Reza Azizian

Reza Azizian
Massachusetts Institute of Technology | MIT · Department of Nuclear Science and Engineering

Ph.D.

About

19
Publications
11,289
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,292
Citations

Publications

Publications (19)
Article
In severe accident mitigation approaches that aim to achieve In-Vessel Retention (IVR) the decay heat is removed from the corium by conduction through the Reactor Pressure Vessel (RPV) wall, and by flow boiling on the outer surface of the RPV. The boiling Critical Heat Flux (CHF) limit must not be exceeded to prevent RPV failure. Previous studies f...
Article
Full-text available
Engineers and scientist have a long tradition in trying to improve the thermophysical properties of convective heat carriers such as water and transformer oil. Technological developments of the last decades allow the dispersion of particle of sizes ranging between 10 and 100 nm in these liquids. In a large number of recent studies the resulting nan...
Article
Ferrofluids or Magnetic nanofluids (MNFs) are the suspensions of magnetic nanoparticles and non-magnetic base fluid. The heat transfer performance of a magnetic nano-suspension is influenced by the strength and orientation of an applied magnetic field. The main attraction of these types of nanofluids is that they not only enhance the fluids’ thermo...
Article
This study is based on the effect of external magnetic field on heat transfer performance and pumping power of Fe3O4/DI-water nanofluid is experimentally investigated under both laminar and turbulent flow regimes. The magnetite ferrofluids with 0.25% and 0.50% of weight fractions are prepared by a chemical precipitating method using ammonium hydrox...
Article
The convective heat transfer performance and energy efficiency of Al2O3/DI-water and CuO/DI-water nanofluids flowing through a straight vertical tube was experimentally studied for laminar, transitional and turbulent flow regimes. A circulating rig was built to conduct the experiments at constant heat flux and various particle concentrations of 0.2...
Article
Ferrofluids are a unique class of colloidal liquids made of ferromagnetic or ferrimagnetic nanoparticles suspended in a carrier fluid. Ferrofluids have drawn considerable attention due to the possibility of tuning their heat transfer and flow properties through the application of an external magnetic field. They can also be utilised to improve the...
Article
Optimal thermo-physical properties of nanofluids provide an opportunity to overcome energy associated difficulties, in addition to providing new alternatives to catch, store and exchange of energy. A significant reduction in energy consumption is possible by improving the performance of a heat exchanger circuit, and may in part alleviate current en...
Article
Porous hydrophilic surfaces have been shown to enhance the critical heat flux (CHF) in boiling heat transfer. In this work, the separate effects of pore size and porous layer thickness on the CHF of saturated water at atmospheric pressure were experimentally investigated using carefully engineered surfaces. It was shown that, for a fixed pore diam...
Article
Nanoparticles aggregation is considered, by the heat transfer community, as one of the main factors responsible for the observed enhancement in the thermal conductivity of nanofluids. To gain a better insight into the veracity of this claim, we experimentally investigated the influence of nanoparticles aggregation induced by changing the pH value o...
Article
Full-text available
Nanofluids, as new heat transfer fluids, are at the center of attention of researchers, while their measured thermal conductivities are more than for conventional heat transfer fluids. Unfortunately, conventional theoretical and empirical models cannot explain the enhancement of the thermal conductivity of nanofluids. Therefore, it is important to...
Article
The effect of an external magnetic field on the convective heat transfer and pressure drop of magnetite nanofluids under laminar flow regime conditions (Re < 830) is investigated. Specifically, the influence of magnetic field strength and uniformity on the convective heat transfer coefficient is examined through experiments and supporting simulatio...
Article
Nanofluids have attracted considerable attention in recent years as effective working fluids for heat transfer applications. This is not surprising given that nanofluids which are essentially suspensions of nanoparticles in a base fluid, exhibit higher thermal conductivity than conventional heat transfer fluids. The mechanisms responsible for such...
Conference Paper
Liquid layering is considered to be one of the key mechanisms responsible for the remarkably high thermal conductivities exhibited by nanofluids. A number of models have been presented in recent years to quantify the effect of liquid layering. However, many of these models are either based on unrealistic assumptions or have been incorrectly formula...
Article
Full-text available
A nanofluid is a new class of heat transfer fluids that contain a base fluid and nanoparticles. The use of additives is a technique applied to enhance the heat transfer performance of base fluids. The thermal conductivity of the ordinary heat transfer fluids is not adequate to meet today's cooling rate requirements. Nanofluids have been shown to in...
Conference Paper
Full-text available
We conventionally use energy-based efficiency measures to assess how well energy systems perform. Energy-based measures of merit, however, do not really indicate how nearly performance efficiency approaches the ideal. In fact, energy measures can lead ...

Network

Cited By