About
14
Publications
678
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
53
Citations
Introduction
Skills and Expertise
Current institution
Additional affiliations
January 2020 - February 2021
Education
September 2013 - June 2017
Publications
Publications (14)
Let $\mathbb{K}$ be a field of characteristic $p$ and $G$ be a cyclic $p$-group which acts on a finite acyclic quiver $Q$. The folding process associates a Cartan triple to the action. We establish a Morita equivalence between the skew group algebra of the preprojective algebra of $Q$ and the generalized preprojective algebra associated to the Cart...
For an action of a finite group on a finite EI quiver, we construct its ‘orbifold’ quotient EI quiver. The free EI category associated to the quotient EI quiver is equivalent to the skew group category with respect to the given group action. Specializing the result to a finite group action on a finite acyclic quiver, we prove that, under reasonable...
We investigate the problem when the tensor functor by a bimodule yields a singular equivalence. It turns out that this problem is equivalent to the one when the Hom functor given by the same bimodule induces a triangle equivalence between the homotopy categories of acyclic complexes of injective modules. We give conditions on when a bimodule appear...
For a finite group action on a finite EI quiver, we construct its `orbifold' quotient EI quiver. The free EI category associated to the quotient EI quiver is equivalent to the skew group category with respect to the given group action. Specializing the result to a finite group action on a finite acyclic quiver, we prove that, under reasonable condi...
Auslander-Reiten conjecture, which says that an Artin algebra does not have any non-projective generator with vanishing self-extensions in all positive degrees, is shown to be invariant under certain singular equivalences induced by adjoint pairs, which occur often in matrix algebras, recollements and change of rings. Accordingly, several reduction...
We investigate the problem when the tensor functor by a bimodule yields a singular equivalence. It turns out that this problem is equivalent to the one when the Hom functor given by the same bimodule induces a triangle equivalence between the homotopy categories of acyclic complexes of injective modules. We give conditions on when a bimodule appear...
To each symmetrizable Cartan matrix, we associate a finite free EI category. We prove that the corresponding category algebra is isomorphic to the algebra defined in Geiss et al. (2017) [4], which is associated to another symmetrizable Cartan matrix. In certain cases, the algebra isomorphism provides an algebraic enrichment of the well-known corres...
Let C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {C}}$$\end{document} be a finite projective EI category and k be a field. The singularity category of the...
To each symmetrizable Cartan matrix, we associate a finite free EI category. We prove that the corresponding category algebra is isomorphic to the algebra defined in [C. Geiss, B. Leclerc, and J. Schr\"{o}er, Quivers with relations for symmetrizable Cartan matrices I: Foundations, Invent. Math. 209 (2017), 61--158], which is associated to another s...
There is a close connection between Hochschild homology groups of a k-algebra and cycles of the Gabriel quiver associated to the k-algebra. In this paper, based on the minimal projective bimodule resolution of a self-injective Koszul four-point algebra constructed by Furuya, we calculate the dimensions of Hochschild homology spaces of the algebra b...
For a finite free and projective EI category, we prove that Gorenstein-projective modules over its category algebra are closed under the tensor product if and only if each morphism in the given category is a monomorphism.
For a finite free EI category, we construct an explicit module over its category algebra. If in addition the category is projective over the ground field, the constructed module is a maximal Cohen–Macaulay approximation of the trivial module and is the tensor identity of the stable category of Gorenstein-projective modules over the category algebra...
We give conditions on when a triangular matrix ring is Gorenstein of a given
selfinjective dimension. We apply the result to the category algebra of a
finite EI category. In particular, we prove that for a finite EI category, its
category algebra is 1-Gorenstein if and only if the given category is free and
projective.