Remi Geiger

Remi Geiger
Paris Observatory · Systèmes de Référence Temps-Espace (SYRTE)

PhD

About

99
Publications
19,808
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,403
Citations
Additional affiliations
November 2011 - August 2013
Vienna Center for Quantum Science and Technology
Position
  • PostDoc Position

Publications

Publications (99)
Article
Full-text available
We present a novel atom interferometer configuration that combines large momentum transfer with the enhancement of an optical resonator for the purpose of measuring gravitational strain in the horizontal directions. Using Bragg diffraction and taking advantage of the optical gain provided by the resonator, we achieve momentum transfer up to 8ℏk wit...
Article
Full-text available
The Matter-wave laser Interferometric Gravitation Antenna (MIGA) is an underground instrument using cold-atom interferometry to perform precision measurements of gravity gradients and strains. Following its installation at the low noise underground laboratory LSBB in the South-East of France, it will serve as a prototype for gravitational wave dete...
Article
Full-text available
Located far from anthropical disturbances and with low seismic and magnetic background noise profiles, the LSBB facility is the ideal location for a new hybrid detector for the study of space-time strain. The MIGA infrastructure [1], utilizes an array of atom interferometers manipulated by the same beam, the resonant optical field of a 150 m long o...
Preprint
Full-text available
The Matter-wave laser Interferometric Gravitation Antenna (MIGA) is an underground instrument using cold-atom interferometry to perform precision measurements of gravity gradients and strains. Following its installation at the low noise underground laboratory LSBB in the South-East of France, it will serve as a prototype for gravitational wave dete...
Preprint
Full-text available
The Matter-wave laser Interferometric Gravitation Antenna (MIGA) is an underground instrument using cold-atom interferometry to perform precision measurements of gravity gradients and strains. Following its installation at the low noise underground laboratory LSBB in the South-East of France, it will serve as a prototype for gravitational wave dete...
Preprint
A rotating interferometer with paths that enclose a physical area exhibits a phase shift proportional to this area and to the rotation rate of the frame. Understanding the origin of this so-called Sagnac effect has played a key role in the establishment of the theory of relativity and has pushed for the development of precision optical interferomet...
Article
Full-text available
A rotating interferometer with paths that enclose a physical area exhibits a phase shift proportional to this area and to the rotation rate of the frame. Understanding the origin of this so-called Sagnac effect has played a key role in the establishment of the theory of relativity and has pushed for the development of precision optical interferomet...
Preprint
Full-text available
We report the realization of a large scale gravity antenna based on matter-wave interferometry, the MIGA project. This experiment consists in an array of cold Rb sources correlated by a 150 m long optical cavity. MIGA is in construction at the LSBB underground laboratory, a site that benefits from a low background noise and is an ideal premise to c...
Preprint
Full-text available
Optical cavities are proposed as powerful tools for the realization of large momentum beam splitters for matter waves. In this letter, we realize a multi-photon atom interferometer driven via Bragg diffraction in an optical resonator. The key element of this demonstration is the use of a degenerate cavity to mediate the light-matter interaction, wh...
Conference Paper
We develop interferometry-based atomic inertial sensors robust to Doppler-type inhomogeneities by using quantum optimal control methods. Theoretical results show optimized phase profiles of Raman and Bragg optical π-pulses enabling maximization of the fidelity.
Article
Full-text available
There are several applications for enhancement cavities where a beam of large size (several millimeters) resonates, in particular in atomic physics. However, reaching large beam waists in a compact geometry (less than a meter long) typically brings the resonator close to the degeneracy limit. Here we experimentally study a degenerate optical cavity...
Article
Full-text available
Gravitational waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to extend the detection bandwidth to low frequency. The scientific potential of multi-frequency GW astronomy is enormous as it would enable to obtain a more complete picture of cosmic events and mec...
Article
Multiloop matter-wave interferometers are essential in quantum sensing to measure the derivatives of physical quantities in time or space. Because multiloop interferometers require multiple reflections, imperfections of the matter-wave mirrors create spurious paths that scramble the signal of interest. Here, we demonstrate a method of adjustable mo...
Preprint
Full-text available
Enhancement cavities where a beam of large size (several millimeters) can resonate have several applications, in particular in atomic physics. However, reaching large beam waists in a compact geometry (less than a meter long) typically brings the resonator close to the degeneracy limit. Here we experimentally study a degenerate optical cavity, 44-c...
Preprint
Full-text available
We proposed the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an array of atom gradiometers aimed at studying space-time and gravitation with the primary goal of observing gravitational waves (GWs) in the infrasound band with a peak strain sensitivity of $3.3 \times 10^{-22}/\sqrt{\text{Hz}}$ at 1.7 Hz. In this pape...
Preprint
Multi-loop matter-wave interferometers are essential in quantum sensing to extract physical quantities and their derivatives in time or space. They are realized by stacking several mirror stages, but the finite efficiency of the matter-wave mirrors creates spurious paths which scramble the signal of interest. Here we demonstrate a method of adjusta...
Article
The research on cold-atom interferometers gathers a large community of about 50 groups worldwide both in the academic and now in the industrial sectors. The interest in this sub-field of quantum sensing and metrology lies in the large panel of possible applications of cold-atom sensors for measuring inertial and gravitational signals with a high le...
Preprint
Full-text available
The research on cold-atom interferometers gathers a large community of about 50 groups worldwide both in the academic and now in the industrial sectors. The interest in this sub-field of quantum sensing and metrology lies in the large panel of possible applications of cold-atom sensors for measuring inertial and gravitational signals with a high le...
Article
Cold-atom interferometers commonly face systematic effects originating from the coupling between the trajectory of the atomic wave packet and the wavefront of the laser beams driving the interferometer. Detrimental for the accuracy and the stability of such inertial sensors, these systematics are particularly enhanced in architectures based on spat...
Article
Full-text available
We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matte...
Article
Full-text available
We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of ⁸⁷Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized laser system from the Muquans company, is designed...
Preprint
Full-text available
We provide an updated assessment of the fundamental physics potential of LISA. Given the very broad range of topics that might be relevant to LISA, we present here a sample of what we view as particularly promising directions, based in part on the current research interests of the LISA scientific community in the area of fundamental physics. We org...
Conference Paper
We present a cold atom gyroscope based on the Sagnac effect for matter-wave with very large area of 11 cm2 with record sensitivity and preliminary study of the scaling factor.
Preprint
Cold-atom interferometers commonly face systematic effects originating from the coupling between the trajectory of the atomic wave packet and the wave front of the laser beams driving the interferometer. Detrimental for the accuracy and the stability of such inertial sensors, these systematics are particularly enhanced in architectures based on spa...
Preprint
Full-text available
We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of $^{87}$Rb atoms - a typical atomic species for emerging quantum technologies. This device, a customized laser system from the Muquans company, is desi...
Preprint
Full-text available
Gravitational Waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to extend the detection bandwidth to low frequency. The scientific potential of multi-frequency GW astronomy is enormous as it would enable to obtain a more complete picture of cosmic events and mec...
Article
Full-text available
Fluctuations of the Earth’s gravitational field are a major noise source for ground-based experiments investigating general-relativistic phenomena such as gravitational waves (GWs). Mass density variations caused by local seismic or atmospheric perturbations determine spurious differential displacements of the free-falling test masses—called gravit...
Preprint
Full-text available
Fluctuations of the earth's gravity field are a major noise source for ground-based experiments investigating general relativity phenomena such as Gravitational Waves (GWs). Mass density variations caused by local seismic or atmospheric perturbations determine spurious differential displacements of the free falling test masses, what is called Gravi...
Article
Full-text available
Cold-atom inertial sensors target several applications in navigation, geoscience, and tests of fundamental physics. Achieving high sampling rates and high inertial sensitivities, obtained with long interrogation times, represents a challenge for these applications. We report on the interleaved operation of a cold-atom gyroscope, where three atomic...
Article
The uniformity of the intensity and the phase of laser beams is crucial to high-performance atom interferometers. Inhomogeneities in the laser intensity profile cause contrast reductions and systematic effects in interferometers operated with atom sources at micro-Kelvin temperatures and detrimental diffraction phase shifts in interferometers using...
Article
Full-text available
We propose an underground long baseline atom interferometer to study gravity at very large scale. This hybrid atom-laser antenna will use several atom interferometers simultaneously interrogated by the resonant mode of an optical cavity. The instrument will be a demonstrator for gravitational wave detection in a frequency band (100 mHz - 1 Hz) typi...
Preprint
Cold-atom inertial sensors target several applications in navigation, geoscience and tests of fundamental physics. Reaching high sampling rates and high inertial sensitivities, obtained with long interrogation times, represents a challenge for these applications. We report on the interleaved operation of a cold-atom gyroscope, where 3 atomic clouds...
Preprint
The uniformity of the intensity and phase of laser beams is crucial to high-performance atom interferometers. Inhomogeneities in the laser intensity profile cause contrast reductions and systematic effects in interferometers operated with atom sources at micro-Kelvin temperatures, and detrimental diffraction phase shifts in interferometers using la...
Article
Full-text available
We study theoretically and experimentally the influence of temporally shaping the light pulses in an atom interferometer, with a focus on the phase response of the interferometer. We show that smooth light pulse shapes allow rejecting high frequency phase fluctuations (above the Rabi frequency) and thus relax the requirements on the phase noise or...
Article
We propose an experiment to test the weak equivalence principle (WEP) with a test mass consisting of two entangled atoms of different species. In the proposed experiment, a coherent measurement of the differential gravity acceleration between the two atomic species is considered, by entangling two atom interferometers operating on the two species....
Preprint
We study theoretically and experimentally the influence of temporally shaping the light pulses in an atom interferometer, with a focus on the phase response of the interferometer. We show that smooth light pulse shapes allow rejecting high frequency phase fluctuations (above the Rabi frequency) and thus relax the requirements on the phase noise or...
Article
Full-text available
We propose a marginally stable optical resonator suitable for atom interferometry. The resonator geometry is based on two flat mirrors at the focal planes of a lens that produces the large beam waist required to coherently manipulate cold atomic ensembles. Optical gains of about 100 are achievable with optics of part-per-thousand losses. The result...
Article
Full-text available
We present two projects aiming to probe key aspects of the theory of General Relativity with high-precision quantum sensors. These projects use cold-atom interferometry with the aim of measuring gravitational waves and testing the equivalence principle. To detect gravitational waves, a large multi-sensor demonstrator is currently under construction...
Chapter
We present the perspective of using atom interferometry for gravitational wave (GW) detection in the mHz to about 10 Hz frequency band. We focus on light-pulse atom interferometers which have been subject to intense developments in the past 25 years. We calculate the effect of the GW on the atom interferometer and present in details the atomic grad...
Preprint
We present an underground long baseline atom interferometer to study gravity at large scale. The hybrid atom-laser antenna will use several atom interferometers simultaneously interrogated by the resonant mode of an optical cavity. The instrument will be a demonstrator for gravitational wave detection in a frequency band (100 mHz - 1 Hz) not explor...
Preprint
We propose a marginally stable optical resonator suitable for atom interferometry. The resonator geometry is based on two flat mirrors at the focal planes of a lens that produces the large beam waist required to coherently manipulate cold atomic ensembles. Optical gains of about 100 are achievable using optics with part-per-thousand losses. The res...
Article
We present the perspective of using atom interferometry for gravitational wave (GW) detection in the mHz to about 10 Hz frequency band. We focus on light-pulse atom interferometers which have been subject to intense developments in the last 25 years. We calculate the effect of the GW on the atom interferometer and present in details the atomic grad...
Patent
L'invention concerne un système d'interféromètre atomique comprenant une source d'atomes générant une bouffée d'atomes froids (60), une source laser générant une séquence d'impulsions lumineuses (14) et un système de détection configuré pour mesurer un déphasage interférométrique de ladite bouffée d'atomes froids (60). Selon l'invention, le système...
Article
We report the operation of a cold-atom inertial sensor in a joint interrogation scheme, where we simultaneously prepare a cold-atom source and operate an atom interferometer in order to eliminate dead times. Noise aliasing and dead times are consequences of the sequential operation which is intrinsic to cold-atom atom interferometers. Both phenomen...
Conference Paper
Full-text available
The Matter-Wave laser Interferometer Gravitation Antenna, MIGA, will be a hybrid instrument composed of a network of atom interferometers horizontally aligned and interrogated by the resonant field of an optical cavity. This detector will provide measurements of sub Hertz variations of the gravitational strain tensor. MIGA will bring new methods fo...
Conference Paper
We report the first operation of a cold atom inertial sensor without dead time. Dead times in conventional cold atom interferometers originate from the preparation of a cold atom source prior to its injection in the interferometer and where information on inertial signals is lost. We use a sequence where we simultaneously prepare a cold atom source...
Article
Full-text available
Nous présentons la nouvelle expérience de gyromètre à atomes froids du SYRTE mise en oeuvre depuis 2009. Cette expérience uti-lise une configuration en fontaine atomique et un interféromètre ato-mique à quatre impulsions lumineuses pouvant permettre d'atteindre une aire Sagnac d'au moins 11 cm 2. Nous avons démontré une stabilité de 3 nrad·s −1 apr...
Preprint
The Matter-Wave laser Interferometer Gravitation Antenna, MIGA, will be a hybrid instrument composed of a network of atom interferometers horizontally aligned and interrogated by the resonant field of an optical cavity. This detector will provide measurements of sub Hertz variations of the gravitational strain tensor. MIGA will bring new methods fo...
Article
We report the operation of a cold-atom inertial sensor which continuously captures the rotation signal. Using a joint interrogation scheme, where we simultaneously prepare a cold-atom source and operate an atom interferometer (AI) enables us to eliminate the dead times. We show that such continuous operation improves the short-term sensitivity of A...
Preprint
We report the operation of a cold-atom inertial sensor which continuously captures the rotation signal. Using a joint interrogation scheme, where we simultaneously prepare a cold-atom source and operate an atom interferometer (AI) enables us to eliminate the dead times. We show that such continuous operation improves the short-term sensitivity of A...
Conference Paper
We report the operation of a cold-atom inertial sensor in a joint interrogation scheme, where we simultaneously prepare a cold-atom source and operate an atom interferometer in order to eliminate dead times. Noise aliasing and dead times are consequences of the sequential operation which is intrinsic to cold-atom atom interferometers. Both phenomen...
Article
Full-text available
Developments in atom interferometry have led to atomic inertial sensors with extremely high sensitivity. Their performances are for the moment limited by the ground vibrations, the impact of which is exacerbated by the sequential operation, resulting in aliasing and dead time. We discuss several experiments performed at LNE-SYRTE in order to reduce...
Preprint
Full-text available
Developments in atom interferometry have led to atomic inertial sensors with extremely high sensitivity. Their performances are for the moment limited by the ground vibrations, the impact of which is exacerbated by the sequential operation, resulting in aliasing and dead time. We discuss several experiments performed at LNE-SYRTE in order to reduce...
Article
Full-text available
We propose a new detection strategy for gravitational waves (GWs) below few Hertz based on a correlated array of atom interferometers (AIs). Our proposal allows to reduce the Newtonian Noise (NN) which limits all ground based GW detectors below few Hertz, including previous atom interferometry-based concepts. Using an array of long baseline AI grad...
Article
Full-text available
We study the dynamics of a degenerate one-dimensional Bose gas that is subject to outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabli...
Article
The first name of the second author of this article has been misspelled. His correct first name is given above. We apologize to him and our readers for this misprint.
Article
Full-text available
The relaxation of isolated quantum many-body systems is a major unsolved problem connecting statistical and quantum physics. Studying such relaxation processes remains a challenge despite considerable efforts. Experimentally, it requires the creation and manipulation of well-controlled and truly isolated quantum systems. In this context, ultracold...