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ABSTRACT

PREDICTION OF PROTEIN SUBCELLULAR LOCALIZATION BASED ON

PRIMARY SEQUENCE DATA

Özarar, Mert

M.Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Volkan Atalay

September 2003, 61 pages

Subcellular localization is crucial for determining the functions of proteins.

A system called prediction of protein subcellular localization (P2SL) that predicts

the subcellular localization of proteins in eukaryotic organisms based on the

amino acid content of primary sequences using amino acid order is designed.

The approach for prediction is to find the most frequent motifs for each pro-

tein in a given class based on clustering via self organizing maps and then

to use these most frequent motifs as features for classification by the help of

multi layer perceptrons. This approach allows a classification independent

of the length of the sequence. In addition to these, the use of a new encod-

ing scheme is described for the amino acids that conserves biological function

based on point of accepted mutations (PAM) substitution matrix. The statistical

test results of the system is presented on a four class problem. P2SL achieves

slightly higher prediction accuracy than the similar studies.

Keywords: subcellular localization, protein sorting, clustering, classification.
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ÖZ

BİRİNCİL DİZİ VERİ TEMELLİ PROTEİN HÜCREİÇİ YER BELİRLEME

TAHMİNİ

Özarar, Mert

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Volkan Atalay

Eylül 2003, 61 sayfa

Proteinlerin işlevlerinin belirlenmesinde hücre içi yer belirleme çok önemlidir.

Bu çalışmada, ökaryotik canlılarda, amino asit sırası kullanılarak amino asit

birincil dizi içeriği temelli, protein hücre içi yer belirlenmesi için, P2SL adında,

yeni bir sistem tasarlanmıştır. Tahmin yaklaşımı, öz düzenlemeli haritalara

dayananarak verilen bir sınıfta her protein için, en yaygın motifleri bulmak ve

bunları ,öznitelik olarak kullanarak çok katmanlı perseptronların yardımıyla

sınıflandırmaktır. Bu yaklaşım dizi uzunluğundan bağımsız bir sınıflandırmaya

izin vermektedir. Bunlara ek ve daha önemlisi, kabul edilebilir nokta muta-

syon (PAM) değiştirme matrisi temelli, biyolojik işlevi muhafaza eden, yeni

bir kodlama planı kullanımı tarif edilmektedir. Dört sınıflı bir problemde, sis-

temin istatistiksel test sonuçları sunulmaktadır. P2SL, benzer çalışmalardan

biraz daha yüksek tahmin doğruluğuna ulaşmıştır.

Anahtar Kelimeler: hücre içi yer belirleme, protein sıralama, kümelendirme,

sınıflandırma.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Purpose

Classification of patterns in biological sequences is an important task in bioin-

formatics. Applications range from the identification of functional motifs in

DNA sequences to the prediction of protein secondary and tertiary structure.

Genome sequencing projects provide the scientific community with an ever-

increasing rate of predicted protein sequences. To analyze these biochemi-

cally uncharacterized sequences, computer based methods have been estab-

lished to provide researchers an initial characterization. Many of these meth-

ods make use of sequence similarity to already described proteins.

Eukaryotic cells are subdivided into functionally seperate membrane en-

closed compartments. Each compartment and vicinity contain functionally

linked proteins related to the activity of that cell compartment [1]. Most pro-

teins in an eukaryotic cell are encoded in the nuclear genome and first synthe-

sized in the cytosol, then carried to specified locations, such as mitochondria

or nucleus which is named as subcellular localization of the protein in the

cell. In most cases, the information determining the subcellular localization

site is represented as a short amino acid sequence segment called a protein

sorting signal. Subcellular protein sorting, i.e. the processes through which
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proteins are routed to their proper final destination within a cell, is a funda-

mental aspect of cellular life. In many cases, sorting depends on signals that

can already be identified by looking at the primary structure of a protein.

Owing to the dramatic increase in the number of proteins sent to the pub-

lic data bank during the last few years, it is highly desirable to develop an

effective algorithm to predict the subcellular location of new proteins so as to

expedite the process of deducing their function.

Studying subcellular localization is useful for understanding the disease

mechanism and developing novel drugs. Due to cellular functions are often

localized in specific compartments, prediction of unknown proteins may be

used to obtain of its function. If the rules for the prediction were biologically

interpretable, this knowledge could help in designing artificial proteins with

desired properties. Therefore, an automatic and reliable prediction system for

protein subcellular localization would be very useful.

The aim of this work is to design and develop a system called prediction of

protein subcellular localization (P2SL) that predicts the subcellular localization

of proteins in eukaryotic organisms based on the amino acid content of pri-

mary sequences. The amino acid composition in the full or partial sequences

can be taken as global features and the order may represent the local features

such as the sequence order of amino acids that are found in protein sequence

motifs [2]. In this study, we are interested in the prediction using only local

features. Our approach for prediction is to find the most significant motifs for

each protein (class) based on clustering and then to use these most significant

motifs as features for classification. This approach allows a classification in-

dependent of the length of the sequence. Another important property of the

approach is to provide a means to perform reverse analysis and analysis to

extract rules. In addition to these and more importantly, we describe the use

of a new encoding scheme for the amino acids that conserves biological func-

tion based on point of accepted mutations (PAM) substitution matrix [3]. PAM is

used to score aligned peptide sequences to determine the similarity of these
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sequences. The scores in PAM are derived by comparing aligned sequences

of proteins with known homology and determining the observed. By using

PAM substitution matrix, we believe that we are able to represent the chemi-

cal differences of each amino acid in protein sequences. In the literature, each

amino acid is traditionally represented in binary form independent of their

chemical properties. In this study, we present results of our system on multi-

ple classes.

The proteins of plant organism are not considered in the data sets. We

use the data set provided by Emanuelsson et.al. [4]. There are four kinds of

classes in our system.

• Signal peptides (SPs)

• Cytoplasmic targeting peptides (CPs)

• Mitochondrial targeting peptides (MPs)

• Nuclear targeting peptides (NPs)

The used signals are known to be the on the N-terminal of the protein.

In a computer science perspective, it is a multi-class pattern recognition

problem applied to molecular biology. The problem is finding the suitable

patterns from variable length strings which are converted into multi-dimensional

labelled feature vectors using a special encoding. Our aim is to find out most

significant substrings from the local features. There can be many such sub-

strings from the whole sequence and those should be classified in the recog-

nition phase. By including a clustering approach as, the reference vectors

provide a single result for similar substrings and this helps the classifier for

recognition. Self organizing map (SOM) is used for clustering and multi

layer perceptrons (MLPs) are used for classification as machine learning tech-

niques.

Self organizing maps are chosen since a clustering mechanism should take

place among the feature vectors which forms an infra structure for the classi-

fication phase. The frequency distributions of the SOM cells are used in the

3



MLPs whose purpose is a nonlinear classifier for the feature vectors. Multi-

layer batch perceptrons are used together with back-propagation learning al-

gorithm. The results obtained from the experiments are slightly better than

the previous ones.

1.2 Materials

The main idea for the prediction of protein subcellular localization using local

features is based on finding the substrings which are common for a protein

class and infrequent for the other classes. Such substrings are called as mo-

tifs. We use a self organizing map for this purpose. For an unknown input

sequence, we determine which motifs exist and the sequence is classified ac-

cording to this information. The flow diagram of P2SL is illustrated in Figure

1.1.

The vast majority of the proteins found in living organisms are composed

of only 20 different kinds of amino acids, repeated many times and strung to-

gether in a particular order. Each type of protein has its own unique sequence

of amino acids; this sequence, known as its primary structure, actually deter-

mines the shape and function of the protein. The input to the system is amino

apply MLP

  

 Recognition Results
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Distribution of cells
for each protein

Figure 1.1: Flow diagram of P2SL.
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acid sequences. The sequences are extracted from this data. The primary se-

quence is then decomposed into substrings. Each substring is encoded with

PAM250 substitution matrix. We apply clustering on the encoded substring

via a self organizing map. During the training phase, motifs for each class are

determined. Throughout the test phase, when the substrings of an unknown

input sequence is given, according to the winning nodes in the self organizing

map, a distribution of cells is formed for each class. Multi layer perceptrons

are used for classification among the distribution.

1.3 Organization

The organization of the thesis is as follows. In Chapter 2, the background

information about protein subcellular localization, related work and the ma-

chine learning techniques are explained in detail. The data and computational

methods used in this study are presented in Chapter 3 together with exper-

iments and comments on the results are discussed, circumstantiately. The

thesis concludes with Chapter 4, the eventual improvements are indicated

together with conclusions and future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, the biological background of the classes are presented with

substitution matrices and the protein databases. An overview of related stud-

ies are done on the field of subcellular localization. The machine learning

techniques used in the research are briefly explained.

2.1 PAM250 Substitution Matrix

The term substitution is often used for the alignment of two amino acid residues,

since scoring schemes are frequently derived from a model of evolution that

considers two protein sequences to be related via a series of point mutations.

The pair-score matrix is usually symmetrical, since Ala aligned with Gly has

the same meaning as Gly aligned with Ala. The simplest scoring scheme is the

identity matrix. This scores 1 for an exact match of two amino acids, and 0

for a mismatch. Although the identity matrix is appealing in its simplicity, it

does not reflect adequately similarities observed between proteins that have

similar three dimensional structures. More sophisticated schemes take into

account conservative substitutions. For example, Val aligned with Leu might

score +4, but Glu with Leu, −3.

Until recently, matrices referred to as PAM or Dayhoff were the most widely
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Figure 2.1: The PAM250 substitution matrix.

used. PAM matrices were derived by first aligning a small number of families

of protein sequences by eye, then counting the observed amino acid substitu-

tions within the families and normalizing the counts before extrapolating the

observed substitutions to those expected at different evolutionary distances

[5]. The measure of evolutionary distance used was the Point of Accepted

Mutations, or PAM, and the most commonly applied matrix was that at 250

PAMS, normally known as PAM250 which is illustrated in Figure 2.1. It is

a symmetric matrix so only the diagonal and lower triangular entries are

shown.
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2.2 SWISS PROT Database

All the sequences used in this study are extracted from the SWISS PROT [6]

protein database. In this section, the format and the properties of the database

are presented.

SWISS PROT is an annotated protein sequence database. It was estab-

lished in 1986 and maintained collaboratively, since 1987, by the group of

Amos Bairoch first at the Department of Medical Biochemistry of the Univer-

sity of Geneva and now at the Swiss Institute of Bioinformatics (SIB) and the

EMBL Data Library (now the EMBL Outstation - The European Bioinformat-

ics Institute (EBI)).

2.2.1 General Structure

The SWISS PROT protein knowledgebase consists of sequence entries. Se-

quence entries are composed of different line types, each with their own

format. For standardization purposes the format of SWISS PROT follows

as closely as possible that of the EMBL Nucleotide Sequence Database. In

SWISS PROT, as in many sequence databases, two classes of data can be dis-

tinguished: the core data and the annotation.

For each sequence entry the core data consists of:

• The sequence data;

• The citation information (bibliographical references);

• The taxonomic data (description of the biological source of the protein).

The annotation consists of the description of the following items:

• Function(s) of the protein;

• Posttranslational modification(s). For example carbohydrates, phospho-

rylation, acetylation, GPI-anchor, etc.;
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• Domains and sites. For example calcium-binding regions, ATP-binding

sites, zinc fingers, homeoboxes, SH2 and SH3 domains, kringle, etc.;

• Secondary structure. For example alpha helix, beta sheet, etc.;

• Quaternary structure. For example homodimer, heterotrimer, etc.;

• Similarities to other proteins;

• Disease(s) associated with any number of deficiencies in the protein;

• Sequence conflicts, variants, etc.

In SWISS PROT, annotation is mainly found in the comment lines (CC),

in the feature table (FT) and in the keyword lines (KW). Most comments are

classified by ’topics’; this approach permits the easy retrieval of specific cate-

gories of data from the database.

The SWISS PROT protein sequence database is composed of sequence en-

tries. Each entry corresponds to a single contiguous sequence as contributed

to the bank or reported in the literature. In some cases, entries have been as-

sembled from several papers that report overlapping sequence regions. Con-

versely, a single paper can provide data for several entries, e.g. when related

sequences from different organisms are reported.

References to positions within a sequence are made using sequential num-

bering, beginning with 1 at the N-terminal end of the sequence.

Except for initiator N-terminal methionine residues, which are not in-

cluded in a sequence when their absence from the mature sequence has been

proven, the sequence data correspond to the precursor form of a protein be-

fore post translational modifications and processing.

2.3 Biological Background

The biological meaning and properties should be analyzed for the type of

classes used in the study to comprehend the concept of subcellular localiza-

tion sites in eukaryotic cells.

9



2.3.1 Signal Peptides

The properties of the amino acids that constitute the signal peptide region of

a protein are the significant factors determining interaction with the protein

transport system, hence the destination to which that protein is delivered.

Different classes of signal peptide are used to specify different cellular place-

ment. It should be reiterated that not all proteins possess signalling regions;

those which do not are maintained in the cytoplasm. The common structure

of signal peptides from various proteins is commonly described as a posi-

tively charged n-region, followed by a hydrophobic h-region and a neutral

but polar c-region. The (−3,−1)-rule states that the residues at positions −3

and −1 (relative to the cleavage site) must be small and neutral for cleavage

to occur correctly.

Different organelles have adopted subtle variations on the general theme

of signal peptide targeting of proteins.

2.3.2 Cytosolic Proteins

Cytosolic proteins, that have an uptake-targeting sequence, combine with un-

folding factors in the cytoplasm, that disrupt higher levels of protein fold-

ing. They bind to receptors on the outer membrane of the mitochondrion.

Membrane translocation to the transport channel proteins occurs. They pass

through the ouble membrane. Matrix protease cleaves the uptake-targeting

sequence so the mature protein refolds.

2.3.3 Mitochondrial Proteins

Mitochondria are double membrane bound organelles involved in the pro-

duction of energy. The internal membrane relies on an electrical potential

to drive protein translocation. Mitochondrial proteins (with the exception of

those that are produced by the organelles own ribosomes) are made by cy-

tosolic free ribosomes and imported post-translationally by receptors which

10



reside at points of contact between the inner and outer membranes. Most of

these proteins are present in the cytoplasm as precursors of the active forms.

In contrast to nuclear proteins, those targeted across the mitochondrial mem-

branes are only able to do so in an unfolded state.

2.3.4 Nuclear Proteins

All nuclear proteins are synthesised on free ribosomes in the cytoplasm. Pro-

teins destined for the nucleus have to negotiate the nuclear membrane; a dou-

ble membrane. Unlike the situation elsewhere these proteins are able to cross

into the nucleus from the cytoplasm whilst still folded. The reason for this

is due largely to the existence of specialised nuclear pores, which govern the

transposition process, and involve the direct expenditure of energy. Protein

coated gold beads have been instrumental in demonstrating the selectivity

of the nuclear pore complexes. Comparison of a large number of nuclear

proteins shows the presence of a short sequence of amino acids specifying

nuclear import, although quite different sequences are utilised by different

proteins. These nuclear localisation signals may be at the N-terminal or C-

terminal ends of proteins.

Another unusual and important feature of nuclear proteins is that nearly

all mature functional molecules still possess their signal peptides, i.e. there

is no cleavage of this signal region upon importation into the nucleus. The

reason for this becomes clear when one understands the processes that ac-

company cell division; during both mitosis and meiosis the nuclear enve-

lope is completely (in higher eukaryotes) or partially (in lower eukaryotes)

dissolved to allow proper segregation of the cellular contents, including the

chromosomes. All nuclear proteins are exposed to the cytoplasm. However,

once the nuclear membrane reforms around the chromosomes, these same

proteins are redirected to the new nucleus because they still possess the ap-

propriate signal peptides. If the signals had been removed then those proteins

would not be shuttled back to the nucleus.
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Some proteins are prevented from entering the nucleus immediately fol-

lowing their synthesis by masking the nuclear localization signal. This can be

achieved via either chemical modification of the signal, or by interaction with

inhibitory cytosolic proteins.

2.4 Related Work

Several attempts have been made to predict protein subcellular localization.

In this subsection, the major studies on our subject explained briefly. Most of

these prediction methods can be classified into two categories: one is based on

the recognition of protein N-terminal sorting signals (i.e. local features) and

the other is based on amino acid composition (i.e. global features). Among

them, PSORT and MTS use global features, while iPSORT, MitoProt, TargetP,

SignalP and ChloroP use local features. SortPred uses both global and local

features. An overview of the related work is presented in the Figure 2.2.

Except the SortPred, only one of the feature types either global or local

is used during the classification. Some studies are dichomtimers, while some

are for 3 classes for non-plant organisms. Hidden Markov Models and Neural

Networks become highly dominant in the recent years. General prediction

accuracy is increased to 91%.

2.4.1 PSORT

PSORT is a computer program for the prediction of protein localization sites

in cells. It was developed by Nakai et. al. [7] based on rules for various

sequence features of known protein signals. A knowledge base by organiz-

ing various experimental and computational observations as a collection of

if-then rules have been constructed. An expert system, which utilizes this

knowledge base, for predicting localization sites of proteins only from the in-

formation on the amino acid sequence and the source origin were reported.

401 eukaryotic proteins with known localization sites (subcellular and extra-

cellular) were collected and divided into training data and testing data. 14

12



Figure 2.2: Overview of related studies

localization sites were distinguished for animal cells and 17 for plant cells.

When sorting signals were not well characterized experimentally, various se-

quence features were computationally derived from the training data. It was

found that 66% of the training data and 59% of the testing data were correctly

predicted by PSORT. Overall accuracy is 64%.

Although PSORT is the ancestor of all subcellular predictors, the results of

PSORT are not satisfactory as a pattern recognition study.
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2.4.2 iPSORT

iPSORT is a subcellular localization site predictor for N-terminal sorting sig-

nals developed by Nakai et. al. [8] following the previous one (PSORT). The

accuracy rate is increased since there is a transition from global features to

local ones. Given a protein sequence , it will predict whether it contains a Sig-

nal Peptide (SP), Mitochondrial Targeting Peptide (MP), or Chloroplast Tran-

sit Peptide (cTP). The structure of iPSORT is simply a decision list consisting

of 3 nodes (2 for non-plant).

At the first node, the protein sequence is checked if it is a SP or not. If it

is predicted as SP, then the output is simply “SP”. At the second node, the

protein sequence is judged if it is either a MP, or cTP. If it is determined not

to be either of them, the sequence is predicted to be “Other”. (For non-plant

sequences, this is the final node). At the last node, the protein sequence is

judged if it is a MP or not. If yes, then “MP” is the output, and if no, “cTP”

is seen in the output. The rules deciding whether or not the given signals

contain a certain signal consists of two elements: an amino acid index rule,

and an alphabet indexing pattern rule (except for SP with only an amino acid

index rule). To be judged “yes” at each node, the input amino acid sequence

must satisfy both of the two rules (except SP). They are explained below.

An amino acid index is a mapping from an amino acid to a numerical

value. For a given amino acid, its amino acid index represents some bio-

chemical property of the amino acid. Using these amino acid index values,

the average amino acid index value of certain substrings of the input amino

acid sequence are calculated at each node. To be judged “yes” at a given

node, the average must exceed (or be less than) a certain threshold. Its overall

recognition rate is about 77% for 3 classes in test phase. No cross validation

is applied.

The usage of local features instead of global ones is an improvement as a

successor of PSORT which affects the prediction accuracies positively.
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2.4.3 TargetP

A neural network-based tool, TargetP, for large-scale subcellular location pre-

diction of newly identified proteins has been developed by Emanuelsson et.al.

[4]. Using N-terminal sequence information only, it discriminates between

proteins destined for the mitochondrion, the chloroplast, the secretory path-

way, and other localizations with a success rate of 85% (plant) or 90% non-

plant). Emanuelsson et.al. have developed a data set consists of 715 SPs, 438

CPs, 371 MPs and 1214 NPs which is used in our study as well. For eukary-

otic cells, they assign three classes, namely SP, MP and Other. It is built from

two layers of neural networks, where the first layer contains one dedicated

network for each type of proseqeunce (SP, MP, Other), and the second is an

integrating network that outputs the actual prediction. All predictions are

fully automatic and the expected performance profile can be customized to

fit less restrictive searches for candidate proteins as well as highly conserva-

tive criteria for, e.g. database annotations. Different size of substrings are

extracted from the sequences and they fed into the network.

It is the leading predictor in predicting subcellular localization that uses

local features only.

2.4.4 MitoProt II

MitoProt II calculates the N-terminal protein region that can support a Mi-

tochondrial Targeting Sequence and the cleavage site which is developed by

Claros et. al. [9]. In their work, discriminant analysis has been performed

with 47 parameters and a large set of mitochondrial proteins extracted from

the SWISS PROT database. A computational method that facilitates the anal-

ysis and objective prediction of mitochondrially imported proteins has been

developed. If only the amino acid sequence is considered, 75-97% of the mi-

tochondrial proteins studied have been predicted to be imported into mito-

chondria. Moreover, the existence of mitochondrial- targeting sequences is

predicted in 76-94% of the analyzed mitochondrial precursor proteins. As
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a practical application, the number of unknown yeast open reading frames

that might be mitochondrial proteins has been predicted, which revealed that

many of them are clustered.

Even though remarkable recognition rates are obtained, MitoProt II is a

system dealing only with mitochondrial proteins.

2.4.5 MTS

The mitochondrial targeting signal (MTS) is the presequence that directs nascent

proteins bearing it to mitochondria. It was developed by Fujiwara et. al. [10].

They have developed a hidden Markov model (HMM) that represents various

known sequence characteristics of MTSs, such as the length variation, amino

acid composition, amphiphilicity, and consensus pattern around the cleav-

age site. The topology and parameters of this model are automatically deter-

mined by the iterative duplication method, in which a small fully-connected

HMM is gradually expanded by state splitting. The model can be used to

predict the existence of MTSs for given amino acid sequences. Its prediction

accuracy was estimated to be 86.9% using the cross validation test. Further-

more, a higher correlation was observed between the HMM score and the in

vitro ATPase activity of MSF, which can be regarded as an experimental mea-

sure of signal strength, for various synthetic peptides than was observed with

other methods.

MTS introduces the usage of HMMs in subcellular localization. Its predic-

tion accuracy is well enough for a single class predictor.

2.4.6 SignalP

SignalP which is developed by Nielsen et. al. [11], is a method for identifi-

cation of signal peptides and their cleavage sites based on neural networks

trained on separate sets of prokaryotic and eukaryotic sequences. It is a com-

bined neural network approach to the recognition of signal peptides and their

cleavage site and another network to distinguish between signal peptides and
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non-signal peptides. The data used were taken from the SWISS PROT [6] and

divided into either prokaryotic or eukaryotic. The recognition rate for cleav-

age site finding is 78% for eukaryotes and signal peptide discrimination is

96% for human proteins in the test phase.

The results of SignalP are satisfactory and it forms an infra structure for

TargetP.

2.4.7 ChloroP

ChloroP [12] is a neural network based method for identifying chloroplast

transit peptides and their cleavage sites. Using cross-validation, 88% of the

sequences in our homology reduced training set were correctly classified as

transit peptides or nontransit peptides. This performance level is well above

that of the publicly available chloroplast localization predictor PSORT. Cleav-

age sites are predicted using a scoring matrix derived by an automatic motif-

finding algorithm. Approximately 60% of the known cleavage sites in our

sequence collection were predicted to within +/-2 residues from the cleavage

sites given in SWISS PROT. An analysis of 715 Arabidopsis thaliana sequences

from SWISS PROT suggests that the ChloroP method should be useful for the

identification of putative transit peptides in genome-wide sequence data.

It produces cogent results on chloroplast transit enzymes for plants. It is

the successor and plant version of SignalP.

2.4.8 SortPred

SortPred is a method developed by Fujiwara et. al. [13] using amino acid

composition and order. The composition represents the global features, e.g.

the amino acid composition in the full or partial sequences, while the order

represents, e.g. the amino acid sequence order. The former was represented

by neural networks and the latter was represented by a hidden Markov model.

This method predicted the signal peptides, the mitochondrial targeting pep-

tides and the chloroplast transit peptides, and the nuclear or cytosolic se-
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quences. Its prediction accuracy is 91% for non-plant aand 86% for plant cells.

It uses both local and global features. SortPred improves the performance

of TargetP by adding composition data. Its prediction accuracy is higher than

others.

2.5 Related Machine Learning Techniques

A combination of clustering followed by classification seems to be the crucial

aspect of this study. As mentioned before, self organizing maps are used for

clustering and multi layer perceptrons are used for classification purposes. In

this subsection, these techniques are elucidated.

2.5.1 Self Organizing Maps

It has been established that the brain forms topologically correct mappings

of sensory experience, including connections from eye, ear, and skin to the

cortex, and connections between different areas of the cortex [14]. Presence of

such spatial maps for features has strong implications on how symbolic rep-

resentations for concepts can automatically be formed. Note that, the models

developed to explain the dynamics of these maps are not confined within the

domain of biology; they also find use in practical applications where a com-

pact and relevant representation of signals is desired.

The neurons are generally modeled as simple units having weighted in-

coming connections from input signals. The activation of a unit is determined

by the sum of its weighted inputs. Connections with positive weights are

called excitatory, and those with negative weights are called inhibitory. Once

the neurons are modeled as such, the formation of topographic mappings be-

comes equivalent to finding the correct connection weights such that nearby

input patterns activate nearby units. A network of units that perform such a

mapping is called a feature map which is illustrated in Figure 2.3

A self organization of a feature map is an unsupervised learning, where

input patterns are presented to the network and the weights of the units are
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Figure 2.3: Architecture of a fully connected feature map.

updated properly to bring the network toward the desired result. Technically,

we desire a feature map to have two properties: the weights of the output

units should represent a clustering of input patterns, and the neighborhood

of these units should convey information about the relationship of the corre-

sponding clusters. The first of these properties can be achieved by ordinary

competitive learning mechanism, where the weights of a winner unit (one

that has highest activation) is made more sensitive to the presented pattern

[15]. For the second property, there are two alternatives: using appropri-

ate lateral connections between output layer units, or imposing the neighbor-

hood relation algorithmically during the weight-update.

The alternative for producing topographically correct maps is to change

the learning algorithm such that the neighborhood relation between units is

preserved via an enforced correlation in their weight-updates. Kohonen’s Self

Organizing Map (SOM) uses competitive learning scheme with such neigh-

borhood enforcement [16].

Each time a pattern ζµ is presented to the SOM, the unit i∗ whose weight

vector is most similar to the input vector, is selected. The distance measure of
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choice effective in this selection is usually the Euclidean:

arg min
i

‖wi − ζµ‖ (2.1)

Once the winning unit is determined, the weights of all units are updated

according to the learning rule:

∆wij = ηΛ(i, i∗)‖ζµ
j − wij‖ (2.2)

where η is the gain parameter (0 ≤ η ≤ 1) affecting how much the weights are

changed during each update. The neighborhood function Λ(i, i∗) provides the

desired proximity relation between units; it is chosen such that its value is 1

for i=i∗ and falls off with distance between units i and i∗. A typical choice for

Λ(i, i∗) is the Gaussian function:

Λ(i, i∗) = exp(
−‖ri − ri∗‖

2

2σ2
) (2.3)

where σ is the width parameter.

In order to examine the convergence of the self organizing process, we

need a measure to determine the quality of the map produced after each it-

eration. Ritter and Schulten [17] define the following cost function for each

weight:

E =
1

2

∑

i,µ

Λ(i, i∗)‖ζµ
j − wij‖

2 (2.4)

Gradient descent on this cost function yields:

−η
∂E

∂wij

= η
∑

µ

Λ(i, i∗)‖ζµ
j − wij‖ (2.5)

which is the sum of the Kohonen’s learning rule over all patterns.

This implies that for sufficiently small η, the Kohonen rule decreases the

cost until it reaches a local minimum. The gradient descent averages over all

patterns, whereas learning rule updates the weights for each presentation of

an input pattern. Thus, the actual behavior may diverge from this theoretical

analysis.
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Kohonen’s simple and compact model finds use in a wide range of ap-

plication domains, including pattern recognition tasks, image processing, de-

cision making, optimization, and data compression. The simplicity of the

model also suggests that the nature would make use of such mechanisms

somewhere. Kohonen describes biological mechanisms that can give rise to

topological maps of the somato-sensory input on the cortex. He suggests

that the on-center, off-surround organization seen in some of the brain re-

gions would accomplish similar mappings as that of SOM. However, it is

also pointed out that the softwiring done during the training would not be

sufficient to explain the biological maps. In addition to synaptic efficacy ad-

justments through excitatory and inhibitory connections between neurons,

current theories use also the chemoaffinity, where chemical cues help define

the target sites of the growing axons.

2.5.2 Multi Layer Perceptrons

Inspired by the biological learning systems, Multi Layer Perceptrons are built

out of an interconnected set of simple units, where each unit takes a number

of real-valued input and generates a single real-valued output, according to

an activation function applied to the sum of the inputs. This aggregate struc-

ture provides a generic tool for function approximation. It has been proven

that any continuous function from input to output can be implemented in a

three-layer network of such units, using sufficient number of hidden units

and proper nonlinear activation functions [18].

x1 xn

t

a

w1 wn

Figure 2.4: A Perceptron
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The single unit of the neural network (also called a neuron, or a percep-

tron) is just a function applied to the weighted sum of inputs. The perceptron

shown in Figure 2.4, implements the function:

y = f(
n

∑

i=0

wixi) (2.6)

where f is the activation function of choice, and w0 is the constant thresh-

old value. The functions that can be approximated by a single perceptron are

limited to linear functions. In pattern classification terms, a perceptron can

correctly classify only linearly separable patterns. A generic three-layer net-

work structure composed of these single units, which can approximate any

continuous function, is shown in Figure 2.5.

Figure 2.5: A 3-layer neural network

Even when we assume that a specific network structure and the activa-

tion functions for each unit are given, the expressive power of the neural net-

work would be meaningless, unless can figure out the correct weights for the

connections. Fortunately, we have an algorithm called back-propagation that

allows the network to learn the weights [19].

The learning in the neural network works by back-propagating the error

that occur at the output units. At each step, an input is presented to the net-

work and the output is compared to the correct target value. The error made
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by each unit is calculated in accordance with its share of blame. The weights

of the units are then readjusted so as to minimize the error they have made.

For a concise analysis, let us assume that the error is defined as the sum of

square errors over all output units:

Ed =
1

2

∑

k

(tk − ok)
2 (2.7)

And assume that hyperbolic tangent is used as the activation function in

each of the network units.

y = tanh(x) is a squashing function that maps its input to the range [−1, +1].

It also has an easily computed derivative 1 - y2, which makes it a good candi-

date for a learning neural network where the derivative needs to be calculated

as we shall demonstrate.

In general, for each training example p, each weight wij is updated by

adding ∆wij :

∆wij = −η
∂Ep

∂wij

(2.8)

where Ed is the error made on training pattern p, and η is the update rate

(learning rate). The weight-update term takes each weight downward along

its error-curve. Notice that the weight wij can influence the output only

through netj . Therefore, by using the chain rule, we obtain

∂Ep

∂wjk

=
∂Ep

∂netk

∂netk

∂wjk

=
∂Ep

∂netk
xjk (2.9)

For an output unit, the following reductions can be made

δk =
∂Ep

∂netk
=

∂Ep

∂okj

∂okj

∂netkj

(2.10)

∂Ep

∂netk
=

∂

∂ok

1

2

∑

outputs

(ts − os)
2 =

∂

∂ok

1

2
(tk − ok)

2 = (ok − tk) (2.11)

∂ok

∂netk
=

∂f(netk)

∂netk
=

∂ tanh(netk)

∂netk
= 1 − o2

k (2.12)

Note that the derivatives in the summation of Equation (2.11) is zero for all

output units except when k=j. Substituting values found in (2.11) and (2.12)

23



into (2.10), we obtain

δk =
∂Ep

∂netk
= (ok − tk)1 − o2

k (2.13)

for output unit k

∆wjk = η(tk − ok)(1 − o2

k)xjk (2.14)

When deriving the weight update rule ∆wij for the hidden units, we need to

take into account the indirect ways wij influences the error term through each

of the output units. Therefore, we can do the following reductions

δj =
∂Ep

∂netj
=

∑

outputs

∂Ep

∂netk

∂netk

∂oj

∂oj

∂netj
=

∑

outputs

∂Ep

∂netk
wjk(1 − o2

j) = (1 − o2

j)
∑

outputs

δkwjk (2.15)

and we obtain the learning rule for a hidden unit i:

∆wij = η(1 − o2

j)xij

∑

outputs

δkwjk (2.16)

Establishing the learning rules is important but it does not guarantee a solu-

tion to be found. The network weight vectors reachable by the gradient pro-

cedure outlined by the above equations may not include all possible weight

vectors. In particular, the network weights may get stuck at a local minima

in the error space, and never find the optimum solution. The problems in a

learning net is not limited to local minima. In general there are no prescribed

learning parameters, such as learning rate, momentum, and number of hid-

den units which are challenging design choices.
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CHAPTER 3

METHODS AND EXPERIMENTAL RESULTS

In this chapter, data representation and the generation of the data sets are

discussed in Section 3.1 and Section 3.2, respectively. In Section 3.3, clustering

methods and in Section 3.4, classification properties are explained. The results

of the experiments are explained in Section 3.5.

3.1 Data Representation

Protein sequences are strings of arbitrary size and amino acids correspond to

the letters in a protein sequence. Let X̂ represent a protein sequence whose

length is len(X̂). X̂ can be decomposed into substrings of some fixed length,

κ. If κ < len(X̂), there are exactly (len(X̂)−κ+1) substrings in X̂ . X̂(j : κ+j)

then denotes jth substring in a protein sequence X̂ . The following example

illustrates the substrings well.

Example 1 The amino acid sequence of a mitochondrial protein starts and ends as

follows :

MQTHVRRVALQALRP . . . DHDEDATPAE. The actual length of the sequence

is 101. First three substrings are as follows for κ=10.

”MQTHVRRVAL”

”QTHVRRVALQ”

25



”THVRRVALQA”

In order to perform further computational analysis, we need to encode the

amino acids. Although, the most popular way of encoding reported in the lit-

erature is to represent each amino acid in binary form, in this study, we make

use of substitution matrices. While aligning two protein sequences, certain

methods are used to score the alignment of one residue against another. Sub-

stitution matrices indicate score values for this purpose. We employ PAM250

scoring matrix to encode an amino acid. In the rest of the thesis, X denotes a

PAM encoded protein sequence X̂ .

Example 2 Assuming that our κ=3 on the same protein in the previous example, let

us encode the first substring ( ”MQT”) with PAM250 scoring matrix. Three amino

acids are represented by as follows:

M = [-1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6 0 -2 2 -1 -4 -2 2 ]

Q = [ 0 1 1 2 -5 4 2 1 3 -2 -2 1 -1 -5 0 -1 -1 -5 -4 2 ]

T = [ 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -2 0 1 3 -5 -3 0 ].

Hence the whole substring is encoded as:

”MQT” = [-1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6 0 -2 2 -1 -4 -2 2 0 1 1 2 -5 4 2 1 3 -2 -2 1

-1 -5 0 -1 -1 -5 -4 2 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -2 0 1 3 -5 -3 0 ]. Remark that since

PAM250 is a 20 × 20 matrix, the length of the encoded vector is 20·κ

3.2 Generation of the Data Sets

As described before, all sequences are extracted from SWISS PROT [6] and

inappropriate sequences are removed before redundancy reduction, which

was undertaken to avoid problems related to redundant data during neural

network training and testing. To increase the size of the data sets as far as

possible, also sequences annotated as ”POTENTIAL”, ”BY SIMILARITY” or

”PROBABLE” are included in their respective sets. These sequences lack ex-

perimental evidence.

26



Sequences are extracted by requiring the keyword EUKARYOTA in the

OC (Organism Classification) field. Targeting peptide entries marked as PO-

TENTIAL, BY SIMILARITY or PROBABLE in their FT field, but still with an

explicitly annotated endpoint of the presequence, are also included in their re-

spective sets (except SP which was considered large enough without includ-

ing such sequences). In the nuclear and cytosolic sets, sequences with any of

these annotations as to their subcellular location annotations in their CC field

are also accepted. Only sequences with an N-terminal ’Met’ residue are con-

sidered, and the very few sequences containing ’B’, ’Z’ or ’X’ are excluded, in

order to avoid possible noise from the ambiguous positions in the training.

Following the removal of these and other inadequate entries sequences with

a high degree of similarity to other sequences are removed by redundancy

reduction.

In each experiment, 100 proteins from every class yielding total 400 pro-

teins are taken from the whole database consisting of 715 SPs, 438 CPs, 371

MPs and 1214 NPs sequences. Each protein in a class is indexed by an inte-

ger starting from 1 up to cardinality of total number of proteins in that class.

A random generator produces 100 different numbers between the bounds of

index the class. If the index of the protein is one of such 100 numbers then

the protein is included to the data set for the class. 320 proteins where 80 per

class are used in the training and the rest 80 where 20 per class are used for

testing.

Proteins are in “Fasta” format and they are parsed before clustering. Sub-

strings of size κ=30 are extracted from the protein sequences.

Example 3 A protein belonging to the class SP in “Fasta” format. Initial line start-

ing with > gives the identification number (P20334) in SWISS PROT and the amino

acid seqeunce specific to the protein.

>P20334; 24 4-1BB LIGAND RECEPTOR PRECURSOR (T-CELL ANTIGEN

4-1BB).

MGNNCYNVVVIVLLLVGCEKVGAVQNSCDNCQPGTFCRKYNPVCKSCPPS
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TFSSIGGQPNCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGPQCTR

CEKDCRPGQELTKQGCKTCSLGTFNDQNGTGVCRPWTNCSLDGRSVLKTG

TTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSLQVLTLFLALTSALLLA

LIFITLLFSVLKWIRKKFPHIFKQPFKKTTGAAQEEDACSCRCPQEEEGG

GGGYEL

In the Table 3.1, the minimum, maximum and average length of the sub-

strings per class is depicted. Our κ value, which is 30, extracts enough fea-

tures for each class.

Table 3.1: The minimum, maximum and average length of the substrings per
class.

Class Minimum Maximum Average
SP 57 4548 434
CP 15 4725 582
MP 47 1500 408
NP 39 3759 595

The SWISS PROT database is parsed by the help of Swiss-Knife [20]. Swiss-

Knife, an object-oriented Perl library to read, manipulate and write records in

SWISS PROT flat file format. By the help of it, entries are converted into

’Fasta’ format which is more suitable for computation.

3.3 Clustering

In our system, clustering occurs during training and in this phase substrings

are topologically grouped. The problem of finding motifs of a protein class

turns out to finding the nodes specific to a class. At the end of training,

the winning cell for each substring is determined. If the dimension of our

SOM is m×n, any SOM cell (i,j) can be represented as an integer via the map

f(i, j) = i·m+j. Hence, for each protein X̂ , a vector v̂ can be associated whose

length is len(m·n). All the entries of v̂ are initialized to 0. For each substring

with the winning cell w=(k,l) belonging to it, v̂[f(w)] is incremented. When all
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the substrings are traversed, each entry of v̂ is normalized by dividing with

(len(X̂) − κ + 1) which is the cardinality of substrings in X̂. Let V̂ represents

the set of vectors (i.e., v̂ per protein) for all proteins. This gives the distri-

bution of SOM cells over the proteins. The set, V̂ , gives the data needed for

classification.

3.3.1 Parameters of SOM

The following items should occur when defining a SOM:

• Dimensionality of the feature vectors.

• Topology type.

• Map dimension in x-direction.

• Map dimension in y-direction.

• Neighborhood type.

The map topology can be either rectangular or hexagonal.

Table 3.2: Parameters for SOM.

Parameter Value
Max. Iterations 3000
Dimensionality of the feature vectors 600
Topology type Rectangular
Map dimension in x-direction 25
Map dimension in y-direction 25
Neighborhood type Gaussian
Training Patterns 320
Test Patterns 80

The neighborhood type is either “bubble” or “Gaussian”. This shows the

kernel function for update of the reference vectors.

The parameters used in our experiments are in Table 3.2
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3.3.2 Map File Format

The x-coordinates of the map (column numbers) may be thought to range

from 0 to n-1, where n is the x-dimension of the map, and the y-coordinates

(row numbers) from 0 to m-1, respectively, where m is the y-dimension of

the map. The reference vectors of the map are stored in the map file in the

following order:

1 The unit with coordinates (0, 0).

2 The unit with coordinates (1, 0).

...

n The unit with coordinates (n-1, 0).

n+1 The unit with coordinates (0, 1).

...

n.m The last unit is the one with coordinates

(n-1, m-1).

The distance between two units in the map is computed as an Euclidean

distance in the (two dimensional) map topology.

The reference vectors of the map are first initialized to tentative values.

The lattice type of the map and the neighborhood function used in the train-

ing procedures are also defined in the initialization. The map is initialized

using random numbers.

Some local parameters should be set before training. These are:

• learning Rate (α) which decreases to 0 during training,

• radius (r) which decreases linearly to 1 during training,

• number of training steps (N )
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Training is done in two phases. The first of them is the ordering phase during

which the reference vectors of the map units are ordered. During the second

phase the values of the reference vectors are fine-tuned.

In ordering, the neighborhood radius is taken almost equal to the diame-

ter of the map and decreases to one during training, while the learning rate

decreases to zero.

Algorithm 1 Ordering Algorithm in Training
for i=1 to 10 do

for class ∈ {SP, CP, MP, NP} do

Train with 〈 alpha = 0.05, r = 10, N = 5000 〉

end for

end for

For each class, 50000 epochs are completed during fine tuning in total.

During the second phase the reference vectors in each unit converge to

their correct values. The second phase is usually longer than the first one. The

learning rate is thereby smaller. The neighborhood radius is also smaller on

the average: in the beginning the units up to a distance of three are covered.

In our experiments, the training time of the second phase is four times longer

than in the first phase.

Algorithm 2 Fine Tuning Algorithm in Training
for i=1 to 10 do

for class ∈ {SP, CP, MP, NP} do

Train with 〈 alpha = 0.02, r = 3, N = 20000 〉

end for

end for

For each class, 200000 epochs are completed during fine tuning in total.

After these steps of training, the map is ready to be tested.
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Recall that X denotes a PAM encoded protein sequence . Thus S denotes

a PAM encoded protein substring of length κ=30. The method explained is

depicted in Algorithm 3.

Algorithm 3 Algorithm for forming the data for classification
for class ∈ {SP, CP, MP, NP} do

for each protein sequence X do

initialize each entry of v̂X to 0

for each encoded substring S do

Find the winning cell k among the SOM cells

increment v̂X (k) by 1

end for

for each component i of v̂X do

Divide v̂X(i) by (len(X) − κ + 1)

end for

end for

end for

For each protein sequence, a vector v̂X is assigned and the corresponding

components of the winning cells are increased by 1 in v̂X . The winning cells

are found by the competitive learning algorithm. At the end, all the vectors

are normalized by dividing the total number of substrings.

3.4 Classification

Clustering phase prepares the labeled data for supervised learning. As men-

tioned before, MLPs are used for classification. The properties of the neural

network used in the experiments are described in this Section.

The back-propagation algorithm [21] on MLPs learns the weights for a

multi layer network, given a network with a fixed set of units and inter con-

nections. It employs gradient descent to attempt to minimize the squared
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error between the network output values and the target values for those out-

puts.

The learning task here involves classifying the set V̂ whose labels are al-

ready known. V̂ is a partitioned into mutually exclusive two subsets used for

training and testing. The proportion between the cardinalities of the subsets

is 1

4
on behalf of the training set.

In applying back-propagation to a given task, a number of design choices

must be made. The design described here learns the target function quite

well.

3.4.1 Input Encoding

Given that the MLP input is to be some representation, one design choice

how to encode it. Since all the sequences have different lengths, no brute

force encoding can be applied since the number of input neurons must be

some fixed value. It is known that all the elements in V̂ have the length m·n

which automatically forms the input encoding. All the values in a vector v̂

are real numbers between 0 and 1 because it is a distribution of SOM cells.

Each input represents a protein sequence.

3.4.2 Output Encoding

The MLP must output one of four values indicating the subcellular localiza-

tion. We could encode this four way classification using a single output unit,

assigning outputs of, say, 0.2, 0.4, 0.6 and 0.8 to encode these four possible

values. Instead, we use four distinct output units, each representing one of

four possible localization sites, with the highest values output taken as the

network prediction. This is often called a 1-of-n output encoding. There are

two motivations for choosing the 1-of-n output encoding over the single unit

option. First, it provides more degrees of freedom to the network for repre-

senting the target function (i.e., there are n times as many weights available

in the output layer of units). Second, in the 1-of-n encoding the difference
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between the highest valued output and the next highest one can be used as a

measure of confidence in the network prediction. A further design choice is

determining the target values for these four output units. One obvious choice

would be use the four target values (1,0,0,0) to encode the class SP, (0,1,0,0)

to encode the class MP, etc. Instead of 0 and 1, 0.1 and 0.9 is used so that

(0.9,0.1,0.1,0.1) is the target output vector for SP. The reason for avoiding tar-

get values 0 and 1 is that sigmoid units cannot produce these output values

given finite weights. If we attempt to train the network to fit target values

of exactly 0 and 1, gradient descent will force the weigths to grow without

bound. On the contrary, values of 0.1 and 0.9 are achievable using a sigmoid

unit with finite weights.

3.4.3 Network Graph Structure

The back-propagation algorithm can be applied to any acyclic directed graph

of sigmoid units. Therefore, another design choice is how many units to in-

clude the network and how to interconnect them. A layered network with

feed-forward connections from every unit in one layer unit to every unit in

the next. In our design, this standard structure, using two layers of sigmoid

units (one hidden layer and one output layer) is chosen but the alternatives

are also tried. It is common to use one or two hidden layers, elsewhere train-

ing time can be too long. A different number of neurons is experimented yet

in many applications it has been found that some minimum number of hid-

den units is required in order to learn the target function accurately. Recall

that our SOM has size 25×25 yielding a 625-dimensional feature vector so

there must be 625 neurons in the input layer. Using 10 neurons in hidden

layer yield promising results and extra hidden units above this number do

not dramatically affect the generalization accuracy. Increasing the number of

hidden units often increases the tendency to overfit the training data, thereby

reducing the accuracy. In summary, a 〈 625−10−4 〉 feed-forward multi layer

back-propagation neural network is used for classification.
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Table 3.3: Parameters for MLP.

Parameter Value
Maximum Iterations 3000
Learn Rate Start Control Iteration 10
Learn Rate Minimum 0.01
Learn Rate Minimum 0.3
Momentum 0.8
Tolerance 0.4
Quit at Training RMS Error 0.02
Transfer Functions Sigmoid
Training Patterns 320
Test Patterns 80

3.4.4 Other Learning Algorithm Parameters

The learning rate η was set to 0.01, and the momentum α was set to 0.8. Lower

values for both parameters produced roughly equivalent generalization accu-

racy, but longer training times. If these values are set too high, training fails

to converge to a network with acceptable error over the training set. Network

weights in the output units are initialized to small random values. However,

input unit weights are initialized to 0, because it yields much more intelligible

results of the learned weights, without any noticeable impact on generaliza-

tion accuracy. After every 5 gradient descent steps the performance of the

network was evaluated over the test set. The number of maximum iterations

is 3000. There is a variable learning rate changes between 0.01 and 0.3, The

tolerance value for the winning output is 0.4 which means that the weight of

the winning output neuron should be in the interval [0.5, 1.3].

Training parameters are summarized in the Table 3.3.

3.5 Results of the Experiments

3.5.1 Cross Validation

Cross validation is a model evaluation method that is better than residuals.

The problem with residual evaluations is that they do not give an indication
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of how well the learner will do when it is asked to make new predictions for

data it has not already seen. One way to overcome this problem is to not use

the entire data set when training a learner. Some of the data is removed before

training begins. Then when training is done, the data that was removed can

be used to test the performance of the learned model on new data. This is

the basic idea for a whole class of model evaluation methods called cross

validation.

The holdout method is the simplest kind of cross validation. The data

set is separated into two sets, called the training set and the testing set. The

predictor fits a function using the training set only. Then the predictor is

asked to predict the output values for the data in the testing set (it has never

seen these output values before). The errors it makes are accumulated as

before to give the mean absolute test set error, which is used to evaluate the

model. The advantage of this method is that it is usually preferable to the

residual method and takes no longer to compute. However, its evaluation

can have a high variance. The evaluation may depend heavily on which data

points end up in the training set and which end up in the test set, and thus

the evaluation may be significantly different depending on how the division

is made.

k-fold cross validation is one way to improve over the holdout method.

The data set is divided into k subsets, and the holdout method is repeated k

times. Each time, one of the k subsets is used as the test set and the other k-1

subsets are put together to form a training set. Then the average error across

all k trials is computed. The advantage of this method is that it matters less

how the data gets divided. Every data point gets to be in a test set exactly

once, and gets to be in a training set k-1 times. The variance of the resulting

estimate is reduced as k is increased. The disadvantage of this method is that

the training algorithm has to be rerun from scratch k times, which means it

takes k times as much computation to make an evaluation. A variant of this

method is to randomly divide the data into a test and training set k different
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times. The advantage of doing this is that you can independently choose how

large each test set is and how many trials you average over.

3.5.2 Measuring Prediction Performance

5-fold cross validation method is performed to estimate the prediction accu-

racy of our method: the data are randomly divided into five, and the four-fifth

is used for training while one-fifth is used for testing. The classifier is trained

5 times, each time with a different set held out as a validation set. The esti-

mated performance is their mean. A performance test can produce two kinds

of errors: a false positive result or a false negative result. In general, there

are four groups when evaluating the accuracy of a test in a statistical manner.

• True Positives(tp): those which test positive for a class and are positive

• False Positives(fp): those which test positive, but are negative

• True Negatives(tn): those which test negative and are negative

• False Negatives(fn): those which test negative, but are positive

For instance, if a SP protein is classified as MP, then it is treated as a false

negative for MP class and a false positive for SP class.

Performances are in general measured as percentage correctly predicted

sequences, and as sensitivity (fraction of positive examples predicted as pos-

itives):

sens =
tp

tp + fn
(3.1)

and specificity (fraction of all positive predictions that are true positives):

spec =
tp

tp + fp
(3.2)

The Matthews correlation coefficient, MCC [22], defined as:
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MCC =
tp × tn − fp × fn

√

(tp + fn)(tp + fp)(tn + fp)(tn + fn)
(3.3)

are used in the comparison of performance of different predictors. MCC

equals 1 for a perfect prediction while it is 0 for a completely random as-

signment. The accuracy field shows how many proteins are correctly pre-

dicted in the test set for all classes. Sensitivity is a measure of the probability

of correctly diagnosing/classifying a case or event (i.e. true positive rate).

Specificity is a measure of the probability of correctly identifying/classifying

a non-case or non-event (i.e. true negative rate). There are no entries for true

negatives for specificity and sensitivity. MCC uses all the possible groups and

it is more deterministic criteria comparing with the others.

3.5.3 Results

The results of 5-fold cross validation is given in the Table 3.4. The accuracy

of predictions change between [88.8%, 93.7%]. For specificity, 0.76 is the min-

imum value attained in the third experiment for CP, and 1 is the maximum

value for SP in both fourth and fifth experiments. 1 is obtained for MP and SP

classes in the second and fifth experiments, respectively. The value 1 for SP in

the last experiment shows that it is a perfect prediction for SP class. The val-

ues for three criteria is almost higher than others for all classes in the second

experiment so the prediction accuracy is higher than the others as well.

Overall prediction performance is calculated by calculating the mean of

the each test which is depicted in the Table 3.5. In SP class, both the specificity

and sensitivity values are higher than the other classes. The best results are

attained in SP, then in MP, then in MP and finally CP.

The results of P2SL compared with non-plant versions of SortPred, Tar-

getP and iPSORT are summarized in Table 3.6. The bold value corresponds to

the highest score among four methods. P2SL prediction accuracy is slightly

higher than the other methods. SortPred, TargetP and iPSORT classify only 3

classes “SP”, “MP” and “Other”. Since some of the entries in the class “Other”
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Table 3.4: Prediction performance of P2SL on 5-fold cross validation test.

Experiment Accuracy Category Specificity Sensitivity MCC
1 88.8% SP 0.96 0.96 0.95

CP 0.83 0.83 0.82
MP 0.83 0.88 0.88
NP 0.88 0.88 0.87

2 93.7% SP 0.94 0.94 0.93
CP 0.95 0.90 0.92
MP 0.96 1.00 0.98
NP 0.89 0.89 0.89

3 87.5% SP 0.83 0.88 0.85
CP 0.76 0.81 0.78
MP 0.92 0.85 0.88
NP 0.95 0.95 0.95

4 88.8% SP 1.00 0.95 0.97
CP 0.89 0.81 0.84
MP 0.85 0.88 0.86
NP 0.80 0.92 0.85

5 90.0% SP 1.00 1.00 1.00
CP 0.92 0.69 0.79
MP 0.86 0.95 0.90
NP 0.84 0.91 0.87

are different than “NP” or “CP”, only the classes “SP” and “MP” are taken

into the comparison. P2SL scores are better than others except the sensitivity

in “SP” class.

The distribution of the false negatives is given in Table 3.7. In each exper-

iment, for each column, the type of misclassified proteins are indicated. The

most dense column belongs to the class CP whose sensitivity is the lowest

among others. There are no entries in the cell (2, MP ) and (5, SP ) so the sen-

sitivity values are 1. There are mostly MP entries in SP class and mostly CP

entries in MP class.

Similarly, the distribution of the false positives is given in Table 3.8. No

MP entry occurs as a positive in SP class. Remark that, there are no false

positives in SP for test 4 and 5 so specificity for them is 1. Moreover, the results
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Table 3.5: Overall prediction performance of P2SL.

Category Specificity Sensitivity MCC
SP 0.95 0.95 0.93
CP 0.87 0.81 0.83
MP 0.88 0.91 0.90
NP 0.87 0.91 0.89

Table 3.6: Results of P2SL compared with its competants.

Prediction Program Category Specificity Sensitivity MCC
P2SL SP 0.95 0.95 0.93

MP 0.88 0.91 0.90
SortPred SP 0.86 0.95 0.87

MP 0.79 0.88 0.80
TargetP SP 0.92 0.96 0.92

MP 0.67 0.89 0.73
iPSORT SP 0.91 0.87 0.85

MP 0.70 0.79 0.70

of SP class in test 5 is perfect since MCC is 1. Some rules can be extracted by

considering these tables by analyzing the distibution of false values.
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Table 3.7: Distribution of false negatives on 5-fold cross validation test.

Experiment SP CP MP NP
1 MP NP CP CP

NP CP CP
SP
MP

2 MP NP SP
MP CP

3 CP SP NP SP
MP SP CP

MP CP
CP

4 MP MP CP MP
NP NP
NP CP
MP

5 MP NP MP
NP CP
NP
MP
NP
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Table 3.8: Distribution of false positives on 5-fold cross validation test.

Experiment SP CP MP NP
1 CP MP SP CP

MP CP CP
NP
NP

2 NP NP CP SP
CP

3 CP SP SP MP
CP MP CP
NP MP

MP
4 MP SP CP

MP CP CP
CP MP
NP

5 NP CP CP
CP CP
NP CP

MP
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CHAPTER 4

CONCLUSIONS

Subcellular localization is a key functional characteristic of proteins. A fully

automatic and reliable prediction system is needed, especially for the analysis

of large scale genome sequences.

This research is focused on prediction of protein subcellular localization in

eukaryotic organisms using amino acid sequence. There are two type of fea-

tures can be extracted from primary sequences. The composition of residues

can be taken as global features while the order in partial subsequences can be

taken as local features. In this work, we deal with local features and develop

a new method, prediction of protein subcellular localization (P2SL), for the

aim of classifying four different locations in a cell.

Our approach for prediction is to find the most frequent substrings for

each protein (class) based on clustering and then to use these most frequent

substrings as features for classification. This approach allows a classification

independent of the length of the sequence. Another important property of

the approach is to provide a means to perform reverse analysis and analysis

to extract rules. In addition to these and more importantly, we describe the

use of a new encoding scheme for the amino acids that conserves biological

function based on point of accepted mutations (PAM) substitution matrix. If

no method for searching the significant motifs is used, an exhaustive search
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should be done on the set of all substrings to find out motifs. This scheme

should need an extreme allocation of space and time.

The database is taken from a previous work [4]. Fixed length motifs are

extracted from variable length strings, then encoded with a special matrix

(PAM250) to form the feature vectors. This encoding scheme preserves the

biological meaning of each amino acid found in protein subcellular targeting

sequence motifs and never used before related studies.

Application of clustering is meaningful, since the labels of substrings are

not known. Only the the class of primary sequences are known. Self organiz-

ing maps are used to cluster the feature vectors on a two-dimensional grid.

The most significant motifs for each protein in a given class are determined

and their normalized distribution constructs the features for classification.

The length of the sequence does not affect the classifier by this technique.

Multi layer perceptrons is used for classification purposes as a supervised

learning method. Adjusting suitable parameters to a three layer neural net-

work which implements the back-propagation algorithm yields the recogni-

tion results.

Mutually exclusive training and test sets are formed. 5-fold cross val-

idation is employed and the statistical measures like sensitivity, specificity

and Matthews correlation coefficient, MCC, are obtained as usual in a pattern

recognition study. P2SL achieved slightly better results than its competants.

MCC of our study is 0.93 for SP, 0.83 for CP, 0.90 for MP and 0.89 for SP. The

prediction rate changes from 87.5% to 93.7%.

P2SL method integrates self organizing maps for clustering, with multi

layer perceptrons for classification. It is found out that the clustering followed

by classification well represent the biological features of the seqeunces. By

the usage of PAM250 matrix, the chemical differences of each amino acid in

protein are symbolized and more meaningful feature vectors are obtained.

The motif size κ is problem-specific parameter and it should be well ad-

justed. Our κ value, which is 30, seems to extract sufficient features for each
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class.

There are a number of design parameters used in the experiments. The

most important ones are as follows:

• SOM size.

• SOM neighborhood function.

• SOM training radius.

• MLP topology.

• MLP tolerance value.

• MLP algorithm.

After intensive trials, almost optimal values for those parameters are deter-

mined. Any significant change in this crucial attributes may affect the recog-

nition results.

The experimental results show that out overall prediction accuracy is re-

markable especially for the class MP. There is a quite important difference

between P2SL and its competants in the view of MP statistics. It is in fact

as reliable as the systems that predicts only mitochondrial targeting peptides

although there are three other classes in out study.

In our previous work [23], nearest neighborhood method is used as a clas-

sifier but its results are not satisfactory in quite large data sets and in cross

validation experiments. This shows that the problem of determining subcel-

lular location of proteins is not linearly separable. At that point, our strategy

is changed upon using MLPs as the classification technique.

Since the aim of our clustering scheme is deriving the most significant

motifs in a protein sequence for a class, it can provide a means to perform

reverse analysis. Certain motifs can be determined for a given class if κ is

small enough. This technique can be extended for large κ values as well by

adding some “do not care” signs to certain position in a motif. Using the
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information obtained from reverse analysis, some rules can be extracted. An

expert system employing those rules can be designed.

More locations in a cell such as

• Lysosome,

• Plasma membrane,

• Vacuole,

• Golgi apparatus,

• Peroxisome.

can be added to P2SL, hence it can classify much more localization sites even

though the latter are not as important as the ones used in the current version

of our work.

A new data set can be formed consisting of only human proteins. All

the studies up to now include some proteins that are belonging to yeast or

bacteria. It may be a novel work designed for human only. For realizing this,

SWISS PROT should be re-parsed to separate human genes.

Our ultimate goal is to combine global and local features in a single sys-

tem. This can be a combination of a rule-based system for composition to-

gether with a neural network classifier for order of amino acid sequences.

Outputs of the MLP can be evaluated in a rule based system with suitable

modifications. Another idea is adding some more input neurons to MLP, re-

flecting the information obtained from global features.

A web site can be designed for the running of the system in a batch mode,

passing through the steps explained in the study to help the ones working in

this field.
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APPENDIX A

Format of a Sequence Entry in SWISS PROT

The entries in the SWISS PROT database are structured so as to be usable by

human readers as well as by computer programs. The explanations, descrip-

tions, classifications and other comments are in ordinary English. Wherever

possible, symbols familiar to biochemists, protein chemists and molecular bi-

ologists are used.

Each sequence entry is composed of lines. Different types of lines, each

with their own format, are used to record the various data that make up the

entry. A sample sequence entry is shown below.

Example 4 An entry in SWISS PROT database that belongs to the class “SP”:

ID TNR9_MOUSE STANDARD; PRT; 256 AA.

AC P20334;

DT 01-FEB-1991 (Rel. 17, Created)

DT 01-FEB-1991 (Rel. 17, Created)

DT 15-SEP-2003 (Rel. 42, Last annotation update)
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DE Tumor necrosis factor receptor superfamily

member 9 precursor

DE ligand receptor) (T-cell antigen 4-1BB)

(CD137 antigen).

GN TNFRSF9 OR ILA OR LY63 OR CD137 OR CD157.

OS Mus musculus (Mouse).

OC Eukaryota; Metazoa; Chordata; Craniata;

Vertabrata; Euteleostomi;

OC Mammalia; Eutheria; Rodentia; Sciurognathi;

Muridae; Murinae; Mus.

OX NCBI_TaxID=10090;

RN [1]

RP SEQUENCE FROM N.A.

RX MEDLINE=89184547; PubMed=2784565;

RA Kwon B.S., Weissman S.M.;

RT "cDNA sequences of two inducible T-cell genes.";

RL Proc. Natl. Acad. Sci. U.S.A. 86:1963-1967(1989).

RN [2]

RP SEQUENCE FROM N.A.

RC STRAIN=BALB/c;

RX MEDLINE=94179805; PubMed=8133039;
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RA Kwon B.S., Kozak C.A., Kim K.K., Pickard R.T.;

RT "Genomic organization and chromosomal

localization of the T-cell

RT antigen 4-1BB.";

RL J. Immunol. 152:2256-2262(1994).

RN [3]

RP CHARACTERIZATION, AND SEQUENCE OF 25-29.

RX MEDLINE=93139510; PubMed=7678621;

RA Pollok K.E., Kim Y.-J., Zhou Z., Hurtado J.,

Kin K.K., Pickard R.T.,

RA Kwon B.S.;

RT "Inducible T cell antigen 4-1BB.

Analysis of expression and function.";

RL J. Immunol. 150:771-781(1993).

CC -!- FUNCTION: Receptor for TNFSF14/4-1BBL.

Possibly active during T

CC cell activation.

CC -!- SUBUNIT: PRINCIPALLY AN HOMODIMER,

BUT ALSO FOUND AS A MONOMER.

CC ASSOCIATES WITH P56-LCK. Interacts

with TRAF1, TRAF2 AND TRAF3 (By

CC similarity).
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CC -!- SUBCELLULAR LOCATION: Type I

membrane protein.

CC -!- TISSUE SPECIFICITY: Expressed on the

surface of activated T cells.

CC -!- INDUCTION: Optimal by PMA and ionomycin.

CC -!- SIMILARITY: Contains 4 TNFR-Cys repeats.

DR EMBL; J04492; AAA40167.1; -.

DR EMBL; U02567; AAA93113.1; -.

DR PIR; B32393; B32393.

DR PDB; 1D0J; 26-SEP-01.

DR MGD; MGI:1101059; Tnfrsf9.

DR InterPro; IPR001368; TNFR_c6.

DR Pfam; PF00020; TNFR_c6; 1.

DR SMART; SM00208; TNFR; 2.

DR PROSITE; PS00652; TNFR_NGFR_1; 1.

DR PROSITE; PS50050; TNFR_NGFR_2; FALSE_NEG.

KW Receptor; Transmembrane; Glycoprotein;

Repeat; Signal; 3D-structure.

FT SIGNAL 1 24

FT CHAIN 25 256 TUMOR NECROSIS

FACTOR RECEPTOR
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FT SUPERFAMILY MEMBER 9.

FT DOMAIN 25 187

EXTRACELLULAR (POTENTIAL).

FT TRANSMEM 188 208 POTENTIAL.

FT DOMAIN 209 256 CYTOPLASMIC

(POTENTIAL).

FT REPEAT 17 45 TNFR-CYS 1.

FT REPEAT 46 85 TNFR-CYS 2.

FT REPEAT 86 117 TNFR-CYS 3.

FT REPEAT 118 159 TNFR-CYS 4.

FT DISULFID 28 37 BY SIMILARITY.

FT DISULFID 31 44 BY SIMILARITY.

FT DISULFID 47 61 BY SIMILARITY.

FT DISULFID 64 77 BY SIMILARITY.

FT DISULFID 67 85 BY SIMILARITY.

FT DISULFID 87 93 BY SIMILARITY.

FT DISULFID 98 105 BY SIMILARITY.

FT DISULFID 101 116 BY SIMILARITY.

FT DISULFID 119 133 BY SIMILARITY.

FT DISULFID 139 158 BY SIMILARITY.

53



FT CARBOHYD 128 128 N-LINKED (GLCNAC...)

(POTENTIAL).

FT CARBOHYD 138 138 N-LINKED (GLCNAC...)

(POTENTIAL).

SQ SEQUENCE 256 AA; 27598 MW;

93A10D03C60813C4 CRC64;

MGNNCYNVVV IVLLLVGCEK VGAVQNSCDN CQPGTFCRKY

NPVCKSCPPS TFSSIGGQPN CNICRVCAGY FRFKKFCSST

HNAECECIEG FHCLGPQCTR CEKDCRPGQE LTKQGCKTCS

LGTFNDQNGT GVCRPWTNCS LDGRSVLKTG TTEKDVVCGP

PVVSFSPSTT ISVTPEGGPG GHSLQVLTLF LALTSALLLA

LIFITLLFSV LKWIRKKFPH IFKQPFKKTT GAAQEEDACS

CRCPQEEEGG GGGYEL

//

Each line begins with a two-character line code, which indicates the type

of data contained in the line. The current line types, line codes and the order

in which they appear in an entry are shown in the Table A.1.

Some line types are found in all entries, others are optional. Some line

types occur many times in a single entry. Each entry must begin with an

identification line (ID) and end with a terminator line (//).
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Table A.1: SWISS PROT Line Code Table.

Line code Content Occurrence in an entry
ID Identification Once;starts the entry
AC Accession number(s) Once or more
DT Date Three times
DE Description Once or more
GN Gene name(s) Optional
OS Organism species Once or more
OG Organelle Optional
OC Organism classification Once or more
OX Taxonomy cross-reference(s) Once or more
RN Reference number Once or more
RP Reference position Once or more
RC Reference comment(s) Optional
RX Reference cross-reference(s) Optional
RA Reference authors Once or more
RT Reference title Optional
RL Reference location Once or more
CC Comments or notes Optional
DR Database cross-references Optional
KW Keywords Optional
FT Feature table data Optional
SQ Sequence header Once

(blanks) sequence data Once or more
// Termination line Once; ends the entry
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APPENDIX B

Example of a Feature Vector

In the following example, a feature vector used in the experiments is illus-

trated. Since our κ=30 and each row in PAM250 matrix has dimension 20,

it yields 20×30 components for each feature vector. Recall that, there are

(len(X̂) − κ + 1) substrings in a protein sequence in total.

-1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6 0 -2 -2 -1 -4 -2

2 -2 6 0 -1 -4 1 -1 -3 2 -2 -3 3 0 -4 0 0 -1 2 -4

-2 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 2 1 -2 -3 -1

-1 2 2 1 -3 3 1 -2 6 -2 -2 0 -2 -2 0 -1 -1 -3 0 -2

1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3 -5 -3 0 1

-3 0 1 -3 -1 0 5 -2 -3 -4 -2 -3 -5 0 1 0 -7 -5 -1

-2 -3 -3 -4 -6 -2 -3 -4 -2 2 6 -3 4 2 -3 -3 -2 -2
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-1 2 -2 6 0 -1 -4 1 -1 -3 2 -2 -3 3 0 -4 0 0 -1 2

-4 -2 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -3 1 1 1 -6

-3 0 -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6 -3 4 2 -3 -3 -2

-2 -1 2 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1

0 -6 -2 4 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -3 1 1 1

-6 -3 0 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6 1 0

-6 -5 -1 1 -3 0 1 -3 -1 0 5 -2 -3 -4 -2 -3 -5 0 1 0

-7 -5 -1 -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5

-3 -3 0 10 -2 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6

1 0 -6 -5 -1 -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6 -3 4 2

-3 -3 -2 -2 -1 2 -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6 -3

4 2 -3 -3 -2 -2 -1 2 -2 -3 -3 -4 -6 -2 -3 -4 -2 2

6 -3 4 2 -3 -3 -2 -2 -1 2 -2 -3 -3 -4 -6 -2 -3 -4

-2 2 6 -3 4 2 -3 -3 -2 -2 -1 2 -2 -4 -4 -5 12 -5

-5 -3 -3 -2 -6 -5 -5 -4 -3 0 -2 -8 0 -2 -2 -3 -3
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-4 -6 -2 -3 -4 -2 2 6 -3 4 2 -3 -3 -2 -2 -1 2 -2

-3 -3 -4 -6 -2 -3 -4 -2 2 6 -3 4 2 -3 -3 -2 -2 -1

2 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -3 1 1 1 -6 -3

0 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -3 1 1 1 -6 -3

0 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3 -5 -3 0

-2 6 0 -1 -4 1 -1 -3 2 -2 -3 3 0 -4 0 0 -1 2 -4 -2

1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6 1 0 -6 -5 -1

0 -1 2 4 -5 2 3 1 1 -2 -4 0 -3 -6 -1 0 0 -7 -4 -2

1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6 1 0 -6 -5 -1
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APPENDIX C

Usage of SOM-PAK for Clustering

The package SOM-PAK [24] is used for clustering purposes. This software

package contains all programs necessary for the correct application of the Self

Organizing Map algorithm in the visualization of complex experimental data.

There exist many versions of the SOM. The basic philosophy, however, is very

simple and already effective as such, and has been implemented by the pro-

cedures contained in this package. Some crucial points os SOM-PAK related

with our study is briefly explained.

C.1 Map File Format

The x-coordinates of the map (column numbers) may be thought to range

from 0 to n-1, where n is the x-dimension of the map, and the y-coordinates

(row numbers) from 0 to m-1, respectively, where m is the y-dimension of

the map. The reference vectors of the map are stored in the map file in the

following order:

1 The unit with coordinates (0, 0).

2 The unit with coordinates (1, 0).

...

n The unit with coordinates (n-1, 0).
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n+1 The unit with coordinates (0, 1).

...

n.m The last unit is the one with coordinates

(n-1, m-1).

The distance between two units in the map is computed as an Euclidean

distance in the (two dimensional) map topology.

C.2 Running of Modules

The initialization is done by “randinit” program. This program initializes

the reference vectors to random values. The vector components are set to

random values that are evenly distributed in the area of corresponding data

vector components. The size of the map is given by defining the x-dimension

(-xdim) and the y-dimension (-ydim) of the map. The topology of the map

is defined with option (-topol) and is either hexagonal (hexa) or rectangular

(rect). The neighborhood function is defined with option (-neigh) and is either

step function (bubble) or Gaussian (gaussian). The call of the program with

our parameters is as follows:

> randinit -din ex.dat -cout ex.cod -xdim 25 -ydim 25

-topol rect -neigh gaussian -rand 11513

For the training, “vsom” program is used. This program trains the ref-

erence vectors using the self organizing map algorithm. The topology type

and the neighborhood function defined in the initialization phase are used

throughout the training. The program finds the best-matching unit for each

input sample vector and updates those units in the neighborhood of it accord-

ing to the selected neighborhood function.

The initial value of the learning rate is defined and will decrease linearly

to zero by the end of training. The initial value of the neighborhood radius

is also defined and it will decrease linearly to one during training (in the end
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only the nearest neighbors are trained). The call of the program for the order-

ing is:

\> vsom -din file.dat -cin file1.cod -cout file2.cod

-rlen 5000 -alpha 0.05 -radius 10

and for the fine tuning is:

\> vsom -din file.dat -cin file1.cod -cout file2.cod

-rlen 20000 -alpha 0.02 -radius 3
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