René Rahn

René Rahn
Max Planck Institute for Molecular Genetics | MOLGEN · Department of Computational Molecular Biology

MSc

About

8
Publications
4,321
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
234
Citations

Publications

Publications (8)
Preprint
Searching sequences in large, distributed databases is the most widely used bioinformatics analysis done. This basic task is in dire need for solutions that deal with the exponential growth of sequence repositories and perform approximate queries very fast. In this paper, we present a novel data structure: the Hierarchical Interleaved Bloom Filter...
Article
Full-text available
Motivation The ever-growing size of sequencing data is a major bottleneck in bioinformatics as the advances of hardware development cannot keep up with the data growth. Therefore, an enormous amount of data is collected but rarely ever reused, because it is nearly impossible to find meaningful experiments in the stream of raw data. Results As a so...
Article
Full-text available
The German Network for Bioinformatics Infrastructure (de.NBI) is a national and academic infrastructure funded by the German Federal Ministry of Education and Research (BMBF). The de.NBI provides (i) service, (ii) training, and (iii) cloud computing to users in life sciences research and biomedicine in Germany and Europe and (iv) fosters the cooper...
Article
Full-text available
The German Network for Bioinformatics Infrastructure (de.NBI) is a national and academic infrastructure funded by the German Federal Ministry of Education and Research (BMBF). The de.NBI provides (i) service, (ii) training, and (iii) cloud computing to users in life sciences research and biomedicine in Germany and Europe and (iv) fosters the cooper...
Article
Motivation: Pairwise sequence alignment is undoubtedly a central tool in many bioinformatics analyses. In this paper, we present a generically accelerated module for pairwise sequence alignments applicable for a broad range of applications. In our module, we unified the standard dynamic programming kernel used for pairwise sequence alignments and...
Article
Background: The use of novel algorithmic techniques is pivotal to many important problems in life science. For example the sequencing of the human genome Venter et al. (2001) would not have been possible without advanced assembly algorithms and the development of practical BWT based read mappers have been instrumental for NGS analysis. However, ow...
Article
Full-text available
Experiments in the Life Sciences often involve tools from a variety of domains such as mass spectrometry, next generation sequencing, or image processing. Passing the data between those tools often involves complex scripts for controlling data flow, data transformation, and statistical analysis. Such scripts are not only prone to be platform depend...
Article
Full-text available
Motivation: Next-generation sequencing (NGS) has revolutionized biomedical research in the past decade and led to a continuous stream of developments in bioinformatics, addressing the need for fast and space-efficient solutions for analyzing NGS data. Often researchers need to analyze a set of genomic sequences that stem from closely related speci...

Network

Cited By