Ren Wei

Ren Wei
University of Greifswald · Institute of Biochemistry

Dr. rer. nat.

About

69
Publications
52,266
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,835
Citations
Introduction
Our research group is working on isolation, characterization, and engineering of a wide range of enzymes with depolymerization activities on synthetic polymers. With our concept, we are aiming at a sustainable biobased circular plastic economy.
Additional affiliations
September 2019 - present
University of Greifswald
Position
  • Group Leader
August 2017 - August 2019
University of Leipzig
Position
  • Principal Investigator
Description
  • Research project "Microbial biodiversity on plastic waste in the Yellow Sea as a source of novel plastic-degrading microorganisms and enzymes" funded by BMBF Germany; In collaboration with The First Institute of Oceanography (SOA), Qingdao, China
January 2017 - December 2018
University of Leipzig
Position
  • Principal Investigator
Description
  • Research project "Enzymatic modification of starch as a key technology for the sustainable development of high-value products for the food industry" funded by BLE Germany; In collaboration with Jiangnan University, Wuxi, China
Education
October 2007 - January 2012
University of Leipzig
Field of study
  • Microbiology and Bioprocess Technology
August 2006 - April 2007
University of Zurich
Field of study
  • Biochemistry
October 2002 - July 2007
Universität Heidelberg
Field of study
  • Biochemistry and Biophysics

Publications

Publications (69)
Article
Considerable research achievements were made to address the plastic crisis using biotechnology, but this is still limited to polyesters. This Comment aims to clarify important aspects related to myths and realities about plastic biodegradation and suggests distinct strategies for a bio-based circular plastic economy in the future.
Article
Polyurethanes (PUR) are ranked globally as the 6th most abundant synthetic polymer material. Most PUR materials are specifically designed to ensure long-term durability and high resistance to environmental factors. As the demand for diverse PUR materials is increasing annually in many industrial sectors, a large amount of PUR waste is also being ge...
Article
Full-text available
The plastic crisis requires drastic measures, especially for the plastics’ end-of-life. Mixed plastic fractions are currently difficult to recycle, but microbial metabolism might open new pathways. With new technologies for degradation of plastics to oligo- and monomers, these carbon sources can be used in biotechnology for the upcycling of plastic...
Article
Polyethylene terephthalate (PET) is the most widespread synthetic polyester, having been utilized in textile fibers and packaging materials for beverages and food, contributing considerably to the global solid waste stream and environmental plastic pollution. While enzymatic PET recycling and upcycling have recently emerged as viable disposal metho...
Article
Full-text available
Thermophilic polyester hydrolases (PES-H) have recently enabled biocatalytic recycling of the mass-produced synthetic polyester polyethylene terephthalate (PET), which has found widespread use in the packaging and textile industries. The growing demand for efficient PET hydrolases prompted us to solve high-resolution crystal structures of two metag...
Article
Polyethylene terephthalate (PET) is one of the most abundantly produced synthetic polyesters. The vast number of waste plastics including PET has challenged the waste management sector while also posing a serious threat to the environment due to improper littering. Recently, enzymatic PET degradation has been shown to be a viable option for a circu...
Article
Full-text available
Polybutylene adipate terephthalate (PBAT) is a biodegradable alternative to polyethylene and can be broadly used in various applications. These polymers can be degraded by hydrolases of terrestrial and aquatic origin. In a previous study, we identified tandem PETase-like hydrolases (Ples) from the marine microbial consortium I1 that were highly exp...
Article
The environmental degradation and physical aging of microplastics (MP) caused by oxidative stress have not been thoroughly elucidated. In this study, we used different oxidative agents (Fe²⁺-activated peroxymonosulfate and Fenton reagents) that can form free radicals to study the degradation mechanisms of nylon 6 (PA6) and polystyrene (PS) MPs. Aft...
Article
Full-text available
Laccases are regarded as versatile green biocatalysts, and recent scientific research has focused on improving their redox potential for broader industrial and environmental applications. The density functional theory (DFT) quantum mechanics approach, sufficiently rigorous and efficient for the calculation of electronic structures, is conducted to...
Article
Full-text available
In the Anthropocene, plastic pollution is a worldwide concern that must be tackled from different viewpoints, bringing together different areas of science. Microbial transformation of polymers is a broad-spectrum research topic that has become a keystone in the circular economy of fossil-based and biobased plastics. To have an open discussion about...
Article
Polyurethane (PU) is one of the mass-produced recalcitrant plastics with a high environmental resistance but extremely low biodegradability. Therefore, improperly disposed PU waste adds significantly to plastic pollution, which must be addressed immediately. In recent years, there has been an increasing number of reports on plastic biodegradation i...
Article
Full-text available
Plastic waste imposes a serious problem to the environment and society. Hence, strategies for a circular plastic economy are demanded. One strategy is the engineering of polyester hydrolases towards higher activity for the biotechnological recycling of polyethylene terephthalate (PET). To provide tools for the rapid characterization of PET hydrolas...
Article
Full-text available
Polyethylene terephthalate (PET) is a mass-produced petroleum-based synthetic polymer. Enzymatic PET degradation using, for example, Ideonella sakaiensis PETase (IsPETase) can be a more environmentally friendly and energy-saving alternative to the chemical recycling of PET. However, IsPETase is a mesophilic enzyme with an optimal reaction temperatu...
Article
Full-text available
Polyethylene terephthalate (PET) is a mass-produced petroleum-based non-biodegradable plastic that contributes to the global plastic pollution. Recently, biocatalytic degradation has emerged as a viable recycling approach for PET waste, especially with thermophilic polyester hydrolases such as a cutinase (LCC) isolated from a leaf-branch compost me...
Article
Full-text available
This article introduces the EU Horizon 2020 research project MIX-UP, "Mixed plastics biodegradation and upcycling using microbial communities". The project focuses on changing the traditional linear value chain of plastics to a sustainable, biodegradable based one. Plastic mixtures contain five of the top six fossil-based recalcitrant plastics [pol...
Article
Full-text available
Recalcitrant plastic waste has caused serious global ecological problems. There is an urgent need to develop environmentally friendly and efficient methods for degrading the highly stable carbon skeleton structure of plastics. To that end, we used a quantum mechanical calculation to thoroughly investigate the oxidative scission of the carbon-carbon...
Article
Full-text available
Over 359 million tons of plastics were produced worldwide in 2018, with significant growth expected in the near future, resulting in the global challenge of end-of-life management. The recent identification of enzymes that degrade plastics previously considered non-biodegradable opens up opportunities to steer the plastic recycling industry into th...
Article
Full-text available
Plastics are globally used for a variety of benefits. As a consequence of poor recycling or reuse, improperly disposed plastic waste accumulates in terrestrial and aquatic ecosystems to a considerable extent. Large plastic waste items become fragmented to small particles through mechanical and (photo)chemical processes. Particles with sizes ranging...
Preprint
Full-text available
This article introduces the EU Horizon 2020 research project MIX-UP, “Mixed plastics biodegradation and upcycling using microbial communities”. The project focuses on the ambitious vision to change the traditional linear value chain of plastics to a sustainable, biodegradable based one. In MIX-UP, plastic mixtures containing five of the top six fos...
Article
Full-text available
Polyethylene terephthalate (PET) is a mass‐produced synthetic polyester contributing remarkably to the accumulation of solid plastics waste and plastics pollution in the natural environments. Recently, bioremediation of plastics waste using engineered enzymes has emerged as an eco‐friendly alternative approach for the future plastic circular econom...
Chapter
The biocatalytic degradation of polyethylene terephthalate (PET) by thermophilic microbial enzymes has recently emerged as an option for a future eco-friendly recycling process for plastic waste, as it occurs under mild conditions and requires no harmful additives. In this chapter, we present a brief overview of solution and solid-state nuclear mag...
Chapter
Biocatalysis has recently emerged as a powerful and eco-friendly technology in waste plastic recycling, especially for the widely used polyethylene terephthalate (PET). So far, however, a high-throughput screening assay specifically toward PET-hydrolyzing activity has rarely been applied. This hinders the identification of new polyester hydrolases...
Chapter
Enzymatic hydrolysis of polyethylene terephthalate (PET) is considered to be an environmentally friendly method for the recycling of plastic waste. Recently, a bacterial enzyme named IsPETase was found in Ideonella sakaiensis with the ability to degrade amorphous PET at ambient temperature suggesting its possible use in recycling of PET. However, a...
Article
Full-text available
Although recovery of fibers from used textiles with retained material quality is desired, separation of individual components from polymer blends used in today’s complex textile materials is currently not available at viable scale. Biotechnology could provide a solution to this pressing problem by enabling selective depolymerization of recyclable f...
Article
Polyethylene (PE) is one of the most widespread plastic materials. Nevertheless, due to its recalcitrance against biological degradation and the presence of toxic additives, landfilled and carelessly disposed PE products have caused serious pollution in the natural environments. In this work, we aimed to investigate the growth characteristics of Mi...
Article
Full-text available
The biocatalytic degradation of polyethylene terephthalate (PET) emerged recently as a promising alternative plastic recycling method. However, limited activity of previously known enzymes against post-consumer PET materials still prevents the application on an industrial scale. In this study, the influence of ultraviolet (UV) irradiation as a pote...
Preprint
Full-text available
Over 359 million tons of plastics were produced worldwide in 2018, with significant growth expected in the near future, resulting in the global challenge of end-of-life management. The recent identification of enzymes that degrade plastics previously considered non-biodegradable opens up opportunities to steer the plastic recycling industry into th...
Article
Full-text available
Joo et al. have recently reported a crystal structure of a polyethylene terephthalate (PET) hydrolyzing enzyme (IsPETase) from Ideonella sakaiensis which has been described able to metabolize PET at 30 °C. They proposed a PET degradation mechanism solely based on covalent computational docking of an oligomeric substrate—2-hydroxyethyl-(monohydroxye...
Chapter
Plastics are extremely useful materials that have transformed our society in a myriad of ways. However, the widespread use of these materials has led to a staggering amount of plastic pollution in man-made and natural environments. The biodegradation of plastics is a key factor to reduce the impact of this plastic pollution. On the one hand, organi...
Article
Full-text available
Baeyer–Villiger mono-oxygenases (BVMOs) are enzymes that could insert an oxygen into carbon skeletons adjacent to carbonyl groups to form lactone or ester. Recently, a new method of sebacic acid production from oleic acid based on Pseudomonas fluorescens DSM 50106 (PfBVMO) catalysis was reported. However, the instable property of PfBVMO limited the...
Article
Full-text available
Polyethylene terephthalate (PET) is the most important mass‐produced thermoplastic polyester used as a packaging material. Recently, thermophilic polyester hydrolases such as TfCut2 from Thermobifida fusca have emerged as promising biocatalysts for an eco‐friendly PET recycling process. In this study, postconsumer PET food packaging containers are...
Conference Paper
Full-text available
In order to preliminarily understand the diversity of degradable polyester-synthesizing strains in the adjacent waters of the Yangtze Estuary, solid media containing polycaprolactone (PCL) and tributyrin were used to screen strains with PCL and Tributyrin-degrading activity from the surface sediments of the adjacent waters of the Yangtze Estuary at...
Article
Full-text available
Plastics have become an important environmental concern due to their durability and resistance to degradation. Out of all plastic materials, polyesters such as polyethylene terephthalate (PET) are amenable to biological degradation due to the action of microbial polyester hydrolases. The hydrolysis products obtained from PET can thereby be used for...
Article
Full-text available
Background Glycolate is an important α-hydroxy carboxylic acid widely used in industrial and consumer applications. The production of glycolate from glucose in Escherichia coli is generally carried out by glycolysis and glyoxylate shunt pathways, followed by reduction to glycolate. Glycolate accumulation was significantly affected by nitrogen sourc...
Article
Full-text available
Synthetic plastics such as polyethylene terephthalate (PET) can be cooperatively degraded by microbial polyester hydrolases and carboxylesterases, with the latter hydrolyzing the low‐molecular‐weight degradation intermediates. For the identification of PET‐degrading enzymes, efficient and rapid screening assays are required. Here we report a novel...
Chapter
Plastics are extremely useful materials that have transformed our society in a myriad of ways. However, the widespread use of these materials has led to a staggering amount of plastic pollution in man-made and natural environments. The biodegradation of plastics is a key factor to reduce the impact of this plastic pollution. On the one hand, organi...
Article
Full-text available
Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currentl...
Patent
Full-text available
The present invention relates to the field of enzyme technology, in particular the anti-pilling action of enzymes, as used, for example, in washing and cleaning agents. The invention relates to an agent, in particular a washing or cleaning agent, which contains a cutinase, as defined herein. The present invention also relates to a method for cleani...
Article
Full-text available
Background Cyclodextrin glucanotransferases (CGTases) catalyze the synthesis of cyclodextrins, cyclic oligosaccharides composed of glucose monomers that find applications in the pharmaceutical, food, and cosmetic industries. An economic application of these industrially important enzymes requires their efficient production and recovery. In this st...
Article
Full-text available
Biocatalysis can enable a closed-loop recycling of post-consumer PET waste.
Article
Full-text available
Petroleum-based plastics have replaced many natural materials in their former applications. With their excellent properties, they have found widespread uses in almost every area of human life. However, the high recalcitrance of many synthetic plastics results in their long persistence in the environment, and the growing amount of plastic waste endi...
Article
Full-text available
Polyurethanes (PU) are widely used synthetic polymers. The growing amount of PU used industrially has resulted in a worldwide increase of plastic wastes. The related environmental pollution as well as the limited availability of the raw materials based on petrochemicals requires novel solutions for their efficient degradation and recycling. The deg...
Article
Recent studies on the enzymatic degradation of synthetic polyesters have shown the potential of polyester hydrolases from thermophilic actinomycetes for modifying or degrading polyethylene terephthalate (PET). TfCut2 from Thermobifida fusca KW3 and LC-cutinase (LCC) isolated from a compost metagenome are remarkably active polyester hydrolases with...
Article
Full-text available
The enzymatic degradation of polyethylene terephthalate (PET) occurs at mild reaction conditions and may find applications in environmentally friendly plastic waste recycling processes. The hydrolytic activity of the homologous polyester hydrolases LC cutinase (LCC) from a compost metagenome and TfCut2 from Thermobifida fusca KW3 against PET films...
Article
TfCut2 from Thermobifida fusca KW3 and the metagenome-derived LC-cutinase are bacterial polyester hydrolases capable of efficiently degrading polyethylene terephthalate (PET) films. Since the enzymatic PET hydrolysis is inhibited by the degradation intermediate mono-(2-hydroxyethyl) terephthalate (MHET), a dual enzyme system consisting of a polyest...
Article
Full-text available
Elevated reaction temperatures are crucial for the efficient enzymatic degradation of polyethylene terephthalate (PET). A disulfide bridge was introduced to the polyester hydrolase TfCut2 to substitute its calcium binding site. The melting point of the resulting variant increased to 94.7 °C (wild type TfCut2: 69.8 °C) and its half-inactivation temp...
Article
Synthetic aromatic polyesters such as polyethylene terephthalate (PET) are degraded by microbial polyester hydrolases at mild reaction conditions compared to chemical processes. PET films were hydrolyzed by the polyester hydrolase TfCut2 from Thermobifida fusca KW3 in an aqueous reaction system contained in an ultrafiltration membrane reactor. The...
Article
Background Polyhydroxyalkanoates (PHA) are very interesting biopolymers, their most promising applications lie in biomedical science. The wettability of the surface of PHA increases their biocompatibility properties, suitable for such type of applications.ResultsThe treatment of the surface of poly (3-hydroxybutyrate) (PHB) and poly (3-hydroxybutyr...
Patent
Full-text available
The invention relates to esterases and esterase variants and to their use in the hydrolysis of polyesters, in addition to in processes for the treatment and care of laundry articles and fabrics, in particular for improving the wearablility of the latter and for preventing, reducing or eliminiating pilling in fabrics containing polyester. The invent...
Article
Several bacterial polyester hydrolases are able to hydrolyze the synthetic polyester polyethylene terephthalate (PET). For an efficient enzymatic degradation of PET, reaction temperatures close to the glass transition temperature of the polymer need to be applied. The esterases TfH, BTA2, Tfu_0882, TfCut1 and TfCut2 produced by the thermophilic act...
Article
The biocatalytic hydrolysis of post-consumer polyethylene terephthalate (PET) is a promising approach for an environmentally friendly plastic recycling process. The influence of intermediate hydrolysis products on the degradation of PET by TfCut2, a polyester hydrolase from Thermobifida fusca, was analyzed by reversed-phase HPLC. Nanoparticles prep...
Article
Full-text available
Bacterial cutinases are promising catalysts for the modification and degradation of the widely used plastic polyethylene terephthalate (PET). The improvement of the enzyme for industrial purposes is limited due to the lack of structural information for cutinases of bacterial origin. We have crystallized and structurally characterized a cutinase fro...