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ABSTRACT

Testing models of modern cyber-physical systems is not straight-

forward due to timing constraints, numerous if not infinite possi-

ble behaviors, and complex communications between components.

Software testing tools and approaches that can generate test cases

to test these systems are therefore important. Many of the existing

automatic approaches support testing at the implementation level

only. The existing model-level testing tools either treat the model

as a black box (e.g., random testing approaches) or have limitations

when it comes to generating complex test sequences (e.g., symbolic

execution). This paper presents a novel approach and tool support

for automatic unit testing of models of real-time embedded systems

by conducting concolic testing, a hybrid testing technique based

on concrete and symbolic execution. Our technique conducts au-

tomatic concolic testing in two phases. In the first phase, model is

isolated from its environment, is transformed to a testable model

and is integrated with a test harness. In the second phase, the har-

ness tests the model concolically and reports the test execution

results. We describe an implementation of our approach in the

context of Papyrus-RT, an open source Model Driven Engineering

(MDE) tool based on the modeling language UML-RT, and report

the results of applying our concolic testing approach to a set of

standard benchmark models to validate our approach.

CCS CONCEPTS

· Software and its engineering → Software testing and debug-

ging.
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1 INTRODUCTION

Modern Real-Time Embedded software (RTE) plays a fundamental

role in controlling many products and devices found in telecom-

munication systems, automobiles, aircraft and many other cyber-

physical systems. In such complex systems, the behavior of the

system depends on real-time constraints as well as on complex

communications with the environment using various protocols.

Using code-centric-only approaches for developing complex RTE

systems is very challenging. MDE techniques tackle this challenge

by raising the level of abstraction on which the developers con-

struct software. If a software model contains faults, these faults

will propagate to any refinement of that model or the code that is

generated from the model. Therefore, finding and resolving faults

at the model level is critical for developing high quality software.

Although MDE principles including abstraction, automation, and

analysis [55] can help deal with the complexity of software, models

of modern industrial systems still often are large and can become

overwhelming. Thus testing of such models is challenging without

automatic tool support.

Symbolic execution [19, 20] is able to automatically generate

test cases for a program that achieve high coverage of the pro-

gram executions. However, symbolic execution typically results in

path explosion [20] when executing large systems. The situation

can be worse in analysing concurrent systems, where the state

space is larger. The scalability issue has been partially addressed,

e.g., by distributing the computations on a cloud [15, 26] or by

conducting selective symbolic execution [22]. But there are some

other issues, e.g., since symbolic execution is typically static, it

may not be precise in some situations, e.g., when there are state-

ments in the program that call library functions that are hard to

reason about (e.g. calls to operating system libraries) or when the

program includes pointer manipulations or pointer aliases [32]. In

addition, symbolically executing programs or models with complex

constraints or data structures is challenging [19, 60], e.g., symbolic

execution will be stuck if it faces non-linear arithmetic path con-

straints [33]. Besides, symbolic execution typically constructs and

maintains a Symbolic Execution Tree (SET) to keep track of path

constraints for executions, where for complex systems it is compu-

tationally intractable to precisely maintain and solve constraints

for test generation due to numerous execution paths [60].

Concolic testing, on the other hand, executes a program both con-

cretely and symbolically. In this technique, a program is executed

on some random inputs and symbolic constraints are collected dur-

ing the course of that execution. Then, the collected constraints

are negated and solved again to execute alternative branches in

the program. This process is run in a loop until all branches are

executed or a user-specified coverage criterion is met. The fact that

symbolic constraints are collected during a concrete execution of

the program allows the generation of test inputs that will force
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the program along the exact same execution. Therefore, every er-

ror caught by taking an execution path by the concolic testing is

guaranteed to be sound [33]. In addition, a program that includes

function calls to external libraries will prevent the symbolic execu-

tion from collecting path constraints, since the program includes

statements that involve constraints that are outside the scope of

the symbolic execution engine. Concolic testing engines, such as

DART [33], typically solve this problem by randomly generating

inputs and running the function calls to reason about the predicates

and to collect constraints [32, 33].

MDE is becoming more prevalent, and software models tend to

become large and complex. For instance, Models of RTE systems in

automotive and aerospace domains may encompass many interact-

ing state machines that communicate using various protocols with

complex action code on the transitions of the state machines. In

such models, testing some branches on a state machine can be very

challenging since the execution of such branches may need a se-

quence of events where these events are highly constrained by the

input parameters. It becomes more challenging when the execution

of an event is guarded by a conditional where that conditional de-

pends on previous event parameters. Observe that in complex RTE

systems, event parameters are often of complex data types (rather

than primitive types). Concolic testing can be an effective technique

for testing these systems. However, as opposed to concolic program

testing, model-level concolic testing has not been addressed in the

literature. One may propose using the current code-centric con-

colic testing engines for testing the behavior of models by testing

the code generated from the models. However, there are currently

concolic testing engines for only a few languages, so it may not be

possible to test programs generated (in an arbitrary target language)

from models. In addition, the information collected during testing

the programs is not easily traceable to the models. Therefore, more

work is needed to leverage concolic testing for software models, in

particular for models of reactive and real-time systems.

In this paper, we present a novel approach and prototype tool

for automatic concolic testing models of RTE systems. To this end,

we automatically generate a harness for a model to simulate its

environment. The harness is integrated with a model-level concolic

engine to dynamically generate test inputs for the model and stimu-

late it with the generated inputs. We have built our concolic engine

on UML-RT [52], a domain specific language, whose constructs

come from standard UML constructs [56]. UML-RT is a popular

industrial modeling language that is used for modeling industrial

systems and is supported by several open-source and commercial

tools (Eclipse Papyrus-RT [14], Eclipse eTrice [5], IBM RSA-RTE [3],

HCL RTist [7] and IBM RoseRT [6]). Our prototype implementa-

tion uses the open source MDE tool Papyrus-RT. To evaluate our

approach, we use an industrial case study provided by one of our

industrial partners as well as a set of other academic case studies

of different sizes and complexities.

In the next section, we briefly introduce UML-RT with an ex-

ample model and an overview of the current state of the art in

the program- and model-level concolic testing. Then, we explain

our approach. Next, the implementation of our concolic testing

approach is presented. We then briefly describe our prototype tool

along with an evaluation of the approach and the tool.

2 BACKGROUND

Developing Executable Models in UML-RT. Constructing com-

plex, often distributed real-time systems needs powerful, well-

defined modeling constructs, as well as strong tool support. These

constructs and tools can be used to design a well-defined architec-

ture for such complex systems, which eases not only the develop-

ment of the initial system but also facilitates maintenance and evo-

lution [56]. UML for Real-Time (UML-RT) [56] is a domain-specific

language dedicated for modeling real-time systems. UML-RT is a

UML profile (similar to, e.g., MARTE [30] and SySML [31]). Since

UML-RT focuses on modeling real-time systems, it is, compared to

UML, a small language with light notation.

The main concepts of UML-RT are capsules, ports, and connec-

tors [52]. A capsule is an independent active class with its own

control flow. Capsules own ports, allowing them to communicate

via message passing. State machines model the behaviour of cap-

sules. A UML-RT state machine is an extension of a Mealy state

machine [46] augmentedwith extra features, including state actions,

composite states, and deep-history.

UML-RT code generators generate complete executable code for

the structural and behavioral aspects of a model. Since UML-RT

is both a specification and implementation language, the action

code written in the model is integrated as part of the code gener-

ated from a model. Fig. 1 presents some behavioral and structural

aspects (state machine, sample action code, and capsules) of a Col-

lision Avoidance (CA) system. This system prevents or mitigates

collisions by continuously monitoring the road ahead and parts of

the side-fronts of the vehicle. Whenever an obstacle is detected, it

notifies the driver by audible or visual alerts. In addition, the system

automatically brakes, vibrates or steers the wheels in the opposite

direction if it detects an imminent collision. Based on the figure, the

CA_Controller capsule communicates with four other capsules via

the ports lidar, panel, brake, and steer (observe the action code on

transitions in Fig. 1). The first port receives threat measurements

from four lidar components. Lidar uses the laser to estimate the

distance between objects and the direction of the potential colli-

sions with objects. The controller sends error or warning signals to

the user panel component via the port panel to inform the driver

using audible and visual alerts. The controller also communicates

with the brake and steering wheel systems by sending commands

to the ports brake and steer to apply the brake, and to vibrate or

to steer the steering wheel based on the threats measured. This

sample model will be used in the following sections to demonstrate

our approach for model-level concolic testing.

Program Symbolic and Concolic Execution. The key idea be-

hind symbolic execution is to use symbolic values instead of con-

crete data values for program inputs and maintain a collection of

symbolic expressions over the symbolic values to represent the

program variables throughout the program execution [20, 43]. Sym-

bolic execution maintains a path constraint Φ, which consists of

quantifier-free first-order formulas over the symbolic expressions,

and a symbolic state σ , which maps each program variable to a

symbolic expression. At execution time, initially Φ is true and σ

is an empty map. These two variables are updated throughout the

program execution. For instance, if at a location in the program

input is read using v = input(), then v 7→ s is added to σ , where s
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Figure 1: The structure of the CA controller model and its environment: left. The state machine of CA: right

is a fresh symbolic value. The expression means a fresh symbolic

variable is allocated for each input variable. During execution, at

every assignment statement v = e , symbolic execution updates

σ by mapping v to σ (e), where σ (e) is the symbolic expression

obtained by evaluating e in σ . At a conditional statement if (e) then

S0 else S1, the path constraint Φ is updated to Φ ∧ e and a new path

constraint Φ′ is constructed and updated to Φ ∧ ¬e . At this point

of execution, if Φ ∧ e is satisfiable, then a new symbolic execution

branch is created and the execution proceeds from the then branch.

Similarly, if Φ ∧ ¬e is satisfiable, a new branch is constructed and

the execution is continued from the else branch. Observe that this

kind of execution gives rise to a tree of symbolic executions which

is called Symbolic Execution Tree (SET).

At the end of the execution or when an error happens, e.g., at an

assertion violation or program crash, Φ (the current path constraint

in the SET) is solved using a constraint solver, and test inputs are

generated. By executing the program using the generated inputs,

the program follows the same path as the symbolic execution. For

more details about symbolic execution, please refer to [19, 20, 43].

Concolic testing executes a program both concretely and sym-

bolically [16, 33, 58ś60]. In this technique, symbolic execution is

conducted dynamically, which means the program under test is

executed and during that execution, symbolic expressions and path

constraints are collected. Concolic execution maintains two maps

of program variables: the symbolic state that maps the variables to

symbolic expressions and the concrete state that maps the variables

to concrete values. This technique needs some initial program input,

which is generated randomly to initiate the execution. At the end

of each execution, a constraint in the collected path constraints is

negated (the constraint to negate is either selected randomly, sys-

tematically or based on some other heuristics [58]), and the program

is executed again using the newly generated inputs (by solving the

negated constraint) to steer the program along a new execution

path. The concolic testing conducts this task either systematically

until all feasible distinct execution paths have been visited or the

testing budget runs out. Observe that in concolic testing, a SET

is not generated, rather a list of path constraints is generated and

updated throughout the whole execution and thus there is not the

issue of saving and updating the SET.

Program concolic testing has already proved its potential for

achieving high code coverage [16, 33ś35, 60] for catching bugs in

programs that are otherwise very hard to catch using other ap-

proaches including static analysis tools and random testing. One

example successful application of concolic testing in the industry

is SAGE [34] that has been used by Microsoft for catching many

vulnerability bugs in large projects includingWindows 7 [34]. How-

ever, concolic testing of models has not been studied before even

though MDE is becoming more prevalent and models tend to be-

come larger and more complex. For instance, the simple model

shown in Fig. 1 specifies the behavior of a reactive system that

executes by frequent communications with its environment. These

types of models have action code on their transitions to conduct

various computations including to process incoming messages, up-

date attributes, and produce outgoing messages. These systems

execute only when they are in their appropriate environment (e.g.,

are connected to devices) that sends them the required stimuli. To

test these systems during development, one needs to mock the

environment for the system, for instance through a test harness,

such that the harness sends a sequence of messages in a specific

order with appropriate input parameters. It is challenging and labor

intensive to manually craft a test harness for each model (this task

includes creating a capsule as the test harness, ports, and connectors

as well as the behavior of the test harness). Therefore to automate

testing, one may need to generate the structure and behavior of

the test harness dedicated to each model under test. To archive

high coverage, the harness should intensively test the model and

monitor and report the test coverage information. In the following

sections we explain our approach for concolic testing such models.

3 APPROACH

Given a state machine under test and a test budget (can be the

allotted time for testing or the maximum number of consecutive

transitions to execute) as input, the objective of our approach is to

automatically test the state machine to exhibit as many executions

as the test budget permits, to increase the chance for finding bugs

in the state machine. In this section we start with a motivating

example and an overview of our approach before we elaborate

different steps of our technique for model-level concolic testing.

Throughout this section, we call the state machine under test the

model, where the test harness is responsible for testing this model.
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3.1 Motivating Example

The simple model presented in Fig. 1 has three bugs, two of which

can be detected if the lines 8 and 16 on the action code of the transi-

tion t5 (incoming transition to the state Mitigate) are executed. For

instance, to execute line 8, the statemachinemust receive the follow-

ing messages and parameters values must satisfy the constraints in

parenthesis: lidarMsg(threat0==1) to execute the transition Idle→

Warn, and lidarMsg(threat1>1, computeDirection(cd0)==true) to ex-

ecute the transition Warn → Mitigate and execute the second

if statement. So, in this case, solving the path constraints (PCs)

(threat0==1 ∧ threat1>1∧ computeDirection(cd0)==true) allows gen-

erating test inputs that will force the state machine to reach and

execute line 8. To execute the corresponding else branch (line 10),

the concolic engine negates the last constraint to end up the PCs

(threat0==1 ∧ threat1>1 ∧ ¬(computeDirection(cd0)==true)), so by

solving it the else branch is executed. Observe that the third if state-

ment (line 14) executes if and only if hviEnabled has been enabled

in previous transitions, where this predicate gets enabled if the

transition t1 executes at least three times, such that the predicate

Warnings>=3 holds (Warnings is a global variable). Therefore, as

shown, the execution of a branch on a transition is dependent on

the valuation of a global variable in a specific way. This system

should not vibrate and steer the wheel at the same time [1, 39]. That

is, it vibrates the steering wheel if it detects a forward collision,

and steers the car in the opposite direction if it detects a merging

collision (the type of the collision is computed by a library using

the cd input parameter). As transition t5 shows, if the flag merging-

Col holds and vibrate is enabled (by a message from the user), this

requirement is violated. So this last bug is subtle and can be caught

by analyzing the execution traces only, as has been proposed in [8].

3.2 Approach Overview

In our approach, a test harness is responsible for constructing mes-

sages and parameters and sending them to the model to trigger

transitions on the model and hence execute the action code on the

model. A transition might be executed several times to exercise

all possible executions on the transition action code. To this end,

before conducting testing, the model is transformed by augment-

ing it by new model elements to enable the harness to control the

execution of the model and to steer the model along its different ex-

ecutions. Moreover, as mentioned, in concolic execution, the model

is executed both concretely, executing the state machine through

the generated input parameters, and symbolically to collect path

constraints on values at symbolic variables constructed in terms of

input parameters. To enable these side by side executions, during

the model transformations, we conduct a set of instrumentations on

the action code of the state machine under test by adding new ac-

tion code beside the existing one, which is responsible for collecting

symbolic path constraints. Once the model is transformed, we gen-

erate the harness as well as the extra elements required to integrate

the harness and the model. Finally, we rely on the standard code

generator to generate code from both the harness and the model, as

well as the glue code for integrating the two. The code generated

is executed, so harness and the model execute concurrently. In the

following sections, we present all the steps mentioned above in

detail. We first explain the steps of our model transformations and

the rationale behind them.

3.3 Model Transformations

Model-Harness Synchronization. The harness and the model under

test execute concurrently and asynchronously. The harness should

test a model with a sequence of test inputs and after the processing

of each input the model should send an acknowledgment to the

harness. To this end, during instrumentation, new action code state-

ments are added to the states such that upon complete execution

of each transition on the model, the model informs the harness, so

the harness can send the next test input. For instance, if a model

has transitions that are enabled by timers, the harness is not aware

of the exact timeout of a timer on the model, so sending messages

from the model to the harness upon execution of a transition helps

to synchronize the harness and the model. The message newState

added on the instrumented model in Fig. 3 informs the harness

about a newly visited state, so the harness can prepare and send

the next appropriate message to the model under test.

Path Constraint Collection. We instrument the action code on

the transitions by inserting extra commands on the action code

(Table 1). The instrumented transition executes as the original one,

but also invokes the symbolic execution engine for collecting path

constraints (PCs). The instrumentations shown in the last row of

Table 1 serve as another purpose (than collecting PCs) which are

explained later. Given the fact that a transition may be guarded by

an expression (a transition is enabled iff it receives the required

message trigger and the transition guard expression holds) and a

state machine may include choice points (states that have multiple

outgoing branches where the decision on which branch is executed

is based on the guard on that branch), before the instrumentations,

we first conduct the following small transformations on the model.

(1) Transforming choice points: if the target state of a transition t

is a choice point, for each guard expression on the choice point’s

outgoing transitions we add new corresponding if statement blocks

on the action code of t . Therefore, the corresponding path con-

straints are collected for each outgoing transition, so proper test

input is generated to cover all the outgoing transitions. For instance,

as shown in Fig. 3, łThreat?ž is a choice point with two outgoing

transitions. The guards on these two outgoings give rise to two

new if statements on the transformed transition t3.

(2) Transforming guards: as mentioned, any transition is initially

executed by receiving random data, and hence the concolic engine

may not be able to execute guarded transitions initially (since it is

very likely that random data does not satisfy the guard predicates).

Therefore, such transitions need some transformations that by pre-

serving the original behavior, enable the tool to execute them by

some random data. To this end, if there is a transition t0 : S0 → S1
(as shown in Fig. 2), two new transitions t1 and t2 and a choice

point c are created. The transition t1 is the incoming transition to

c , and t0 and t2 are its outgoing transitions. As shown in the figure,

t0 now connects the choice point to the state S1. In addition, the

action code of t1 now forces the concolic engine to collect two new

constraints that can give rise to generating inputs that satisfy the

guard of t0 and cause the execution of the action code of t0. More

examples of this transformation are in Fig. 3.
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Figure 2: Transforming Guards. Left: Original Model, Right:

Transformed One.

Table 1: Action code Instrumentations

Transition Action code Transition
TypeBefore Instru. After Instru.

//reading input
v ← input ();

σ ←σ + (v 7→ s );
v ← input ();

others

//assignment
v ← e ;

m0 ← v 7→ eval_sym(e, σ );
σ ← σ + [m0]; v ←e;

others

//conditional
if (e) then S0 ;

else S1 ;

e ← eval_sym(e, σ );
if (e) then { Φ←Φ ∧e ; S0 ;}
else {Φ←Φ ∧¬e ; S1 ; }

others

reset_vars(); save_pcs(); iteration

Action Code Full Coverage. Traditionally the notion of coverage

in testing state machines includes transitions/states or predicate

coverage [48], so to test a state machine completely one should

generate as many as test cases as necessary to trigger all transi-

tions on the state machine or satisfy all guard expressions on all

transitions. In our approach, we consider exploring all the branch

points on the transition action code as well, which means we should

not only consider exploring all the transitions, but also the action

code on those transitions. The action code on a transition may have

multiple branch points (e.g., due to if statements), and hence the

transition should be executed multiple times with different inputs

in order to exercise all possible executions. Since after each exe-

cution the state of the system changes (either by transiting to a

new state or by updating some global variables), the model should

be able to restore its original state after each execution. To this

end, during the transformations, the model is augmented by new

instructions such that after each execution, the test harness can

move the model under test back to a starting point, such that the

variable values are restored so the execution can be conducted on

the original global variable values. To this end, a transition from

each state to the initial state is created (to form a loop) and we

call the new transition an iteration. We call the transitions in this

loop a transition set. An iteration allows the harness to execute a

transition set multiple times. For instance, the transitions iterate1

and iterate2 in Fig. 3 represent two iterations. As shown in the last

row of the Table 1, the two lines of action code that are executed

on an iteration are reset_vars() and save_pcs(). The former one

restores the state machine’s variable values and the later one saves

the collected path constraints of a transition set into a file. The

harness sends new inputs to the model in each iteration, and that

happens by restoring the constraints collected by the model, and

negating and solving them upon completion of the execution of a

transition set. We will elaborate this in the following sections.

3.4 Concolic Testing of the State Machine

In our approach, a test harness is generated for each model under

test and is integrated with the model automatically (Fig. 4). Based

Figure 3: A simplified version of the CA model shown in

Fig. 1 before (top) and after (bottom) the model transfor-

mations. Model elements dashed are the elements that are

newly added/updated during the transformations.

Figure 4: Integrating a model with a test harness

on the figure, the model originally communicates with four other

models through their ports (Fig. 4, on the left). The harness mocks

the external environment for the model (Fig. 4, on the right), so the

model can be tested as a unit in isolation.

Once the state machine is instrumented and is integrated with

a test harness, the state machine can be tested. In the remainder

of this section we elaborate on how the test harness conducts the

concolic testing using the example model shown in Fig. 3.

Fig. 5 presents an abstract behavior of the test harness via a state

machine and Fig. 6 presents some of the functions and attributes

of the test harness. As shown in Fig. 5, the test harness starts by

reading a test configuration file (to specify test budget, such as total

iterations), and then enters the state MsgSending. When entering

this state, the harness calls the function SendMessage (shown in

Fig. 6) to select the next transition for execution (the candidate

transition) and to send a message to enable that transition. In the

function SendMessage, selectTransition (line 12) selects the candidate

transition from the outgoing transitions of the current state. Since

a transition set is executed iExec times, the candidate transition

is selected based on the following rules: in an iteration i, where

i<=iExec, if none of the outgoing transitions has been executed

before, then selectTransition chooses one of them randomly, oth-

erwise the transition that has been executed in the iteration i-1 is

selected, where 1<=i-1<=iExec. This is because the inputs generated

from path constraints collected during execution of a transition set

execute the same transition set (same transitions and same order

of execution), but forces a different execution path in transitions

8
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action code. If a transition set is executed iExec times, starting from

the initial state, the harness picks an outgoing transition that has

not been executed before or a random transition if all the outgoing

transitions have been executed iExec times. Observe that if in a

state machine there is a self-transition st (a transition whose source

and destination states are identical), st can be selected tsLen (the

transition set length) times so the next transitions never execute.

To handle this issue, the harness takes as input a loop bound (tExec

in Fig. 6), so in an iteration, the harness does not select any tran-

sition more than tExec times collectively. In line 13, the harness

reads inputs either from file if already exists input generated by the

symbolic execution engine, otherwise it generates random data for

a candidate transition. Then, the harness constructs a message and

sends it to the model under test (lines 14-15).

Since the transitions on the model are instrumented (observe

Fig. 3), upon reception of the message by the candidate transition,

the action code on the transition is executed, which leads to collect-

ing (or updating) path constraints, and the model sends newState to

the harness, which causes the harness to move to the state MsgRe-

ceived (Fig. 5), where the harness calls its function NextStep (shown

in Fig. 6). This function first updates the coverage information (line

2), and decides whether the harness must restart the model under

test forcing it to move to its initial state, or to continue executing

the next transitions. This decision is based on whether or not tsLen

(transition set length) number of transitions have been already exe-

cuted (lines 3-9). If the harness decides to continue, then it sets a

timer (line 4) so once the timer times out (after some milliseconds)

the harness ends up in the state MsgSending, so it can prepare and

send the next message. If not, the harness sends the message iterate

to the model, which causes the model to move to its initial state

and send a new newState message which causes the harness to

move to the choice point łIterate?ž. In this state, if the total number

of executed iterations equals totalIter (Fig. 6) or there is no more

branches to execute, then the state machine moves to the state End,

otherwise it moves back to the state MsgSending and the function

Negate_Solve is executed. Observe that if the testing time budget

(execTime) runs out, the harness always automatically terminates.

We have not shown that functionality here due to space limits.

As shown in Fig. 3, after each iteration, the model stores the

Symbolic Execution (SE) object into a file (by calling the function

save_sym). So, the function Negate_Solve in the harness restores

this SE (line 18) and based on the selected heuristic (either ran-

dom or systematic, which we will elaborate later in this section)

a constraint in the SE is negated (lines 19-23). Note that the path

constraints collected for a transition set is the conjunction of all the

constraints collected for each transition, so the test harness always

maintains only one path constraint throughout the execution of

the whole model (as opposed to symbolic execution that maintains

a tree of path constraints for all paths in the system). The harness,

then, solves the resulting negated constraints and writes the inputs

generated to a file (lines 24-25) so it can later (in the state MsgSend-

ing) send them to the model.

Example. Assuming transition set length is 3, the sequence dia-

gram shown in Fig. 7 presents the communication between the

harness, the instrumented model shown in Fig. 3 and the sym-

bolic execution engine. Based on Fig. 3, the state Idle has only one

Figure 5: A simplified state machine of the test harness

Input: a state machine sm, and a test configuration object testConf with these
attributes: heuristic h, total iterations totalIter, execution time execTime, transition set
length tsLen, iteration executions iExec, and transition executions tExec.

Harness attributes: _Executed_Transitions, _Sym_Ex_Obj.
Output: The branch, transition and state coverage results.

1: procedure NextStep()
2: updateCoverage();
3: if (_Executed_Transitions < testConf.tsLen) then
4: timer.set();
5: let _Executed_Transitions = _Executed_Transitions + 1;
6: else
7: iterate.send();
8: let _Executed_Transitions = 0;
9: end if
10: end procedure
11: procedure SendMessage()
12: let candidate = selectTransition(sm.currState.outgoingTransitions);
13: let inputs = readInputs(candidate);
14: let message = getMsg(candidate, inputs);
15: message.send();
16: end procedure
17: procedure Negate_Solve()
18: let _Sym_Ex_Obj = readSymExObjFromFile();
19: if (h==0) then //random branch selection
20: negate_rand(_Sym_Ex_Obj);
21: else //systematic branch selection
22: negate_sys(_Sym_Ex_Obj);
23: end if
24: let inputs = solveSymExObj(_Sym_Ex_Obj);
25: writeInputsToFile(inputs);
26: end procedure

Figure 6: The behavior of the test harness

outgoing transition t1, so the test harness sends the message li-

darMsg(1) (parameter is randomly generated), so t1 is executed

and executing its action code gives rise to constructing the path

constraints (threat0 == 1). Now, the model informs the harness

with a newState message, so the harness sends the next message

(again with some random parameters) lidarMsg(20), which executes

t3 as well as t5 (since the t5 guard holds) and the resulting PCs

will be (threat0 == 1 ∧ threat1 > 1). Now the number of executed

transitions is 3, and hence the harness sends the message iterate,

which results in restarting the model, negating the last part of the

constraints (resulting in PCs threat0 == 1 ∧ threat1 <= 1), and

generating new inputs (e.g., threat0 = 1 and threat1 = 0), which

this time will execute the transitions t1 and t3, and t4, respectively.

DFS vs. BFS Transition Execution. In our approach, we can test a

model by choosing a value for the parameter iteration length large

enough to execute all the transitions starting from the initial state

all the way through to some final state (a state with no outgoing

transitions), so the execution and testing of transitions will be

based on the Depth First Search (DFS) traversal. Conversely, taking
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Figure 7: Communication of the harness, the model under

test (MUT) and the symbolic execution engine

smaller numbers as the iteration length and increasing that number

iteratively can simulate the Breath First Search (BFS) traversal for

testing the transitions.

Heuristics for Branch Selection. We implemented two different tech-

niques for selecting the next branch for execution from the next

executable branches: random and systematic. Assuming the number

of constraints collected through executing a transition set is n, then,

in the former case, a random number x is generated such that x<=n

to select the x th branch for execution. In this case, it is possible that

a branch on any of the transitions on the current transition set gets

executed. In the later case, the harness systematically executes the

branches on the transitions and in the order that the transitions

have been executed. For instance, if in a transition set the transi-

tions t1, t2,.. tn are executed and the constraints t
c1
1
, t
c2
1
, t
c1
2
,...,t

c1
n are

collected initially, then the next path constraints are constructed by

negating the constraints in the same order. We note that executing

a branch on a transition may give rise to collecting new constraints

due to nested conditionals. Therefore, always constraints on the

same transition are selected for negation until all the branches on

that transition are executed. We refer to these techniques Random

Concolic (RC) and Systematic Concolic (SC), respectively.

3.5 Behavior Preservation

The instrumentation in our approach preserves the original be-

havior of the model and only enables collecting path constraints,

similar to other tools [16, 33, 60]. Since collecting and solving com-

plex constraints take some time, we needed to consider this factor

for models with timers to prevent impact on the behavior of such

models. To this end, as mentioned, in our approach, solving the

constraints is always carried out during the execution of an iter-

ation transition, rather than at each state where the solving time

may be long enough such that some timer on the next outgoing

transitions may fire before the constraint solver generates the data.

Using this technique, we did not observe any impact (introduced by

the overhead of constraint solving) on the timed systems based on

our experiments on several case study models (that we will present

later). As another observation, solving the constraints is fairly quick

(in the order of milliseconds), which is considerably less than the

timer values that we observed on the case study models. Hence the

tool (even without the technique above) would not interfere with

the behavior of the models.

Figure 8: The overview of our prototype tool

4 EXPERIMENTAL EVALUATION

4.1 Tool Implementation

We have implemented a prototype tool called mCUTE (Model-level

Concolic Unit Testing Engine) to concolically execute state-based

models using the approach that we presented. We have conducted

several experiments using our tool on a number of industrial and

academic models with different sizes and complexities. mCUTE

(which is open source) was implemented partly in Java (static parts

related to, e.g., model processing and model transformations) and

C++ (the core libraries for concolic testing). We have integrated

our tool in Papyrus-RT [14], which is an Eclipse-based open source

software modeling IDE with an active user community. Our tool

can be integrated to other Eclipse-based IDEs, including RSA-RTE

and Rhapsody. The schematic design of our prototype tool is shown

in Fig. 8 and various components of our design are explained below.

Model Transformer implements a set of libraries on top of Eclipse

Modeling Framework (EMF) [61] to connect to a model and collect

information on model elements, such as transitions, states, and

action code. This information is collected statically and is stored in

some vectors before testing the model. This module then uses this

information to configure the test harness by taking the structure

of the model into account. This module is also responsible for

transforming the model and instrumenting its action code. The

transformation is done using EMF libraries, and the action code

instrumentation is conducted using CIL [47].

Model-level Concolic Engine module contains a test harness (con-

figured by the model transformer module) integrated with our sym-

bolic execution engine (which was built by extending CREST [16]).

The harness implements algorithms for concolic testing, some li-

braries for measuring the model coverage (including states, transi-

tion, and action code coverage) as well as heuristics for transition

and branch selections. This module initializes the harness with user-

provided test configurations, keeps track of the path constraints

collected, and feeds the harness with newly generated test cases.

The module stores the coverage information for each transition in

an object. The coverage information is updated after each iteration,

so the module chooses the candidate branches for negation for a

transition from its coverage object. Observe that to initiate testing,

we generate code from both the model under test and its harness

and we execute the generated code. The code generated from test

harnesses varies slightly for each model, but a test harness was on

average around 3K lines of C++ code.

10
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Table 2: Our Case Study Models

Model
Model Complexity

Total#
Transitions

Total#
States

Total#
Action code

Total#
Branches

LOC of the
Generated

Code

AR 25 20 80 30 2.3K

FDM 55 55 144 34 6.2K

ACC 49 35 105 60 4.5K

CA 50 50 104 84 2.5K

PBX 291 284 1,715 196 11K

RSM 100 100 4,283 1,600 15.5K

4.2 The Benchmark Models

Our criteria for selecting the candidate case study models include:

(i) the case studies should have a large number of transitions, action

code, and complex branches in their action code, (ii) the case stud-

ies should include transitions that have dependencies over global

variables. The first criterion above serves to evaluate the scalability

of our tool and approach, since in these case studies, the tool may

need to collect and solve large and complex path constraints. In

addition, the large number of branches may give rise to numer-

ous executions (what in symbolic execution may lead to the path

explosion problem). The second criterion evaluates our tool and

approach for its effectiveness in exploring branches whose predi-

cate is highly dependent on previous constraints and consequently

the effectiveness of the approach in finding bugs that may only

be revealed if certain branches are executed. Below we will briefly

introduce our case studies for this experiment.

Collision Avoidance (CA) that was explained in previous sections.Au-

tonomous Rover (AR) [9] is a system that controls a vehicle equipped

with four wheels driven by two engines and sensors to collect in-

formation from the environment and to detect obstacles. Fabric

Dyeing Machine (FDM) [10] is a system to control a fabric dyeing

machine. It was designed initially in ROOM [57]. We manually con-

verted it to a behaviorally equivalent system in UML-RT. Adaptive

Cruise Control (ACC) is a system that adjusts the vehicle speed and

distance to that of a target vehicle and was originally designed in

AutoFOCUS [2, 37]. PBX (Private Branch eXchange) is a system that

models the interaction of a user with a private telephone network

used within an organization. Randomly Synthesized Model (RSM)

we also challenged our tool on a large model generated randomly.

The model generator generates well-formed executable models, i.e.,

all the transitions have a trigger, and all states are reachable from

the initial state. The tool generates well-formed executable pieces

of C code as action code (similar to the program generator tool

Csmith [44] that generates C code fragments for testing compilers)

with multiple branch points over the transition input parameters. It

took just more than 5 minutes for our model generator to generate

this model (a fully instrumented and transformed model, which is

ready for testing), and around 2 minutes for the code generator to

generate code from the model. More information about all of our

models can be found in Table 2.

4.3 The Experiment Setup

Coverage Methodology. We used state, transition, and branch cover-

age as widely understood and uncontroversial metrics to evaluate

the effectiveness of mCUTE. The tool measures the coverage during

testing and finally reports the coverage. Regarding branch coverage,

we only consider feasible reachable branches (i.e., the branches that

are indeed executable) and we do not count the number of branches

in the library code. Even though mCUTE needs to successfully

execute the library code in order to execute the model itself.

Different Types of Bugs on the Models.Models of RTE systems may

define a tricky execution space that is built from many pointer op-

erations, including casting, and numerous nested conditionals. This

code must often process inputs received from other programs that

may include network packets or system call parameters, which may

cause run-time errors. We refer to these bugs as Model Crashing

Bugs. On the other hand, some bugs do not crash the system but

cause the system to generate wrong outputs, which are referred to

as Operation Bugs [25]. These types of bugs are detected by ana-

lyzing the model’s execution traces only. Prior work has proposed

property monitors to catch these bugs [8]. Finally, mCUTE can catch

code generator bugs, since mCUTE runs the code generated from

the models. Some examples of these bugs caught by mCUTE are

described in Section 4.4.

The Baseline for Comparison. We compare our approach for test-

ing state machines with the two techniques presented in [8]. The

first one (Random Testing) is a black box random test generation

technique for state machines, that generates a large volume of test

cases randomly and merely based on the combinations of various

possible messages that a state machine can receive. The second one

(Simple Exploration) is a white box technique, that generates the test

cases by systematically exploring transitions of a state machine. In

this technique, starting from the initial state, outgoing transitions

in each state are explored, and the trigger for each transition is col-

lected and is added as a test input to a vector. The process continues

until the test case length criterion is met, or the current state has no

more outgoing transitions. Both of these two techniques generate

random data for input parameters bounded by user-defined ranges.

The authors have shown that the action code coverage using the

above two techniques is very low. In that experiment, these tech-

niques are given a considerable amount of resources (in terms of

the test generation time and the number of generated test cases),

and yet they fail to discover some bugs in the action code. The main

reason is that Random Testing blindly generates test sequences and

both techniques generate random data for messages. Therefore,

action code that is in nested conditionals or is on transitions that

need a long sequence of messages in a specific order to execute, as

well as transitions that are guarded by complex predicates, are chal-

lenging to execute. We will show how our approach using concolic

testing can improve the state machine test coverage considerably.

In the current experiment, we define a time frame as the testing

budget. That is, all the three techniques (our concolic engine as well

as the other two techniques) are executed during the allotted time

budget and their performance is measured in terms of coverage

and the discovered bugs. We performed our experiments using a

computer equipped with a 3.0 GHz CPU and 8GB of RAM.

4.4 Results

4.4.1 Testing Coverage. Fig. 9 presents the performance of each

technique in branch coverage. Based on the graph on the left, af-

ter around 17 minutes, Systematic Concolic (SC) covers nearly all
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Figure 9: Left: Branch coverage for RSMmodel, right: cover-

age for other case studies. SC: Systematic Concolic, RC: Ran-

dom Concolic, SE: Simple Exploration, RT: Random Testing

the branches in RSM model (1,600 branches). Besides, as the num-

ber of branches increases to around 1,000, SC starts to outperform

Random Concolic (RC) considerably, even though both techniques

are concolic. The reason is that in RSM there are a large number

of transitions and branches, which gives rise to large transition

sets and consequently collecting a large set of constraints. Now, as

opposed to SC, RC negates branches randomly, and consequently

many branches are executed multiple times. The plots also show

that the performance of Random Testing (RT) and Simple Exploration

(SE) is considerably lower than the other techniques, even though

the results of SE as a random technique is promising. The graph

on the right shows the results of testing other systems except for

RSM (performance for the non-RSM systems was similar and aggre-

gated because of the page limit), where in this case the number of

branches are around 400, collectively. As the graph shows, SC and

RC show almost the same performance. Observe that in this case

the techniques do not collect large number of constraints during

the execution of individual systems due to relatively less number

of branches (as opposed to the case for RSM, where hundreds of

constraints are collected during an execution from the initial state

to a final state).

There was an interesting observation regarding the states and

transitions coverage. The SE and RT techniques were able to achieve

the same coverage as the concolic testing, but only in some models.

For instance, in some cases, they were not successful in generating

the required data to satisfy the transitions guards, and hence the

generated test cases could only execute initial states and transitions.

That is, final states were not reached in these cases.

Note that, given the fact that a state machine may encompass

a large set of states, transitions and consequently action code, in

practice, it might be hard to cover all possible executions of the

state machine using concolic execution, due to numerous possible

executions, which might affect the completeness of our approach

or the approach may not be scalable to larger models. However,

the action code in state machines is usually relatively small, but,

as explained, much of the complexity of concolic testing state ma-

chines lies in the dependencies between action code of different

transitions and therefore constructing path constraints that can

exhibit their executions.

4.4.2 Bugs Found. We found several bugs in our case studies that

are shown in Table 3 (the message parameters with curly braces

represent non-primitive data, i.e., each value is a field in a structure

data type). Concolic testing (both SC and RC) could catch these

Table 3: Bugs Found by mCUTE

Bug Description
Sample inputs to
reproduce the bug

bug#1 :generated incorrect #define macros (FDM) setup({1,100}), status(10)

bug#2 :index out of bounds (FDM)
create({2069,1204669}),
create({37742,737742})

bug#3 :wrong output generated by state machine (CA)
lidarMsg(1,0),
lidarMsg(949366,100)

bugs (after few minutes), SE could only catch the bug #2 (which did

not need complex input messages and data) after around 10 minutes.

RT could not catch any of these bugs. The bugs were confirmed by

running the test cases generated by mCUTE on a raw version of

the models (model is neither instrumented nor transformed).

Model Crashing Bugs.We found a bug in the FDM system. This

system consists of several concurrent state machines, includingDye-

ingSystem that dynamically instantiates new dyeing units, where

each is dedicated to a dyeing task. The transition action code be-

low is executed in a loop until totalTasks number of dyeing units

are created (the transition’s guard checks this). DyeingUnits is an

array and its size is equal to totalTasks. The attribute idx is always

incremented, whether the method createDyeingUnit creates an ob-

ject or not (this method fails due to, e.g., type incompatibility or

if there is not enough room in the capsule for a new instance [4]).

Consequently, even though the DyeinUnits array has still room, the

system crashes with an index out of bound error at line 7.

1 DyeingTask dye ingTask = ( ∗ ( DyeingTask ∗ ) ) msg−>getParam ( 0 ) ;

2 bool v a l i d = f a l s e ;

3 i f ( dyeingTask −>tempra ture >0 && dyeingTask −>runTime > 0 ) {

4 void ∗ du = c r e a t eDye i ngUn i t ( v a l i d ) ;

5 i dx ++ ;

6 i f ( v a l i d ) {

7 Dye ingUni t s [ i dx ] = du ;

8 }

9 }

Operation Bugs. An example of this bug was explained in previous

sections in the CA system. As explained, the CA must not generate

a vibrate message and reverse steering messages at the same time

(since it may distract the driver). As shown in Table 3, mCUTE could

generate inputs for the system such that an execution violated this

requirement. On this case the DFS strategy helped us to find the

bug quicker. To this end, we chose an iteration length large enough

(7 in this case) such that mCUTE could always reach transition

t5 and execute it (so no iteration before executing t5) and finally

mCUTE could hit the bug.

Bugs in the Code Generator. If a state S has some incoming tran-

sitions, each with some parameters, the code generator should

generate a macro using #define statement for each parameter (as

shown below) such that all the transitions parameters are visible

at the state S. In the FDM controller, we detected a bug: the code

generator generated only one define statement (instead of two) at

the state Setup that has two incoming transitions, one to receive

other component’s status and one to initiate a dying task using the

parameter RunningData:

231 void Capsu l e_Dye ingRunCont ro l l e r : :

232 en t r y a c t i o n_____S e t up ( const UMLRTMessage ∗ msg ) {

233 # d e f i n e da t a ( ∗ ( const RunningData ∗ ) msg−>getParam ( 0 ) )

234 / ∗ UMLRTGEN−USERREGION−BEGIN ∗ /
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235 cou t << " temp : " << da t a . t empra ture −>va lue << end l ;

The harness triggers both incoming transitions to the state Run-

ning (in two iterations), once by sending a status (an integer value)

to trigger the first transition and once by sending a dying task

information (an instance of the struct RunningData) to trigger the

second one. In both cases, the input parameters were cast to integer,

which in the later case caused a run-time error at line 235.

5 RELATED WORK AND DISCUSSION

Program Concolic Testing Approaches.Most of the work in the

literature address the development of concolic testing for pro-

grams [11, 12, 16, 24, 29, 32ś35, 44, 58ś60, 66]. Program concolic

testing was originally implemented in DART [33] to automate con-

colic testing C programs with high coverage. Later CUTE [60] was

introduced to support pointers as input parameters. CREST [16]

was later developed with a set of heuristics to improve path cover-

age. There are also multiple research works on generating optimal

search heuristics for a given program [21]. EXE [18] and KLEE [17]

implemented the Execution-Generated Testing (EGT) [20] tech-

nique, which again mixes concrete and symbolic execution, but in

a slightly different manner. The tool pre-processes the program

to check whether there are functions with constant inputs, so the

tool runs those functions concretely. This avoids unnecessary over-

heads that could otherwise be introduced by the symbolic execu-

tion [17, 20]. Other program concolic tools include Pex [63], where

the tester writes parametrized unit tests (PUT) [64], and Pex gener-

ates test inputs for all feasible paths in the PUT. Then, the inputs

are used to instantiate the PUTs in order to gain a set of unit tests

that exhaustively test the program. In [44], the authors introduce a

hybrid concolic testing technique that benefits from both random

and concolic testing, where random testing is used to quickly put

the system under test into particular states, which are otherwise

expensive to perform using concolic testing (due to massive number

of execution paths). When random testing saturates, the algorithm

automatically switches back to concolic testing to perform exhaus-

tive searching to find a new coverage point.

Concolic Testing of Models. The results of applying the tools men-

tioned above are promising in terms of increasing branch coverage

and the chance of finding bugs in programs. However, the tech-

niques and tools above are not enough to conduct testing on state

machines that compared with programs have a different execution

semantics and model, and different structure. Concolically testing

the code generated from the models might seem like an option.

However, for model-level testing and tracing the executions to

model elements, the actual model is required. Moreover, to the best

our knowledge, no tool for concolic execution of C++ (the language

of the generated code) exists. Our approach leverages model in-

formation such that only the action code on transitions, which

we assume to be in C, needs to be executed concolically. There

are some techniques and tools for testing and analysing state ma-

chines that use either in-house [27, 53, 67] or off-the-shelf symbolic

execution engines (such as Klee) [13, 40]. However, observe that,

with symbolic execution, it is difficult to deal with, e.g., heap-based

data, pointers, calls to library functions, and timers (in our concolic

approach, the engine has access to runtime information such as

timer status). Polyglot [13], for instance, translates the structure

and behavior of the state machines (modeled in different semantics)

into Java and tests them using Java Pathfinder [36, 65]. The authors

in [51] propose a semi-automatic approach (since it requires a man-

ual user annotation) for symbolic execution of concurrent process.

However, concolic execution and testing models to generate test

cases dynamically and automatically has not been studied before,

and we think our technique and tool is the first of this kind. For

instance, the technique proposed in [38] extracts event handlers

from a Java application, takes as input a target line for execution in

an event handler, and generates a set of input messages and data to

reach that target. This technique is not automatic since one needs

to specify a state machine that represents the implementations. The

tool presented in [23] also extracts a state machine from programs,

but for guiding the concolic execution to gain better coverage. Simi-

larly, the technique presented in [45] extracts a state machine from

a web application and test cases are derived from the state machine,

but does not use symbolic or concolic execution. The technique pre-

sented in [28], proposes analyzing dependencies between transition

guards, input parameters, and global variables to assign weights

to each transition, such that transitions with greater weights have

higher priority for execution, so the technique seems to improve

coverage for state machines with high dependency between tran-

sitions only. The work in [54] presents a technique for concolic

testing Simulink (which is mostly used in automatic control and

digital signal processing domain than for modeling real-time appli-

cations) models. In both the recently mentioned techniques [28, 54],

the authors did not consider action code on transitions and the com-

plex data structures used as input parameters between interacting

components. Models of real-time embedded system may have a fair

amount of action code to control the behavior of a model and often

include complex data structures for message exchanges.

Other Techniques. There are test generation techniques for state

machines [25, 41, 42, 49, 50, 62] that work based on different cover-

age criteria. Compared to ours, these techniques do not use symbolic

execution and do not consider the action code on the state machine,

which can be the source of bugs in the system.

6 CONCLUSION AND FUTUREWORK

In this paper, we have described and implemented an approach for

concolic testing of state machines. We demonstrated our approach

and tool for exhaustive testing by conducting an empirical evalu-

ation on a set of UML-RT models. Based on our results, concolic

testing could increase the branch coverage and could find more

bugs compared to other techniques including random testing. Our

approach has some limitations. For instance, in the current imple-

mentation, we only support systematic testing of the transitions

leaving a state, which means we execute all the outgoing transi-

tions of a state in order. Moreover, we use random and depth-first

techniques for action code branch negation and execution. Using a

diverse set of heuristics for transition and branch selection might

help to gain better coverage in models testing. For instance, the con-

colic engine might be able to rely, e.g., on the structure of the state

machine or the dependencies between the model elements [10] to

prioritize the transitions and the branch points and choose the ones

with the highest priority. We intend to address these features in

future work.
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