
Markov chain Monte Carlo (MCMC) (Gan et al., 2015).
We then fix θ at its MAP value, and only learn the recog-
nition model η using standard VAE and Stein VAE; this is
done, as in the previous example, to examine the accuracy
of the recognition model to estimate the posterior of the
latent codes (factor scores), isolated from estimation of θ.
The recognition model is an MLP with 100 hidden units.

An analytic form of the true posterior distribution
p(zn|xn) is intractable for this problem. Consequently, we
employ samples collected from MCMC as ground truth.
Specifically, with θ fixed, we sample zn via Gibbs sam-
pling, using 2,000 burn-in iterations followed by 2,500 col-
lection draws, retaining every 10th collection sample. We
show the marginal and pairwise posterior of one test data
point in Fig. 2. Additional results are provided in Appendix
D. As observed, Stein VAE leads to a more accurate ap-
proximation than standard VAE, compared to the MCMC
samples.

Considering Fig. 2, note that VAE significantly under-
estimates the variance of the posterior (examining the
marginals), a well-known problem of variational Bayesian
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Table 1. Negative log-likelihood(NLL) on MNIST. †Trained with
VAE and tested with IWAE. ‡Trained and tested with IWAE.

Method NLL

DGLM (Rezende et al., 2014) 89.90
Normalizing flow (Rezende & Mohamed, 2015) 85.10

VAE + IWAE (Burda et al., 2016)† 86.76
IWAE + IWAE (Burda et al., 2016)‡ 84.78

Stein VAE + ELBO 85.21
Stein VAE + S-ELBO 84.98
Stein VIWAE + ELBO 83.01

Stein VIWAE + S-ELBO 82.88

analysis (Han et al., 2016). This is manifested here despite
the fact that the marginals are not significantly different in
form from the Gaussian assumption of the standard VAE.
By contrast, the proposed Stein VAE does not assume a
parametric form for the posterior, and therefore it does not
seek to directly estimate the mean or variance of the pos-
terior. We observe that Stein VAE yields highly accurate
approximations to the true posterior, with this performed
efficiently at test time via the recognition model.

5.2. Density estimation

Data We consider five benchmark datasets: MNIST and
four text corpora: 20 Newsgroups (20News), New York
Times (NYT), Science and RCV1-v2 (RCV2). For MNIST,
we used the standard split of 50K training, 10K validation
and 10K test examples. The latter three text corpora consist
of 133K, 166K and 794K documents. These three datasets
are split into 1K validation, 10K testing and the rest for
training.

Evaluation Given new data x∗ (testing data), the
marginal log-likelihood/perplexity values are estimated by
the variational lower bound while integrating the decoder
parameters θ out

log p(x∗) ≥ Eq(z∗)[log p(x∗, z∗)] +H(q(z∗)) , (16)

where p(x∗, z∗) = Eq(θ)[log p(x∗,θ, z∗)] and H(q(·)) =
−Eq(log q(·)) is the entropy. The expectation is approx-
imated with samples {θj}Mj=1 and {z∗j}Mj=1 with z∗j =
fη(x∗, ξj), ξj ∼ q0(ξ). Directly evaluating q(z∗) is in-
tractable. We alternatively estimate it via density transfor-

mation q(z) = q0(ξ)
∣∣∣det∂fη(x,ξ)

∂ξ

∣∣∣
−1

. Note that we only
need to compute the Jacobian determinant one time dur-
ing testing, which will not lead to very high computational
complexity.

We further estimate the marginal log-likelihood/perplexity
values via the stochastic variational lower bound, as the
mean of 5K-sample importance weighting estimate (Burda
et al., 2016). Therefore, for each dataset, we report four re-
sults: (i) Stein VAE + ELBO, (ii) Stein VAE + S-ELBO, (iii)

Table 2. Test perplexities on four text corpora. §(Larochelle &
Laulyi, 2012); †(Ranganath et al., 2015); ‡(Miao et al., 2016).

Method 20News NYT Science RCV2

DocNADE§ 896 2496 1725 742
DEF† —- 2416 1576 —-

NVDM‡ 852 —- —- 550

Stein VAE + ELBO 849 2402 1499 549
Stein VAE + S-ELBO 845 2401 1497 544
Stein VIWAE + ELBO 837 2315 1453 523

Stein VIWAE + S-ELBO 829 2277 1421 518

Stein VIWAE + ELBO and (iv) Stein VIWAE + S-ELBO;
the first term denotes the training procedure is employed
as Stein VAE in Sec. 2 or Stein VIWAE in Section 3; the
second term denotes the testing log-likelihood/perplexity is
estimated by the ELBO in (16) or the stochastic variational
lower bound, S-ELBO (Burda et al., 2016).

Model For MNIST, we train the model with one stochas-
tic layer, zn, with 50 hidden units and two deterministic
layers, each with 200 units. The nonlinearity is set as tanh.
The visible layer, xn, follows a Bernoulli distribution. For
the text corpora, we build a three-layer deep Poisson net-
work (Ranganath et al., 2015). The sizes of hidden units
are 200, 200 and 50 for the first, second and third layer,
respectively (see Ranganath et al. (2015) for detailed archi-
tectures).

Results The log-likelihood/perplexity results are summa-
rized in Tables 1 and 2. On MNIST, our Stein VAE achieves
a variational lower bound of -85.21 nats, which outper-
forms standard VAE with the same model architecture.
Our Stein VIWAE achieves a log-likelihood of -82.88 nats,
exceeding normalizing flow (-85.1 nats) and importance
weighted autoencoder (-84.78 nats), which is the best prior
result obtained by feedforward neural network(FNN). Gre-
gor et al. (2015) and Oord et al. (2016), which exploit spa-
tial structure, achieved log-likelihoods of around -80 nats.
Our model can also be applied on these models, but this
is left as interesting future work. For the text corpora, we
observe our Stein VAEs outperform other models and Stein
VIWAE further improves the performance on all datasets.
These results demonstrate that the proposed models are
able to provide a better approximation of the posterior dis-
tribution.

5.3. Semi-supervised Classification

We consider semi-supervised classification on MNIST and
ImageNet (Russakovsky et al., 2014) data. For each
dataset, we report the results obtained by (i) VAE, (ii) Stein
VAE, and (iii) Stein VIWAE.
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Table 3. Semi-supervised classification error (%) on MNIST. Nρ is the number of labeled images per class. §(Kingma et al., 2014); †our
implementation.

Nρ
FNN CNN

VAE§ Stein VAE Stein VIWAE VAE† Stein VAE Stein VIWAE

10 3.33 ± 0.14 2.78 ± 0.24 2.67 ± 0.09 2.44 ± 0.17 1.94 ± 0.24 1.90 ± 0.05

60 2.59 ±0.05 2.13 ± 0.08 2.09 ± 0.03 1.88 ±0.05 1.44 ± 0.04 1.41 ± 0.02

100 2.40 ±0.02 1.92 ± 0.05 1.88 ± 0.01 1.47 ±0.02 1.01 ± 0.03 0.99 ± 0.02

300 2.18 ±0.04 1.77 ± 0.03 1.75 ± 0.01 0.98 ±0.02 0.89 ± 0.03 0.86 ± 0.01

MNIST We randomly split the training set into a labeled
and unlabeled set, and the number of labeled samples in
each category varies from 10 to 300. We perform testing
on the standard test set with 20 different training-set splits.

The decoder for labels is implemented as p(yn|zn, θ̃) =
softmax(θ̃zn). We consider two types of decoders for im-
ages p(xn|zn,θ) and encoder fη(x, ξ): (i) FNN: Follow-
ing Kingma et al. (2014), we use a 50-dimensional latent
variables zn and two hidden layers, each with 600 hidden
units, for both encoder and decoder; softplus log(1 + ex)
is employed as the nonlinear activation function. (ii) All
convolutional nets (CNN): Inspired by Springenberg et al.
(2015), we replace the two hidden layers with 32 and 64
kernels of size 5 × 5 and a stride of 2. A fully connected
layer is stacked on the CNN to produce a 50-dimensional
latent variables zn. We use the leaky rectified activa-
tion (Maas et al., 2013). This architecture is employed for
both the encoder and decoder. The input of the encoder is
formed by spatially aligning and stacking xn and ξ, while
the output of decoder is the image itself.

Table 3 shows the classification results. Our Stein VAE
and Stein VIWAE consistently achieve better performance
than the VAE, demonstrating the effectiveness of our model
in providing good representations of images. We further
observe that the variance of Stein VIWAE results is much
lower than that of Stein VAE results on small labeled data,
indicating the former produces more robust parameter es-
timates. State-of-the-art results (Rasmus et al., 2015) are
achieved by the Ladder network, which can be employed
with our Stein-based approach, however, we will consider
this extension as future work.

Table 4. Semi-supervised classification accuracy (%) on Ima-
geNet. †(Pu et al., 2016)

VAE Stein VAE Stein VIWAE DGDN†

1 % 35.92± 1.91 36.44 ± 1.66 36.91 ± 0.98 43.98± 1.15
2 % 40.15± 1.52 41.71 ± 1.14 42.57 ± 0.84 46.92± 1.11
5 % 44.27± 1.47 46.14 ± 1.02 46.20 ± 0.52 47.36± 0.91

10 % 46.92± 1.02 47.83 ± 0.88 48.67 ± 0.31 48.41± 0.76
20 % 50.43± 0.41 51.62 ± 0.24 51.77 ± 0.12 51.51± 0.28
30 % 53.24± 0.33 55.02 ± 0.22 55.45 ± 0.11 54.14± 0.12
40 % 56.89± 0.11 58.17 ± 0.16 58.21 ± 0.12 57.34± 0.18

ImageNet 2012 ImageNet 2012 is used to assess the scal-
ability of our model to large datasets. We split the 1.3M
training images into an unlabeled and labeled set, and vary
the proportion of labeled images from 1% to 40%. The
classes are balanced to ensure that no particular class is
over-represented, i.e., the ratio of labeled and unlabeled
images is the same for each class. We repeat the train-
ing process 10 times for the training setting with labeled
images ranging from 1% to 10% , and 5 times for the the
training setting with labeled images ranging from 20% to
40%. Each time we utilize different sets of images as the
unlabeled ones.

We employ all convolutional net (Springenberg et al., 2015)
for both the encoder and decoder, which replaces deter-
ministic pooling (e.g., max-pooling) with stridden convo-
lutions. Such a model has been shown to be effective
for training higher resolution and deeper generative mod-
els (Radford et al., 2016). The decoder for labels is em-
ployed as global average pooling with softmax, which has
been utilized in state-of-the-art image classification mod-
els (He et al., 2016). Batch normalization (Ioffe & Szegedy,
2015) is used to stabilize learning by normalizing the acti-
vations throughout the network and preventing relatively
small parameter changes from being amplified into larger
but suboptimal activation changes in other layers. We use
the leaky rectified activation (Maas et al., 2013). Residual
connections (He et al., 2016) are incorporated to encourage
gradient flow. The model architecture is detailed in Ap-
pendix E. Following Krizhevsky et al. (2012), images are
resized to 256× 256. A 224× 224 crop is randomly sam-
pled from the images or its horizontal flip with the mean
subtracted (Krizhevsky et al., 2012). We set the M = 20
and k = 10.

Table 4 shows classification results indicating that Stein
VAE and Stein IVWAE outperform VAE in all the experi-
ments, demonstrating the effectiveness of our approach for
semi-supervised classification. When the proportion of la-
beled examples is too small (< 10%), DGDN outperforms
all the VAE-based models, which is not surprising provided
that our models are deeper, thus have considerably more
parameters than DGDN (Pu et al., 2016).
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6. Conclusion
We have employed the Stein operator to develop a new
method for designing the encoder in a variational autoen-
coder, and for learning an approximate distribution (sam-
ples) for the parameters of the decoder. The distributions
for the codes and for the decoder parameters are repre-
sented non-parametrically in terms of samples, inferred by
minimizing a KL distance and via use of a RKHS. Fast
inference is manifested by learning a recognition model
that mimics the manner in which the inferred code sam-
ples are manifested. The method is further generalized and
improved by performing importance sampling. An exten-
sive set of results, for unsupervised and semi-supervised
learning, demonstrate excellent performance and scaling to
large datasets.
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A Proof

Proof of Theorem 1 Recall the definition of KL divergence:

KL(qT‖p) = KL(qT (θ)q(Z)||p(θ,Z|D)) =

∫ ∫
qT (θ)q(Z) log

p(θ,Z|D)

qT (θ)q(Z)
dθdZ (1)

=

∫
qT (θ)

{∫
q(Z) log p(θ,Z,D)dZ

}
dθ −

∫
qT (θ) log qT (θ)dθ

−
∫
q(Z) log q(Z)dZ − log p(D) (2)

=

∫
qT (θ) log p̃(θ;D)dθ −

∫
qT (θ) log qT (θ)dθ −

∫
q(Z) log q(Z)dZ − log p(D)

(3)

= KL
(
qT (θ)||p̃(θ;D)

)
−
∫
q(Z) log q(Z)dZ − log p(D) , (4)

where log p̃(θ;D) =
∫
q(Z) log p(θ,Z,D)dZ. Since∇ε

∫
q(Z) log q(Z)dZ = ∇ε1 log p(D) =

0, we have

∇εKL(qT (θ)q(Z)||p(θ,Z|D)) = ∇εKL(qT (θ)||p̃(θ;D)) . (5)

We have

∇ε(KL(qT (θ)q(Z)||p(θ,Z|D)|ε1=0 = −Eθ∼q(θ)[∇θ log p̃(θ;D)Tψ(θ;D) + trace(∇θψ(θ;D))]

(6)

= −Eθ∼q(θ)
[
trace

(
∇θ log p̃(θ;D)ψ(θ;D)T + ψ(θ;D)

)]
.

(7)

Proof of Theorem 2 We have EI={i1,...,im}
[

1
m

∑m
i=j aij

]
= a1+···+ak

k
, where I ⊂

{1, . . . , k} with |I| = m < k, is a uniformly distributed subset of {1, . . . , k}. Using
Jensen’s inequality, we have

KLkq,p(Θ;D) = −EΘ1:k∼q(Θ)

[
log

1

k

k∑

i=1

p(Θi|D)

q(Θi)

]
(8)

= −EΘ1:k∼q(Θ)

[
logEI={i1,...,im}

[ 1

m

m∑

i=1

p(Θi|D)

q(Θi)

]]
(9)

≤ −EΘ1:k∼q(Θ)

[
EI={i1,...,im}

[
log

1

m

m∑

i=1

p(Θi|D)

q(Θi)

]]
(10)

= −EΘ1:m∼q(Θ)

[
log

1

m

m∑

i=1

p(Θi|D)

q(Θi)

]
(11)

= KLmq,p(Θ;D) , (12)

1



if q(Θ)/p(Θ|D) is bounded, we have

lim
k→∞

1

k

k∑

i=1

p(Θi|D)

q(Θi)
= Eq(Θ)

[p(Θ|D)

q(Θ)

]
=

∫
p(Θ|D)dΘ = 1 . (13)

Therefore

KLkq,p(Θ;D) = − lim
k→∞

EΘ1:k∼q(Θ)

[
log 1

]
= 0 .

Proof of Theorem 3 Assume p[T−1](Θ) denote the density of Θ̂ = T−1(Θ). We
have

∇ε

(
KLkq,p(Θ

′;D)
)

= −∇ε

{
EΘ1:k∼q(Θ)

[
log

1

k

k∑

i=1

p[T−1](Θ
i|D)

q(Θi)

]}
(14)

= −EΘ1:k∼q(Θ)

{
∇ε

[
log

1

k

k∑

i=1

p[T−1](Θ
i|D)

q(Θi)

]}
(15)

= −EΘ1:k∼q(Θ)

{[1

k

k∑

i=1

p[T−1](Θ
i|D)

q(Θi)

]−1[1

k

k∑

i=1

∇εp[T−1](Θ
i|D)

q(Θi)

]}
.

(16)

Note that

∇εp[T−1](Θ
i|D) = p[T−1](Θ

i|D)∇ε log p[T−1](Θ
i|D) , (17)

and when ε = 0, we have

p[T−1](Θ
i|D) = p(Θi|D), ∇εT (Θ) = ψ(Θ;D), (18)

∇ΘT (Θ) = I,∇ε∇ΘT (Θ) = ∇εψ(Θ;D) (19)

∇ε log p[T−1](Θ
i|D) = ∇ε log p(Θi|D)T∇εT (Θi) + trace

((
∇ΘiT (Θi)

)−1 · ∇ε∇ΘiT (Θi)
)

(20)

= ∇ε log p(Θi|D)Tψ(Θi;D) + trace
(
∇εψ(Θi;D)

)
(21)

= trace
(
∇ε log p(Θi|D)ψ(Θi;D)T +∇εψ(Θi;D)

)
(22)

= trace
(
Ap(Θi;D)

)
. (23)

2



Therefore, (16) can be rewritten as

∇ε

(
KLkq,p(Θ

′;D)
)

= −EΘ1:k∼q(Θ)

{[1

k

k∑

i=1

p[T−1](Θ
i|D)

q(Θi)

]−1[1

k

k∑

i=1

∇εp[T−1](Θ
i|D)

q(Θi)

]}

(24)

= −EΘ1:k∼q(Θ)

{[ k∑

i=1

p(Θi|D)

q(Θi)

]−1[ k∑

i=1

p(Θi|D)

q(Θi)
∇ε log p[T−1](Θ

i|D)
]}

(25)

= −EΘ1:k∼q(Θ)

{
1

ω̃

k∑

i=1

ωi

[
trace

(
Ap(Θi;D)

)]
}
, (26)

where ωk = p(Θi;D)/q(Θi) and ω̃ =
∑k

i=1 ωi.

B Samples Updating for Semi-supervised Learning

For updating samples of θ, we have

θ
(t+1)
j = θ

(t)
j + ε1∆θ

(t)
j , (27)

with

∆θ
(t)
j ≈

1

M

M∑

j′=1

[kθ(θ
(t)
j′ ,θ

(t)
j )∇

θ
(t)

j′
log p̃(θ

(t)
j′ ;D,Dl)e+∇

θ
(t)

j′
kθ(θ

(t)
j′ ,θ

(t)
j ))]

(28)

∇θ log p̃(θ;D,Dl) ≈
1

M

M∑

j=1

{ ∑

xn∈D
∇θ log p(xn|zjn,θ) +

∑

xn∈Dl

∇θ log p(xn|zjn,θ)
}
p(θ) .

(29)

Similarly, when updating samples of θ̃ , we have

θ̃
(t+1)
j = θ̃

(t)
j + ε2∆θ̃

(t)
j , (30)

with

∆θ̃
(t)
j ≈

1

M

M∑

j′=1

[kθ̃(θ̃
(t)
j′ , θ̃

(t)
j )∇

θ̃
(t)

j′
log p̃(θ̃

(t)
j′ ;Dl) +∇

θ̃
(t)

j′
kθ̃(θ̃

(t)
j′ , θ̃

(t)
j ))]

∇θ̃ log p̃(θ̃;Dl) ≈
1

M

M∑

j=1

∑

yn∈Dl

∇θ̃ log p(yn|zjn, θ̃)p(θ̃) . (31)
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C Posterior of Gaussian Mixture Model

Consider z ∼ 1
2
N (µ1, I) + 1

2
N (µ2, I) and xn ∼ N (θz, σ2I), where z ∈ RK , x ∈ RP

and θ ∈ RP×K . We have

p(z|x) ∝ p(x)p(z) ∝ exp

{
−(x− θz)T (x− θz)

2σ2

}

×
{

exp
{
− (z − µ1)

T (z − µ1)

2

}
+ exp

{
− (z − µ2)

T (z − µ2)

2

}}

= exp

{
−1

2

[
zT
(θTθ
σ2

+ I
)
z − 2

(yTθ
σ2

+ µ1

)
z +

xTx

σ2
+ µT1µ1

]}

+ exp

{
−1

2

[
zT
(θTθ
σ2

+ I
)
z − 2

(yTθ
σ2

+ µ2

)
z +

xTx

σ2
+ µT2µ2

]}
. (32)

Let

Σ =
θTθ

σ2
+ I, µ̂1 = Σ−1(

yTθ

σ2
− µ1), p1 =

xTx

σ2
+ µT1µ1 − µ̂T1 Σµ̂1, (33)

µ̂2 = Σ−1(
yTθ

σ2
− µ2), p2 =

xTx

σ2
+ µT2µ2 − µ̂T2 Σµ̂2 , (34)

The density in (32) can be rewritten as

p(z|x) ∝ exp{p1} exp

{
−1

2
(z − µ̂1)

TΣ(z − µ̂1)

}
+ exp{p2} exp

{
−1

2
(z − µ̂2)

TΣ(z − µ̂2)

}
.

(35)

Therefore, we have z|x ∼ p(z|x) = p̂N (µ̂1,Σ) + (1− p̂)N (µ̂2,Σ), where

p̂ =
1

1 + exp(p2 − p1)
. (36)
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D Model Architecture

Table 1: Architecture of the models for semi-supervised classification on ImageNet. BN
denotes batch normalization. The layer in bracket indicates the number of layers stacked.

Output Size Encoder Decoder

224× 224× 4 for encoder
RGB image xn stacked by ξ RGB image xn224× 224× 3 for decoder

56× 56× 64
7× 7 conv, 64 kernels, LeakyRelu, stride 4, BN

[
3× 3 conv, 64 kernels, LeakyRelu, stride 1, BN

]
×3

28× 28× 128
3× 3 conv, 128 kernels, LeakyRelu, stride 2, BN

[
3× 3 conv, 128 kernels, LeakyRelu, stride 1, BN

]
×3

14× 14× 256
3× 3 conv, 256 kernels, LeakyRelu, stride 2, BN

[
3× 3 conv, 256 kernels, LeakyRelu, stride 1, BN

]
×3

7× 7× 512
3× 3 conv, 512 kernels, LeakyRelu, stride 2, BN

[
3× 3 conv, 512 kernels, LeakyRelu, stride 1, BN

]
×3

latent code zn

1× 1 conv, 2048 kernels, LeakyRelu

average pooling, 1000-dimentional fully connected layer

softmax, label yn
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E Additional Results

Gaussian Mixture Model Figure 1 and 2 show the performance of Stein VAE
approximations for the true posterior using M = 10, M = 20, M = 50 and M = 100
samples on test data.

(a) M = 10 (b) M = 20 (c) M = 50 (d) M = 100

Figure 1: Approximation of posterior distribution: Stein VAE vs. VAE. The figures
represent different samples of Stein VAE. Each row corresponds to the same test data,
and each column corresponds to the same number of samples with (a) 10 samples; (b)
20 samples; (c) 50 samples; (d) 100 samples.
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(a) M = 10 (b) M = 20 (c) M = 50 (d) M = 100

Figure 2: Approximation of posterior distribution: Stein VAE vs. VAE. The figures
represent different samples of Stein VAE. Each row corresponds to the same test data,
and each column corresponds to the same number of samples with (a) 10 samples; (b)
20 samples; (c) 50 samples; (d) 100 samples.
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Poisson Factor Analysis We show the marginal and pairwise posteriors of test data
in Figure 3.

Figure 3: Univariate marginals and pairwise posteriors. Purple, red and green represent the

distribution inferred from MCMC, standard VAE and Stein VAE, respectively.
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