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Acinetobacter baumannii and its related species can 
develop acquired resistance to antibiotics quite 
easily. In particular, the increased resistance to 
broad-spectrum antibiotics, such as broad-spec-
trum β-lactams, quinolones or aminoglycosides 
has now been widely identified.

This issue of acquired resistance in 
Acinetobacter spp. is reinforced by the fact that 
these species naturally exhibit resistance to 
many antibiotics (amoxicillin, narrow-spec-
trum cephalosporins, ertapenem, trimethoprim 
and chloramphenicol). In addition, they may 
easily acquire resistance determinants from 
other Gram-negative species (e.g., members of 
the Enterobacteriaceae family or Pseudomonas 
aeruginosa) with which they share common 
habitats. This article presents the diversity of 
intrinsic and acquired resistance mechanisms 
that may be identified in A. baumannii, with 
a focus on resistance to β-lactams and, in par-
ticular, to carbapenems. In addition, this arti-
cle shows current international break points of 
susceptibility/resistance (Table 1) and presents 
the up-to-date techniques necessary for identi-
fication of resistant isolates and corresponding 
resistance mechanisms. Recent studies related 
to the cost of the identification procedures, the 

treatment options and the adequate infection 
control measures are also discussed.

Resistance to β-lactams in A. baumannii
Naturally occurring β-lactamases
A. baumannii produces an intrinsic AmpC-
type cephalosporinase that is encoded by the 
bla

ADC
‑like genes. Most often, those genes are 

expressed at low levels and do not interfere with 
the efficacy of expanded-spectrum cephalospor-
ins [1]. However, insertion of ISAba1 upstream of 
the bla

ADC
 gene has been shown to be responsible 

for the overexpression of this β-lactamase gene by 
providing strong promoter sequences, resulting in 
resistance to expanded-spectrum cephalosporins 
[2,3]. It is worth noting that extended-spectrum 
AmpC-type β-lactamases have been identified in 
A. baumannii. The enzymes are point mutants of 
narrow-spectrum AmpCs, in which several amino 
acid substitutions confer an increased activ-
ity toward expanded-spectrum cephalosporins 
and monobactams [4,5]. Another chromosomally 
encoded and intrinsic β-lactamase, OXA-51 (and 
its relatives), has been identified in A. baumannii 
[6]. These enzymes hydrolyse carbapenems at 
very low levels. Nonetheless, the corresponding 
genes may be overexpressed (again through the 
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occurrence of efficient promoters either brought about by ISAba1 
or ISAba9), leading to a more significant effect and, therefore, 
reducing susceptibility to carbapenems [7–9].

Acquired narrow- & extended-spectrum β-lactamases
Narrow-spectrum β-lactamases being inhibited by clavulanic acid 
(e.g., TEM-1 and TEM-2; CARB-4, CARB-5 and CARB-14; 
SHV-1, SHV-56 and SHV-71; and SCO-1) or being resistant to 
the action of clavulanic acid (e.g., OXA-21 and OXA-37) have 
been reported in A. baumannii [10,11]. These enzymes hydrolyze 
narrow-spectrum penicillins, but they usually do not include 
cephalosporins and carbapenems in their hydrolytic profile.

The first extended-spectrum β-lactamase (ESBL) identified in 
A. baumannii was PER-1 [12]. The bla

PER-1
 gene is part of a com-

posite transposon, namely Tn1213, bracketed by two unrelated 
insertion sequences, namely ISPa12 and ISPa13. Several variants 
of PER-1 have been identified in A. baumannii. Among them 

are the bla
PER-2

 and the bla
PER-7

 genes. The 
PER-7 ESBL exhibited increased resistance 
to broad-generation cephalosporins and 
monobactams as compared with PER-1 
[13,14]. PER-2, which is distantly related to 
PER-1, has been found exclusively among 
South American A. baumannii isolates, 
associated with a single copy of ISPa12 
and possessing the promoter sequences 
leading to expression of the corresponding 
gene [14]. Another ESBL identified in A. 
baumannii is VEB-1, initially identified in 
France in a series of nosocomial isolates 
that had disseminated at a nationwide 
level. The bla

VEB-1
 gene was identified as 

a gene cassette inserted into class 1 inte-
grons varying in size and structure [15–17]. 
A. baumannii isolates harboring the bla

VEB-1
 

gene have also been identified in Belgium, 
Taiwan and South America [14,15,18,19]. 
Another group of ESBLs encountered in 
A. baumannii corresponds to the Guiana 
extended-spectrum β-lactamase (GES) 
enzymes [20]. Some of the GES variants 
possess a significant carbapenemase activity 
(Figure 1) [21,22]. Several CTX-M-producing 
A. baumannii isolates have been identified, 
with a CTX-M-2 producer in Japan, CTX-
M-2/-43 producers in Bolivia and USA 
and also recently CTX-M-15 producers in 
Haiti [23–26]. However, CTX-M enzymes, 
which are by far the most common ESBLs 
identified in Enterobacteriaceae, are still 
very scarce in Acinetobacter spp. Rare iden-
tification of bla

SHV
-type (bla

SHV-5
, bla

SHV-12
 

and bla
SHV-18

) and bla
TEM

-type (bla
TEM-92

, 
bla

TEM-116
, bla

TEM-128
 and bla

TEM-150
) ESBL 

genes have been reported in A. bauman-
nii, which have been identified either on the chromosome or 
on plasmids [11]. Production of ESBLs in A. baumannii leads to 
resistance against expanded-spectrum cephalosporins. In addi-
tion, those ESBL-encoding genes are mostly associated with a 
series of other antibiotic resistance genes, including those con-
ferring resistance to aminoglycosides. However, exchanges of 
ESBL-encoding genes from Enterobacteriaceae to A. baumannii 
remain rare.

Acquired carbapenem-hydrolysing β-lactamases
Many acquired β-lactamases have been identified as a source of 
carbapenem resistance in A. baumannii. They are either Ambler 
class A (clavulanic acid-inhibited ESBLs), class B (metallo-β-
lactamases [MBLs]) or class D (oxacillinases) β-lactamases; 
however, the latter (also termed carbapenem-hydrolyzing class D 
β-lactamases [CHDLs]) are the most commonly identified car-
bapenemases in A. baumannii. These enzymes possess a weaker 

Table 1. MICs (µg/ml) break points for Acinetobacter baumannii 
(2012).

Antibiotics CLSI EUCAST CA-SFM

S I R S I R S I R

β-lactams

Ticarcillin ≤16 32–64 ≥128 NA NA NA ≤16 ND >64

Ticarcillin/
clavulanate

≤16/2 32/2–
64/2

≥128/2 NA NA NA ≤16/2 ND >64/2

Piperacillin ≤16 32–64 ≥128 NA NA NA ≤16 ND >64

Piperacillin/
tazobactam

≤16/4 32/4–
64/4

≥128/4 NA NA NA >64/4 ND >64/4

Cefotaxime ≤8 16–32 ≥64 NA NA NA NA NA NA

Ceftazidime ≤8 16–32 ≥32 NA NA NA ≤4 ND >8

Cefepime ≤8 16–32 ≥64 NA NA NA ≤4 ND >8

Imipenem ≤4 8 ≥16 ≤2 ND >8 ≤2 ND >8

Meropenem ≤4 8 ≥16 ≤2 ND >8 ≤2 ND >8

Doripenem NA NA NA ≤1 ND >4 ≤1 ND >4

Non-β-lactams

Gentamicin ≤4 8 ≥16 ≤4 ND >4 ≤4 ND >4

Tobramycin ≤4 8 ≥16 ≤4 ND >4 ≤4 ND >4

Amikacin ≤16 32 ≥64 ≤8 ND >16 ≤8 ND >16

Netilmicin ≤8 16 ≥32 ≤4 ND >4 ≤4 ND >4

Cirpofloxacin ≤1 2 ≥4 ≤1 ND >1 ND ND ND

Levofloxacin ≤2 4 ≥8 ≤1 ND >2 ND ND ND

Tetracyline ≤4 8 ≥16 NA NA NA ≤4 ND >8

Tigecycline NA NA NA NA NA NA NA NA NA

Colistin ≤2 ND ≥4 ≤2 ND >2 ≤2 ND >2

Rifampicin NA NA NA NA NA NA ≤4 ND >16

CA-SFM: Comité de l’Antibiogramme-Société Française de Microbiologie; CLSI: Clinical and Laboratory 
Standards Institute; EUCAST: European Committee on Antimicrobial Susceptibility Testing; I: Intermediate 
susceptibility; NA: Not applicable; ND: No data available; R: Resistant; S: Susceptible.
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carbapenemase activity compared with MBLs. Furthermore, they 
do not possess a significant activity toward expanded-spectrum 
cephalosporins, but their frequent association with other resist-
ance mechanisms (including efflux pump systems and imperme-
ability) often leads to high levels of resistance to carbapenems in 
A. baumannii. Their contribution to the carbapenem-resistant 
phenotype in clinical isolates has been experimentally demon-
strated by gene knockout [27]. The inactivation of the gene, and 
consequently of the corresponding enzymes, in clinical isolates 
has been shown to restore the efficacy of carbapenems, dem-
onstrating the crucial role of those enzymes in the resistance 
phenotype [27].

The CHDL OXA-23, together with its point mutant derivative 
OXA-27, constitute the major subgroup of CHDLs in term of geo-
graphical distribution [6]. Indeed, OXA-23 is the most widespread 

CHDL in A. baumannii worldwide [10,28,29]. The bla
OXA-23

 gene 
can be found in various transposon structures, namely Tn2006, 
Tn2007 and Tn2008 [28,30,31]. Interestingly, the progenitor of 
bla

OXA-23
 has been identified, being Acinetobacter radioresistens, a 

nonpathogenic and environmental species [32]. Another CHDL 
subgroup is made of OXA‑40 (also named OXA‑24), OXA‑25, 
OXA‑26 and OXA‑72. OXA‑24/40 producers are particularly 
prevalent in the USA, Spain and Portugal [6]. The third CHDL 
subgroup consists of OXA‑58 and its variants OXA‑96, OXA‑97 
and OXA‑164, with the bla

OXA-58
 gene being predominant and 

identified worldwide [6,33]. These genes are mostly plasmid-
encoded and associated with insertion sequences that play a role 
in their expression but not acquisition. It is worth noting that 
the bla

OXA-58
 gene has been identified in different Acinetobacter 

species, such as in Acinetobacter junii, Acinetobacter  pittii 

Figure 1. Susceptibility patterns of Acinetobacter baumannii. (A) A. baumannii wild-type strain; (B) A. baumannii wild-type strain 
producing OXA-23; (C) A. baumannii clinical isolate producing OXA-23 and overproducing natural cephalosporinase; (D) A. baumannii 
clinical isolate producing GES-14; (E) A. baumannii clinical isolate producing IMP-4 and (F) A. baumannii clinical isolate producing NDM-1. 
AMC: Amoxicillin/clavulanate; AMX: Amoxicillin; ATM: Aztreonam; CAZ: Ceftazidime; CF: Cephalothin; CTX: Cefotaxime; 
ETP: Ertapenem; FEP: Cefepime; FOX: Cefoxitin; IPM: Imipenem; MEM: Meropenem; MOX: Moxalactam; PIP: Piperacillin; 
TCC: Ticarcillin/clavulanate; TIC: Ticarcillin; TZP: Piperacillin/tazobactam.
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(formerly  Acinetobacter genomic species 3) and Acinetobacter 
nosocomialis (formerly Acinetobacter genomic species 13TU) [6,34]. 
Finally, OXA-143 constitutes the last CHDL subgroup, which has 
been recently identified in South American isolates [35,36].

MBLs are important carbapenemases [37]. Although reported 
mostly from P. aeruginosa and Enterobacteriaceae, four groups 
of MBLs have also been described in A. baumannii, namely 
active on imipenem β-lactamase (IMP)-type, Verona integron-
encoded metallo-β-lactamase (VIM)-type, Seoul imipenemase 
(SIM)-type and New Delhi metallo-β-lactamase (NDM)-type 
enzymes [37–39]. NDM-type enzymes are considered as emerging 
in A. baumannii [38,39]. Analysis of the region surrounding the 
bla

NDM-1
 gene revealed that the promoter sequences are present 

in a remnant of an insertion sequence found in the Acinetobacter 
genus, namely ISAba125 [40]. In A. baumannii, the bla

NDM-1
 gene 

is part of a composite transposon made of two copies of ISAba125 
[41]. Downstream of bla

NDM‑1
/bla

NDM‑2
, eight open reading frames 

have been identified. The first one corresponded to the ble
MBL

 
gene, which encodes a protein that confers resistance to bleo
mycin, known as an anticancer drug [41]. Following the ble

MBL
 

gene, several gene-encoding putative proteins sharing similarities 
with genes identified from the Brevundimonas and Xanthomonas 
genus have been identified, probably indicating an environmental 
source of the bla

NDM-1
 gene [41].

The corresponding genes have been reported mostly in 
Enterobacteriaceae, but recent reports from India, China and 
Europe indicate that their occurrence in A. baumannii has very 
likely been underestimated [38,42,43]. These recent reports also indi-
cated that a different reservoir of NDM-producing A. baumannii 
may be identified in China and India in particular. The NDM-
1-producing isolates identified showed high-level resistance to all 
β-lactams, including carbapenems (imipenem and meropenem). 
Overall, MBLs are responsible for high levels of resistance to 
carbapenems in A. baumannii.

Finally, several class A carbapenemases have been identified 
in A. baumannii. Klebsiella pneumoniae carbapenemase (KPC)-
positive Acinetobacter spp. isolates belonging to the Acinetobacter 
calcoaceticus–A. baumannii complex have been identified in Puerto 
Rico [44]. GES enzymes possessing some carbapenemase activity 
are increasingly identified in A. baumannii, with several variants 
being described worldwide [20–22,45]. These GES variants possess-
ing significant carbapenemase activity identified in A. baumannii 
are GES-11 and GES-14 [21,22,45,46], with the bla

GES-14
 and bla

GES-11
 

genes located on conjugative plasmids [45].

Nonenzymatic β-lactam resistance
Resistance to β-lactams is mainly due to production of 
β-lactamases in Acinetobacter spp. However, the involvement of 
efflux pump systems, porin modifications or loss and the modi-
fication of penicillin-binding proteins have also been reported. 
Regarding the resistance through modification of penicillin-bind-
ing proteins, very few studies are available and the role of these 
modifications in carbapenem resistance in A. baumannii cannot 
be clearly assessed [47]. Several reports indicated that changes 
of porin nature or production level may be linked to resistance 

or decreased susceptibility to carbapenems [10]. The AdeABC 
(Acinetobacter drug efflux) pump belonging to the resistance–
nodulation–cell division family has been shown to play a role in 
β-lactam resistance [48]. Knockout experiments and overexpres-
sion of naturally occurring efflux pumps showed that this system 
mainly affects the efficacy of cefepime, cefpirome and cefotaxime 
[48]. In association with production of CHDLs, it may confer an 
additional level of resistance to carbapenems [27].

Identification of the β-lactam resistance mechanisms
As aforementioned, many broad-spectrum β-lactamases have been 
described in A. baumannii and many of them are capable of car-
bapenem hydrolysis. Therefore, identifying the resistance mecha-
nism is important in order to evaluate whether it is enzymatic or 
not and, therefore, whether it may be transferable or not.

Many multidrug-resistant A. baumannii clinical isolates share 
a resistance to all β-lactams, giving rise to a resistance phenotype 
that is difficult to interpret (Figure 1). Several phenotypic tests have 
been developed to decipher the β-lactam resistance mechanisms 
and to facilitate the interpretation of the antimicrobial susceptibil-
ity results (Table 2). These methods are summarized in Table 2 and in 
Figure 2. The use of media supplemented with cloxacillin (250 mg/l) 
is the main technique advocated to inhibit the naturally occurring 
Acinetobacter-derived cephalosporinase and thus evaluate whether 
this chromosomally encoded β-lactamase is responsible per se for 
the β-lactam resistance pattern observed. Two Mueller–Hinton 
plates are used, with and without cloxacillin, both being inocu-
lated with a 0.5 McFarland culture of A. baumannii. Discs of 
ceftazidime and cefepime are placed at three different distances 
(0.75, 1 and 1.5 cm) to a disc supplemented with clavulanate. The 
entire restoration of activity of ceftazidime and cefepime on plates 
supplemented with cloxacillin may rule out the production of 
MBL or ESBL – activities that are not inhibited by cloxacillin. On 
the other hand, the synergistic images that may appear between 
cephalosporins and clavulanate strongly suggest the production 
of an ESBL. However, these phenotypic tests may be difficult to 
interpret. Naas et al. suggested that incubation of the plates at 
room temperature may facilitate this interpretation by reinforcing 
the synergy images with clavulanic acid [16].

The Etest® MBL strip (bioMérieux, Marcy l’Étoile, France) is 
one of the techniques advocated for detection of MBL based on 
inhibition of MBL activity by ethylenediaminetetraacetic acid 
(EDTA)  [49]. Etest strips have a good sensitivity for detection 
of MBL producers [50], except for those isolates exhibiting low 
MIC for carbapenems (e.g., MIC value of imipenem at 4 mg/l 
for an IMP-4 producer) [50] giving rise to noninterpretable results. 
Susceptibility to imipenem is usually restored in the presence 
of EDTA, thus highlighting the significant contribution of 
MBLs (NDM, VIM, SIM and IMP) for carbapenem resistance. 
However, several strains producing OXA-23 or OXA-40 that are 
MBL-negative may give false-positive results [50]. This showed that 
the intrinsic effect of EDTA on the growth of A. baumannii may 
interfer with the result of this test, generating false-positive results. 
Other techniques can be used to detect MBL production using the 
same EDTA inhibition principle [51]; the combined-disc test uses 
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two imipenem discs (10 mg) with one sup-
plemented with 292-µg EDTA. An increase 
in the inhibition zone diameter of >5 mm 
around the disc with EDTA is considered 
as a positive test. The double-disc synergy 
test is performed by using an imipenem disc 
(10 µg) placed at 20 mm (center to center) 
from a blank filter disk containing 292 µg 
EDTA. If the test is positive, a synergis-
tic image between EDTA and imipenem 
is observed. The aztreonam disc (30 mg) 
can also be used as a marker of suspicion 
for MBL production when the diameter 
of inihibition is higher than that observed 
for imipenem or meropenem (even though 
aztreonam is known to be naturally weakly 
active on A. baumannii).

The modified Hodge test has been widely 
used for screening of carbapenemase pro-
duction. This test may be performed using 
Escherichia coli ATCC25922 as the indi-
cator organism, as it is susceptible to all 
β-lactams at a turbidity of 0.5 McFarland, 
with a carbapenemase producer as the posi-
tive control and a carbapenem-resistant but 
noncarbapenemase producer as the nega-
tive control [52]. While VIM and IMP pro-
ducers can be detected quite easily, NDM 
producers are not accurately detected 
using this technique, which is also time 
consuming (takes 48 h). CHDL producers are also usually dif-
ficult to detect using this technique. Overall, this test is neither 
sensitive nor specific for detecting carbapenemase activity from 
carbapenemase‑positive A. baumannii and shall be discarded.

Biochemical detection of carbapenemase activity using UV 
spectrophotometry may be also an alternative detection tech-
nique. A 10 ml sample of A. baumannii overnight broth cultured 
isolates are centrifuged and then sonicated, giving rise to an enzy-
matic crude extract. Specific activities for carbapenems can be 
measured using a UV spectrophotometer at a wavelength value of 
297 nm for imipenem. Again, while good results may be obtained 
with VIM, SIM and IMP producers, detection of NDM produc-
ers remains very difficult, with many isolates giving false-negative 
results [50]. The standard mean of specific activities obtained for 
the NDM producers was evaluated at 5.7 mU/mg of proteins [50].

Another biochemical detection method is based on 
MALDI–time of f light (MALDI–TOF), which has recently 
been developed. This method is based on the detection of native 
imipenem and its natural degradation product, both molecules 
being detected according to their different masses (300 m/z for 
imipenem and 254 m/z for imipenemoic acid). The hydrolysis of 
imipenem is revealed by the observation of a peak at 254 m/z. 
In a recent study, 106 A. baumannii strains including 63 well-
characterized carbapenemase-producing (mainly OXA‑23 pro-
ducers) and 79 carbapenem-susceptible (and, therefore, probably 

carbapenemase-negative) strains were studied [53]. The mixture 
of A. baumannii and imipenem was centrifuged and the super-
natant analyzed by MALDI–TOF. The result was interpreted as 
positive for carbapenemase production if the specific peak for imi-
penem at 300 m/z disappeared during the incubation time and if 
the peak of the natural metabolite at 254 m/z increased, with the 
ratio between the peak for imipenem and its metabolite being 0.5 
[53]. This assay showed excellent sensitivity and specificity. This 
constitutes, therefore, a rapid method for those laboratories possess-
ing MALDI–TOF technology. However, this technique requires 
expensive equipment along with trained microbiologists (Table 2).

Molecular-based techniques, using specific primers, as sum-
marized in Table 3, permit the identification of carbapenemase 
producers by targeting the corresponding genes. PCR allows the 
identification of known carbapenemases with a very high specific-
ity and sensitivity. However, one of the caveats of these molecular 
techniques is a lack of detection of not-yet-identified carbapen-
emase genes. Multiplex PCR for detecting several carbapenemase 
genes should be adapted to A. baumannii, since recently devel-
oped multiplex PCR schemes were mainly aimed at identifying 
carbapenemases found in Enterobacteriaceae, but did not include 
CHDLs that are extremely prevalent among carbapenem-resist-
ant A. baumannii [54,55]. Some real-time PCR schemes have been 
developed for the detection of carbapenemases [56]. The advantage 
of these techniques is that a result can be obtained within 3 h, 

Table 2. Laboratory methods for the detection of β-lactam resistance 
in Acinetobacter baumannii.

Methods Principle Target Efficacy Cost Ref.

PCR Molecular test Resistance genes +++ $$$ [45,50,55]

Sequencing Molecular test Resistance genes +++ $$$ [45,50,55]

Real-time PCR Molecular test Resistance genes +++ $$$ [56]

DNA hybridization Molecular test Resistance genes ++ $$$

DNA microarray Molecular test Resistance genes +++ $$$ [57]

UV spectrometry Biochemical test Carbapenem hydrolysis + $ [50,96]

MALDI–TOF Biochemical test Carbapenem hydrolysis +++ $$$ [53]

CarbaNP test† Biochemical test Carbapenem hydrolysis +++ $ [58,59]

Cloxacillin test Phenotypical test Cephalosporinase 
overproduction

+++ $$ [22]

Etest® MBL Phenotypical test MBL production ++ $$$ [50] 

IPM + EDTA on disks Phenotypical test MBL production ++ $ [50,51]

Modified Hodge 
test

Phenotypical test Carbapenemase 
production

+/- $$ [50,51]

Disk combination 
methods

Phenotypical test ESBL production, 
carbapenemase 
production

++ $ [50,51]

Vitek cards Phenotypical test β-Lactam resistance ++ $$ [100]

†Optimization of the CarbaNP technique for Acinetobacter baumannii (CarbaAcineto NP test) has been 
obtained very recently [Nordmann P, Unpublished Data]. 
+: Weak efficiency; ++: Reliable efficiency; +++: High efficiency; +/-: Often uninterpretable; $: Low cost; 
$$: Intermediate cost; $$$: High cost; CarbaNP: Carbapenemase Nordmann–Poirel test; 
EDTA: Ethylenediaminetetraacetic acid; ESBL: Extended-spectrum β-lactamase; IPM: Imipenem; 
MALDI–TOF: MALDI–time of flight; MBL: Metallo-β-lactamases.
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Table 3. Primers used for the detection of main resistance mechanisms.

Primers Sequences Target gene Ref.

Pre-TEM-A 5′-GTA TCC GCT CAT GAG ACA ATA-3′ blaTEM [97]

Pre-TEM-B 5′-TCT AAA GTA TAT ATG AGT AAA CTT GGT CTG-3′ blaTEM [97]

SHV-A 5′-ATG CGT TAT WTT CGC CTG TGT-3′ blaSHV [97]

SHV-B 5′-TTA GCG TTG CCA GTG CTC G-3′ blaSHV [97]

CTX-M-A1 5′-SCS ATG TCG AGY ACC AGT AA-3′ blaCTX-M [97]

CTX-M-A2 5′-CCG CRA TAT GRT TGG TGG TG-3′ blaCTX-M [97]

GES-A 5′-ATG CGC TTC ATT CAC GCA C-3′ blaGES [45]

GES-B 5′-CTA TTT GTC CGT GCT CAG G-3′ blaGES [45]

PER-A 5′-ATG AAT GTC ATT ATA AAA GC-3′ blaPER [45]

PER-B 5′-AAT TTG GGC TTA GGG CAG AA-3′ blaPER [45]

VEB-A 5′-CGA CTT CCA TTT CCC GAT GC-3′ blaVEB [45]

VEB-B 5′-GGA CTC TGC AAC AAA TAC GC-3′ blaVEB [45]

VIM2004A 5′-GTT TGG TCG CAT ATC GCA AC-3′ blaVIM [98]

VIM2004B 5′-AAT GCG CAG CAC CAG GAT AG-3′ blaVIM [98]

IMP2004A 5′-ACA YGG YTT GGT DGT TCT TG-3′ blaIMP [98]

IMP2004B 5′-GGT TTA AYA AAA CAA CCA CC-3′ blaIMP [98]

NDM-1A 5′-GGT TTG GCG ATC TGG TTT TC-3′ blaNDM [50]

NDM-1B 5′-CGG AAT GGC TCA TCA CGA TC-3′ blaNDM [50]

SIM-1A 5′-TAC AAG GGA TTC GGC ATC G-3′ blaSIM
†

SIM-1B 5′-TAA TGG CCT GTT CCC ATG TG-3′ blaSIM
†

OXA-23A 5′-GAT GTG TCA TAG TAT TCG TCG-3′ blaOXA-23 [45]

OXA-23B 5′-TCA CAA CAA CTA AAA GCA CTG-3′ blaOXA-23 [45]

OXA-40A 5′-GTA CTA ATC AAA GTT GTG AA-3′ blaOXA-40 [45]

OXA-40B 5′-TTC CCC TAA CAT GAA TTT GT-3′ blaOXA-40 [45]

OXA-51A 5′-CTA ATA ATT GAT CTA CTC AAG-3′ blaOXA-51 and derivatives [45]

OXA-51B 5′-CCA GTG GAT GGA TGG ATA GAT TAT C-3′ blaOXA-51 and derivatives [45]

OXA-58A 5′-CGA TCA GAA TGT TCA AGC GC-3′ blaOXA-58 [45]

OXA-58B 5′-ACG ATT CTC CCC TCT GCG C-3′ blaOXA-58 [45]

OXA-143A 5-AGT TAA CTT TCA ATA ATT G-3′ blaOXA-143 [45]

OXA-143B 5′-TTG GAA AAT TAT ATA ATC CC-3′ blaOXA-143 [45]

OXA-CHDL A 5′-CCH GCH TCD ACH TTY AAR AT-3′ All carbapenem-hydrolyzing class D b-lactamases [99]

OXA-CHDL B 5′-KYH AYA BCC MWK SCC CAD CC-3′ All carbapenem-hydrolyzing class D b-lactamases [99]

ISAba1-B 5′-CAT GTA AAC CAA TGC TCA CC-3′ ISAba1 [3]

5′CS 5′-TCT CGG GTA ACA TCA AGG-3′ 5′CS of class 1 integrons [22]

3′CS 5′-AA GCA GAC TTG ACC TGA-3′ 5′CS of class 1 integrons [22]

armA-F 5′-ATT TTA GAT TTT GGT TGT GGC-3′ armA [98]

armA-R 5′-ATC TCA GCT CTA TCA ATA TCG-3′ armA [98]

aac(6′)-Ib-for 5′-TTG CAA TGC TGA ATG GAG AG-3′ aac(6′)-Ib [97]

aac(6′)-Ib-rev 5′-CGT TTG GAT CTT GGT GAC CT-3′ aac(6′)-Ib [97]

gyrA-for 5′-AAA TCT GCC CGT GTC GTT GGT-3′ gyrA [23]

gyrA-rev 5′-GCC ATA CCT ACG GCG ATA CC-3′ gyrA [23]

parC-for 5′-AAA CCT GTT CAG CGC CGC ATT-3′ parC [23]

parC-rev 5′-AAA GTT GTC TTG CCA TTC ACT-3′ parC [23]

arr-2-for 5′-GAT AAT TAC AAG CAG GTG CAA GG-3′ arr-2 †

arr-2-rev 5′-TCT AAC GAA TCC AAC ATT CCC-3′ arr-2 †

†Not published.
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which is significantly faster than classic PCR. This assay can 
detect the presence of six different carbapenemase gene types in 
a single 3-h-long PCR with high sensitivity and specificity [56].

New detection techniques have been developed to identify 
broad-spectrum β-lactamases in A. baumannii. One of the lat-
est techniques is the DNA microarray, a molecular-based tech-
nology that has the potential to detect a large number of genes 
within a single reaction. A commercial DNA microarray test, the 
Check‑MDR CT102 microarray (Check-Points BV, Wageningen, 
The Netherlands), has been evaluated, being a further refinement 
of an ESBL-detection microarray, which, in addition to the previ-
ously detected genes, includes clinically relevant carbapenemase-
encoding genes, such as OXA-48, VIM, IMP and NDM-1 [57]. 
Excellent sensitivity and specificity have been found for the tested 
genes, showing accurate identification of common ESBLs and 
carbapenemase producers from bacterial cultures. Nonetheless, 
this technique has not been yet validated for A. baumannii [57].

The most promising technique for rapid and accurate iden-
tification of any carbapenemase producer is the carbapenemase 
Nordmann–Poirel test [58]. This test is based on biochemical 
detection of the hydrolysis of a β-lactam ring of a carbapenem by 
any carbapenemase. It is rapid (30 min), costless, easy to handle 
and highly specific and sensitive; it may be implemented world-
wide. This test has now been extensively validated worldwide 
for detection of carbapenemase activities in Enterobacteriaceae 
and P.  aeruginosa [58,59]. The authors’ recent unpublished and 
personal data using a modified version of the carbapenemase 
Nordmann–Poirel test, named CarbaAcineto Nordmann–Poirel 
test, showed that it may work for detection of carbapenemase 
activity in Acinetobacter spp. as well [Nordmann P, Unpublished Data].

Clinically relevant non-β-lactam resistance mechanisms
Resistance to quinolones & fluoroquinolones
Quinolones and fluoroquinolones inhibit bacterial DNA replica-
tion by targeting the DNA gyrase (encoded by gyrA and gyrB 
genes) and DNA topoisomerase IV (encoded by parA and parC 
genes) enzymes [60]. Several specific mutations occurring in the 
quinolone-resistance-determining region of those proteins may 
have a significant impact on the susceptibility to quinolones and 
fluoroquinolones. These mutations lead to a lower affinity and 
reduce the binding of the quinolones to the enzyme–DNA com-
plex. These types of mutations, as observed in many other bacte-
rial species, have been extensively reported in A. baumannii. The 
Ser‑86-Leu substitution in gyrA, together with the Ser‑80‑Leu sub-
stitution in parC, are commonly identified, significantly increas-
ing the MICs of ciprofloxacin [61]. Efflux-mediated resistance to 
quinolones has also been described to involve efflux pumps that are 
intrinsic in A.  aumannii (namely AdeABC, AdeIJK and AdeFGH) 
[48]. These systems are able to pump out quinolones and therefore 
contribute to high-level resistance to these compounds in synergy 
with mutation(s) in the gyrase/topoisomerase(s). Resistance to 
quinolones is widely distributed throughout the world [29]. So far, 
no validated plasmid-mediated mechanism of resistance has been 
identified in A. baumannii. Quinolone resistance can be easily 
identified through antimicrobial susceptibility testing.

Resistance to aminoglycosides
Aminoglycosides belong to antibiotic families that target bacte-
rial translation [62]. Resistance to aminoglycosides is mainly due 
to the aminoglycoside-modifying enzyme (AME) [63]. Multiple 
AMEs, including phosphotransferases, acetyltransferases (in par-
ticular AAC[6́ ]-Ib) and adenyltransferases, have been reported 
in A. baumannii. Most of the time, aminoglycoside resistance in 
Acinetobacter spp. involves production of AMEs, and all three 
classes have been identified in A. baumannii [29]. The main AMEs 
found in A. baumannii are AAC(3´)-I-modifying gentamicin and 
fortimicin, APH(3´)-VI-modifying amikacin, kanamycin and 
neomycin, and AAC(6́ )-Ib-modifying tobramycin, netilmicin 
and amikacin. The association of several AMEs can lead to a 
pan-resistance against all aminoglycosides.

The second and most recent mechanism of aminoglycoside 
resistance involves a target modification operated by a 16S rDNA 
methylase. The ArmA enzyme methylates the active site of the 
ribosome, giving rise to a cross-resistance to all aminoglycosides 
[62,63]. This resistance trait is currently emerging and has been 
described in different parts of the world. Phenotypic and molecu-
lar techniques are needed to detect this mechanism. No specific 
phenotypic method exists for detecting 16S rRNA methylases, 
except for molecular methods based on the detection of the cor-
responding genes. However, their production can be suspected by 
observing a lack of inhibition zone for gentamicin and amikacin 
discs (two different 4,6-disubstituted deoxystreptamine) that 
are generally not modified by a single enzyme. A double zone of 
inhibition is often observed around the amikacin disc for most 
ArmA producers. In this case, PCR has to be used to accurately 
detect the corresponding genes [64,65].

Resistance to rifampicin, cyclines & colistin
Rifampicin binds to conserved amino acids in the active site of the 
bacterial RNA polymerase, consequently blocking transcription 
initiation. Resistance to rifampicin results mostly from chromo-
somal mutations leading to amino acid changes in the active site 
of the RNA polymerase [66]. A recent study in Italy focusing on 
rifampicin resistance in A. baumannii showed that substitutions in 
the RNA polymerase were mainly focused not only in His535 and 
Leu542, but also in Asp525 and Pro544, which were substituted 
by different amino acids [67]. Interestingly, the membrane perme-
ability and efflux pump systems also seem to play a role in iso-
lates that exhibited reduced susceptibility to rifampicin [67]. This 
finding has been evidenced by the restoration of susceptibility to 
rifampicin in the presence of phenyl-arginine-β-naphthylamide or 
1-(1-naphthylmethyl)-piperazine, which are efflux pump inhibi-
tors. In addition, resistance to rifampicin has sometimes been 
found to be transferable in A. baumannii when involving the arr‑2 
gene, which encodes a rifampicin ADP-ribosylating transferase 
that inactivates rifampicin by ribosylation [68]. However, the arr-2 
gene seems to not be widespread in A. baumannii, and rifampicin 
therefore remains active against most multidrug-resistant isolates, 
thus remaining an interesting therapeutic option [16,68].

Tetracyclines have a bacteriostatic activity by reversibly bind-
ing to the 30S ribosomal subunit, therefore inhibiting protein 
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translation [69]. Resistances to tetracyclines in A. baumannii have 
often been reported [29,70]. The TetA and TetB proteins are constit-
uents of efflux pumps that extrude tetracyclines from the bacterial 
cell. In addition, protection of the ribosome may be mediated by 
the widely distributed TetM determinant [29,70]. These resistance 
determinants confer high-level resistance to tetracycline but do not 
modify the efficacy of tigecycline (a new member of the cycline 
family). Resistance to tigecycline is mediated by the overexpres-
sion of an intrinsic efflux pump (Ade-derivate systems) [48]. The 

MICs to tigecycline may be variable and 
no official breakpoints for Acinetobacter 
spp. are currently available for this drug 
(Table 1), even though Jones et al. have pub-
lished guidelines for interpreting tigecy-
cline MICs (susceptible, MIC: ≤2 µg/ml; 
resistant, MIC: ≥8 µg/ml) [71].

Colistin and polymyxins are old antibiot-
ics that are becoming a last resort against 
extremely drug-resistant bacteria. These 
compounds bind to and disrupt the nega-
tively charged outer membrane of Gram-
negative bacteria [72]. So far, the main mech-
anisms of resistance identified correspond 
to the modification of lipid A, an essential 
component of the bacterial lipopolysaccha-
ride, due to a mutation in pmrA or pmrB 
genes, leading to a reduction of the net neg-
ative charge of the outer-membrane protein 
[73]; the proteolytic cleavage of the antibi-
otic followed by exclusion of the peptides by 
efflux and complete loss of lipopolysaccha-
ride production, either by inactivation of 
lpxA, lpxC and lpxD from either mutation 
or insertion of insertion sequence ISAba11 
[10,74–76]. Although this phenotype remains 
rare, colistin-resistant A. baumannii have 
been reported [29,70]. A phenomenon of het-
eroresistance to colistin has been observed 
in Acinetobacter spp. It is defined as a resist-
ant subpopulation among a population of 
colistin-susceptible A.  baumannii (with 
MIC of colistin ≤2 mg/l) and may be due 
to potential suboptimal recommended dos-
age regimens [77]. The heteroresistance to 
colistin is difficult to assess and its defini-
tion varies among different reports [74]. The 
weak agar diffusion of colistin limits the 
predictive accuracy of the disc-diffusion 
technique and, consequently, MIC values 
have to be determined by Etest or broth 
dilution techniques.

Cost of detection methods of 
antibiotic resistance in A. baumannii
The cost of many screening methods 

imposes a limit for the identification of the resistance mechanisms 
and consequently for better control of the spread of multidrug-
resistant A. baumannii. The precise identification of resistance 
mechanisms may indeed give precious epidemiological informa-
tion. The threat of a plasmid-mediated diffusion is higher than 
chromosomal resistance. However, screening methods for patients 
carrying A. baumannii should be performed upon hospital admis-
sion using either swabs or sponges, as recently described by Doi 
et al. [78]. The authors showed that screening using a sponge or a 

Figure 2. Identifying β-lactam resistance. Red indicates high-level resistance, orange 
indicates moderate resistance and green indicates susceptibility. 
†Extensive validation of the CarbaAcineto NP test in the near future and use of mass 
spectrometry may change this decision chart. 
+: Positive test result; -: Negative test result; CarbaAcineto NP test: Carbapenemase 
Nordmann–Poirel test optimized for Acinetobacter baumannii; CAZ: Ceftazidime; 
CHDL: Carbapenem-hydrolyzing class D b-lactamase; ESBL: Extended-spectrum 
b-lactamase; GES: Guiana extended-spectrum; IPM: Imipenem; KPC: Klebsiella 
pneumoniae carbapenemase; MBL: Metallo‑b‑lactamase; TCC: Ticarcillin/clavulanate.
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swab was sensitive enough to detect A. baumannii. However, this 
method is very expensive and should preferably be used when the 
prevalence of A. baumannii is suspected to be >1% [78].

Most multidrug-resistant A. baumannii (including those resist-
ant to carbapenems) are resistant to broad-spectrum cephalo-
sporins. Therefore, screening media designed for detection of 
ESBL producers (e.g., chromID® ESBL-containing cefpodox-
ime [bioMérieux, Marcy l’Etoile, France]) may be used. Several 
media containing a carbapenem (e.g., Brilliance™ CRE [Oxoid, 
Cambridge, UK] or CHROMagar™ KPC [CHROMagar, 
Paris, France]) may also be used. These have a claimed sensitiv-
ity, since high MICs values of carbapenems are usually high for 
carbapenemase-producing A. baumannii [79]; however, there is 
currently no extensive clinical validation available.

The cost of PCR/sequencing is rather high as for all molecu-
lar techniques including checkpoint CT012. Biochemical tests 
based on imipenem hydrolysis detected by UV spectrophotometry 
or mass spectrometry are less expensive for each isolate (once 
the appropriate equipment has been acquired) but can only be 
performed in reference laboratories. For the detection of MBLs, 
the use of Etest MBL is advocated but the use of a double-disc 
synergy test (supplemented with imipenem and imipenem/EDTA 
on each extremity, respectively) is cost saving, since Etest MBL 
is expensive and both techniques give similar results [50]. The use 
of the CarbaAcineto NP test offers not only a rapid result, but 
it is also the cheapest solution for the detection of any kind of 
carbapenemase activity in A. baumannii (less than €1–2).

Treatment aspects of infections caused by A. baumannii
A. baumannii may cause pneumonia, wound infections, bactere-
mia, urinary tract infections and meningitis [80,81]. Among the 
identified risk factors leading to colonization or infection with 
A. baumannii (sometimes difficult to distinguish), prolonged hos-
pitalization, intensive care unit admission, recent surgical proce-
dures, antimicrobial agent exposure, central venous catheter use, 
prior hospitalization, nursing home residence and local coloniza-
tion pressure on susceptible patients are well known [82–84]. Those 
infections can be treated with a combination of a β-lactam and 
an aminoglycoside. The combination of a β-lactam together with 
an aminoglycoside appears at least synergistic in vitro and allows 
a rapid bactericidal effect [85]. Fluoroquinolones also exhibited 
a rapid bactericidal effect against susceptible A. baumannii and 
therefore can be used in combination with a β-lactam [85]. The 
increasing resistance trend observed for fluoroquinolones, amino-
glycosides and broad-spectrum β-lactams has consequently lead 
to the use of carbapenems alone or in combination with non-
classical molecules, such as polymyxin, rifampin and sulbactam 
[82,85,86]. Tigecyline is often active against multidrug-resistant 
A. baumannii; however, recent reports described the emergence of 
tigecycline resistance [10,29]. Nevertheless, the current main prob-
lem in terms of resistance in A. baumannii is that carbapenems 
are often associated with multidrug or even pandrug resistance.

Since antibiotic-based therapies may become more and more 
limited when dealing with A. baumannii, alternative thera-
pies are being explored. These experimental therapies include 

bacteriophage-based therapy or antibacterial peptides [87,88]. The 
main problem with these therapies is that their efficicacy has been 
evaluated only in vitro. The pharmacokinetic/pharmacodynamic 
profiles of these compounds, including half-life, diffusion in the 
host organism and potential degradation by human body fluids, 
limit their clinical efficacy. For an informative review of these new 
therapies, please refer to García-Quintanilla et al. [89].

The use of bacteriophage therapy is, from the authors’ point of 
view, quite hazardous; the authors do not have enough data regard-
ing the in vivo activity of such compounds. Moreover, the control 
of the virus after treatment seems to be impossible. In addition, 
it is likely that the emergence of bacteriophage-resistant strains 
under therapy will rapidly occur (modification of their membrane 
target site). However, the authors believe that antibiotic-use poli-
cies and control of antibiotic resistance are crucial for controlling 
the emergence and spread of antibiotic resistance in A. baumannii.

Control of antimicrobial-resistant bacteria
The control of multidrug resistance in A. baumannii will be one 
of the big challenges in clinical microbiology in the near future. 
It is indeed very likely that the now widely distributed bla

NDM
 

carbapenemase genes, increasingly reported in Enterobacteriaceae, 
first spread among Acinetobacter spp. before disseminating into 
Enterobacteriaceae [41]. A. baumannii exhibits different factors 
potentially involved in the persistence of antimicrobial resist-
ance in healthcare institutes (either antibiotics or antiseptics) and 
also exhibits a robust metabolism that is possibly responsible for 
higher survival on inorganic surfaces compared with most entero
bacterial species [29,90]. As mentioned above, carbapenem-resistant 
A. baumannii are being increasingly reported and are often behind 
the occurrence of outbreaks [29,70]. Using molecular techniques, the 
clonal relationship between A. baumannii clinical isolates during 
outbreaks has been extensively studied. It has been demonstrated 
that most nosocomial outbreaks are caused by a single or a few 
A. baumannii clones [91]. The importance of hygiene measures has 
been clearly demonstrated for the control of hospital outbreaks 
caused by A. baumannii. Although no common strategy to eradi-
cate colonization by Acinetobacter spp. in intensive care units is 
known, prevention of patient colonisation seems to be of primarily 
importance. The prevention of A. baumannii outbreaks should be 
performed in several steps: the detection of any multidrug-resistant 
A. baumannii should be performed at hospital admission; detection 
of A. baumannii carriage in the close environment of the index 
patient, at least in intensive care units; regular screening of the 
patient using swabs or sponges as described by Doi et al. [78]; and an 
enhanced isolation of carbapenem-resistant A. baumannii-infected 
patients or healthy carriers (cohorting) [29,92]. In reality, most of the 
containment measures for outbreak prevention involving multi
drug-resistant A. baumannii are similar to those for preventing 
spread of any multidrug-resistant Gram‑negative rods.

Expert commentary & five-year view
A. baumannii possesses an extraordinary capacity for acquiring 
antibiotic resistance determinants [81,93]. A high diversity of resist-
ance determinants have been identified in these species [10]. The 
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