Renaud Jeffrey-Gauthier

Renaud Jeffrey-Gauthier
Université du Québec à Trois-Rivières · Département d'Anatomie

DC, PhD

About

10
Publications
1,771
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
128
Citations
Citations since 2017
8 Research Items
76 Citations
2017201820192020202120222023051015
2017201820192020202120222023051015
2017201820192020202120222023051015
2017201820192020202120222023051015
Additional affiliations
December 2020 - June 2021
Université du Québec à Trois-Rivières
Position
  • Professor
Education
November 2018 - November 2020
Laval University
Field of study
  • Rehabilitation
January 2014 - November 2018
Université de Montréal
Field of study
  • Biomedical sciences
September 2010 - May 2013
Université du Québec à Trois-Rivières
Field of study
  • Cellular and biomolecular biology

Publications

Publications (10)
Article
Full-text available
Introduction: Lower limb pain, whether induced experimentally or as a result of a musculoskeletal injury, can impair motor control, leading to gait adaptations such as increased muscle stiffness or modified load distribution around joints. These adaptations may initially reduce pain but can also lead to longer-term maladaptive plasticity and to the...
Article
Spinal cord injury (SCI) is associated with damage to musculoskeletal tissues of the spine. Recent findings show that pain and inflammatory processes caused by musculoskeletal injury mediate plastic changes in the spinal cord. These changes could impede the adaptive plastic changes responsible for functional recovery. The underlying mechanism remai...
Article
Inflammation is a common comorbidity in patients with traumatic spinal cord injury (SCI). Recent reports indicate that inflammation hinders functional recovery in animal models of SCI. However, the spinal mechanisms underlying this alteration are currently unknown. Considering that spinal plasticity is a therapeutic target in patients and animal mo...
Article
Full-text available
Spinal cord and brain processes underlie pain perception, which produces systemic cardiovascular changes. In turn, the autonomic nervous system regulates vascular function in the spinal cord and brain in order to adapt to these systemic changes, while neuronal activity induces local vascular changes. Thus, autonomic regulation and pain processes in...
Article
Despite efforts to potentiate spinal cord lesioned (SCL) patients’ functional recovery with multi-targeted therapy combining pharmacological treatment and training, consistent improvements in locomotor control by descending transmission or spinal network facilitation are still eluding clinicians and researchers. Lately, US Food and Drug Administrat...
Article
Locomotor networks after spinal cord injury (SCI) are shaped by training-activated proprioceptive and cutaneous inputs. Nociception from injured tissues may alter these changes but has largely been overlooked. The objective of the present study was to ascertain whether lumbar muscle inflammation hinders locomotion recovery in a mouse model of compl...
Article
Full-text available
Chronic pain is associated with autonomic disturbance. However, specific effects of chronic back pain on sympathetic regulation remain unknown. Chronic pain is also associated with structural changes in the anterior cingulate cortex (ACC), which may be linked to sympathetic dysregulation. The aim of this study was to determine whether sympathetic r...
Article
Neuroimaging methods such as functional magnetic resonance imaging (fMRI) have been used extensively to investigate pain-related cerebral mechanisms. However, these methods rely on a tight coupling of neuronal activity to hemodynamic changes. Because pain may be associated with hemodynamic changes unrelated to local neuronal activity (e.g., increas...
Article
Full-text available
The flexion relaxation phenomenon (FRP) is an interesting model to study the modulation of lumbar stability. Previous investigations have explored the effect of load, angular velocity and posture on this particular response. However, the influence of muscular fatigue on FRP parameters has not been thoroughly examined. The objective of the study is...

Network

Cited By