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Abstract
Purpose Lung cancer is the most frequent cancer worldwide and is the leading cause of cancer-related deaths. Its early
detection and treatment at the stage of a lung nodule improve the prognosis. In this study was proposed a new classification
approach named bilinear convolutional neural network (BCNN) for the classification of lung nodules on CT images.
Methods Convolutional neural network (CNN) is considered as the leading model in deep learning and is highly recom-
mended for the design of computer-aided diagnosis systems thanks to its promising results on medical image analysis. The
proposed BCNN scheme consists of two-stream CNNs (VGG16 and VGG19) as feature extractors followed by a support
vector machine (SVM) classifier for false positive reduction. Series of experiments are performed by introducing the bilinear
vector features extracted from three BCNN combinations into various types of SVMs that we adopted instead of the original
softmax to determine the most suitable classifier for our study.
Results Themethod performancewas evaluated on 3186 images from the public LUNA16 database.We found that the BCNN
[VGG16, VGG19] combination with and without SVM surpassed the [VGG16]2 and [VGG19]2 architectures, achieved an
accuracy rate of 91.99% against 91.84% and 90.58%, respectively, and an area under the curve (AUC) rate of 95.9% against
94.8% and 94%, respectively.
Conclusion The proposed method improved the outcomes of conventional CNN-based architectures and showed promising
and satisfying results, compared to other works, with an affordable complexity. We believe that the proposed BCNN can be
used as an assessment tool for radiologists to make a precise analysis of lung nodules and an early diagnosis of lung cancers.
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Introduction

Lung cancer is the first cause of cancer-related death world-
wide. The mortality rate of lung cancer surpasses that of
prostate, colon and breast cancers. The American Cancer
Society estimates that lung cancer is expected to cause
135,720 deaths in 2020, accounting for about 25% of all
cancer deaths [1, 2]. Early screening and localization of lung
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cancer in situ at its nodular stage are very important and ben-
eficial to improve the patient’s treatment effect. In fact, early
diagnosis of lung cancer increases the five-year survival rate
from 18.6 to 56% [2, 3].

Thanks to its high spatial resolution, computed tomogra-
phy (CT) is the reference imaging modality used to detect,
characterize lung nodules (dimensions, density, shape, con-
tours) and follow their growth [3]. Suspicious nodules are
sometimes difficult to identify because of their small size,
human subjectivity and technical defaults of some CTs [3].
Therefore, computer-aided diagnosis (CAD) systems are
becoming necessary to overcome these deficiencies.

Recently, deep learning (DL) has showed a big success and
has become a choice method in medical images analysis due
to its promising results. CNN is the prevalent deep learning
model, widely applied in various image analysis fields. This
model is able to automatically extract relevant features from
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images and to solve various learning problems, such as object
detection, pattern recognition and classification [3].

In this paper, we proposed a trending CNN model called
bilinear CNN (BCNN) to classify pulmonary nodules in CT
images. BCNN model relies on the pooling and multipli-
cation of the output features of two independent CNNs by
an outer product (Kronecker’s matrix product) to form a
vector descriptor [4]. The bilinear pooling process ensures
the easy computation of gradient and end-to-end learn-
ing of both feature extractors using image labels only [4].
Moreover, this type of model is highly recommended for
fine-grained classification problems since it can reliably
interrelate local features in a translational invariant manner
[4]. Pre-trainedCNNmodels for deep feature extractionwere
particularly implemented, followed by a linear support vector
machine (SVM) for classification. Different CNNs (VGG16
and VGG19) were explored via the fine-tuning process to
build our BCNNmodel. In addition, different types of SVMs
(linear, polynomial and radial basis function (RBF)) were
tested to determine the most appropriate type for our classi-
fication process. In the experiments, we used 888 CT scans
containing 1186 nodules from the public database LUNA16.

This paper is organized as follows: In “Related works”
section, we summarized some relevant works from the lit-
erature. In “Materials and methods” section, we described
in detail the proposed system. Experimental results and dis-
cussion are presented in “Results and discussion” section.
Finally, the conclusion and perspectives are summarized in
“Conclusion” section.

Related works

CNN was potentially introduced to medical image analysis
field thanks to its ability to self-determine relevant fea-
tures through its convolutional and pooling layers. Several
architectures were progressively implemented in CAD sys-
tems for lung nodules classification on CT scans, achieving
great performance and satisfactory results. Monkam et al.
[5] proposed various CNN architectures with various num-
bers of convolutional layers for micro-nodules (diameter
<3 mm) and non-nodules classification on CT scans. They
trained the proposed models on different images sizes of
16×16, 32×32 and 64×64 extracted from 512×512 CT
images from LIDC–IDRI database using the fivefold cross-
validation method. The experiments showed that the CNN
with two convolutional layers, in the case of 32×32 patches
size, presented a great performance and promising results.
As well, in another work, Monkam et al. [6] improved their
experimental results by testing various classifiers coupled
to CNN instead of softmax. The extreme learning machine
(ELM) presented promising results compared to other mod-
els, achieving a sensitivity rate of 96.57% and an accuracy

rate of 97.35%. Shen et al. [7] developed a multi-crop CNN
architecture allowing to crop regions presenting relevant
information from convolutional feature maps. The proposed
model made it possible to integrate the nodule features into
a hierarchical network without a segmentation procedure,
thus simplifying classification. Onishi et al. [8] proposed a
novel lung cancer lesions classificationmethod in CT images
using a deep convolutional neural network (DCNN) and
generative adversarial networks (GANs). First, authors used
Wasserstein generative adversarial networks (WGANs) for
new nodule images generation to increase the performance of
AlexNet-based DCNN model. Then, the DCNN was trained
on the generated images to classify candidate lesions as
malignant and benign using the fine-tuning process. The
algorithm was evaluated on private database containing CT
images of 60 cases (benign: 27 and malignant: 33), and it
achieved an accuracy rate of 66.7% for benign nodules and
93.9% formalignant nodules.Wu et al. [9] proposed tomerge
residual learning and transfer learning techniques to con-
struct a new CNN model for the classification of pulmonary
nodules. ResNet-50 architecture was used for training and
testing of the selected datasets based on the tenfold cross-
validationmethod. Themodel was evaluated on 7685 images
of nodules and 7310 images of non-nodules collected from
LIDC–IDRI database and achieved accuracy, sensitivity and
FP rates of 98.23%, 97.70% and 1.65%, respectively. Kaya
et al. [10] combined handcrafted features with deep fea-
tures extracted fromAlexNet architecture and trained various
classifiers (SVM,KNN,AdaBoost and random forest) to dis-
tinguish between lung nodules and non-nodules. Kido et al.
[11] took advantages of the CNN and R-CNN to develop
a high-performance system for lung nodules detection. An
object detector R-CNN followed by a SVM classifier was
implemented for candidate nodules selection. AlexNet archi-
tecture was trained on detected nodules and used as a feature
extractor for 1304 nodules, obtained after data augmentation.
Then, the authors fed the extracted features into a multi-class
SVM classifier for the recognition of malignant and benign
nodules. The proposed scheme achieved an accuracy rate of
95.2% increased with data augmentation to 99.4%.

In recent years, bilinear CNNmodel was highly proposed
in the literature for fine-grained classification problems.
BCNNmultiplies the convolutional layer outputs of two dif-
ferent CNNs by an outer product, which gives the quadratic
number of characteristic maps. Therefore, BCNN takes
advantages of two networks and combines them in onewhich
outperforms most of the existing algorithm of classification.
Liu et al. [12] proposed to combine compact BCNN with
histogram loss while adding two-part networks to reinforce
their effectiveness in person re-identification. Meanwhile,
Ustinova et al. [13] proposed multi-region BCNN for per-
son re-identification. Chen et al. [14] implemented two
pre-trained CNN architectures (inception-v3 and inception-
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Table 1 Overview of the existing classification methods

References Database Model Performance metrics

Lung nodule classification

Monkam et al. [5] LIDC–IDRI 3 CNNs with various patch sizes Sensitivity � 83.82%
Accuracy � 88.28%
F1-score � 83.45%
AUC � 0.87

Monkam et al. [6] LIDC–IDRI Ensemble 3D CNNs + ELM Sensitivity � 96.57%
Accuracy � 97.35%

Shen et al. [7] LIDC–IDRI Multi-crop CNN Sensitivity � 77%
Accuracy � 87.14%
AUC � 0.93

Onishi et al. [8] Fujita Health University Hospital WGAN + AlexNet Accuracy (benign) � 66.7%
Accuracy (malignant) � 93.9%

Wu et al. [9] LIDC–IDRI Deep residual ResNet-50 Sensitivity � 97.7%
Accuracy � 98.23%
FPR � 1.65%.

Kaya et al. [10] LIDC–IDRI AlexNet + cascaded classifier Sensitivity � 67.37%
Specificity � 95.46%.
Accuracy � 84.70%

Kido et al. [11] LIDC–IDRI CNN + SVM Accuracy � 95.2%

Fine-grained classification

Liu et al. [12] CUHK03 detected
CUHK03 labeled

Multi-part compact Bilinear CNN Recall@K(r � 5) � 90.28%
Recall@K(r � 5) � 94.86%

Ustinova et al. [13] Market-1501
CUHK01
CUHK03 detected
CUHK03 labeled

Multi-region bilinear CNN Recall@K(r � 5) � 85.01%
Recall@K(r � 5) � 78.08%
Recall@K(r � 5) � 89.15%
Recall@K(r � 5) � 93.37%

Chen et al. [14] UECFOOD-100
UECFOOD-256
ETHFOOD-101

BCNN [Inception-v3, Inception-v4] AccuracyTOP-5 � 99.28%
AccuracyTOP-5 � 95.49%
AccuracyTOP-5 � 98.76%

Wang et al. [15] H&E-stained colorectal cancer
histopathological image dataset

BCNN + SVM Accuracy � 92.6%
AUC � 98.5%

v4) for food identification as fine-grained recognition tasks
using the bilinear technique. They performed three combina-
tions using the two CNNs and compared their performance
using three different datasets. In the medical imaging field,
Wang et al. [15] developed a new BCNN-based model able
to decompose histopathological images into two compo-
nents and extract more effective feature maps of the two
decomposed images. Classification methods, databases and
performance metrics of previous works are summarized in
Table 1.

Materials andmethods

In this work, we propose a BCNN-based lung nodule classi-
fication model. CNN-based systems require a large amount
of data for their training, and it is not easy to recover an
extensive database of medical images. That is why we used
a public database (LUNA16) to train two pre-trained CNN
architectures (VGG16 and VGG19). Precise fine-tuning of

pre-trained model parameters is recommended using our tar-
geted database for training and testing. The proposed work
is shown in the block diagram in Fig. 1.

Dataset and preprocessing

In this work, we relied on the benchmark datasets available
from the LUNA16 challenge [16]. The challenge includes
888 CT scans in MetaImage format (mhd/raw) filtered out
from the public Lung ImageDatabaseConsortium and Image
Database Resource Initiative (LIDC–IDRI) database [17].
These scans are stored at 512×512 pixels resolution with
a slice thickness under 2.5 mm. The LUNA16 database
includes all nodules with diameter greater than 3 mm anno-
tated by at least three out of four radiologists, resulting in
1186 nodules. Non-nodules, micro-nodules (<3 mm) and
masses (≥3 mm) annotated by less than three radiologists
are treated as non-nodules. There are 549,870 non-nodules.

In our study, we reframed the image according to the (x,
y, z) annotations to create the learning datasets. We noted
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Fig. 1 Workflow of the proposed bilinear CNN model for lung nodule classification

Fig. 2 Example of extracted datasets from LUNA16 database: a nodule and b non-nodule ROIs

a concern issue related to class imbalance, so we manu-
ally and randomly sub-sampled the majority class. Then,
we rescaled the intensity of images that were defined at the
Hounsfield scale, to standardize the image data before being
used as input for training the model. Finally, we generated
50×50 grayscale images including 1186 nodules and 2000
non-nodules for the training and validation of the proposed
BCNN model. Figure 2 shows some examples of generated
images.

The training step of CNN requires a high number of
datasets. For this reason, we used data augmentation tech-
niques prior to training the model. We chose then to apply
uniform transformations to keep the shape of nodules given

its importance in the diagnosis and detection process. We
applied the following augmentations to each patch: rotation
45°, zoom range of [0.5, 0.9], flipping horizontally and flip-
ping vertically. We obtained after data augmentation 5930
patches for the nodule class, and we reserved 80% of the
dataset to the training and 20% to the validation of themodel.

Bilinear CNN description

Bilinear model was originally developed by Lin et al. [18]
for fine-grained classification and person identification tasks.
The bilinear CNN is made of two-branch CNNs as feature
extractorswhose output vectors are bilinearly pooled through
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an outer product function. Thus, theBCNNmodel produces a
large amount of information compared to conventional CNN
models. According to the methodology proposed in [18], a
BCNN model for image classification is shown in Fig. 1 and
it can be formally represented as the following quadruple:

BCNN � (
f1, f2,P f , C

)
(1)

where f1 and f2 are featured extractors of CNN1 and CNN2,
respectively,P f is a pooling function, andC is a classification
function. The feature extractor produces a mapping function:
F : I × L → R

K×D that considers an image I ∈ I and a
location l ∈ L and gives in its output a feature R of size
K × D. Generally, L refers to position and scale. To obtain
bilinear features, we combine the output of f1 and f2 at each
location l by computing the outer matrix product as follows:

b(l, I, f1, f2) � f1(l, I)T f2(l, I) (2)

The featureK f1 and f2 must have the same dimension to be
compatible.

The global image descriptor φ(I) is obtained when bilin-
ear features are aggregated by the pooling function P f at all
positions of the image. The sum pooling is then used, and the
descriptor is formally defined as:

φ(I) �
∑

l∈L
b(l, I, f1, f2) (3)

The feature descriptor φ(I) is an orderly representation
since pooling disregards the feature locations. Let’s consider
K×N andK×M the dimensions of the extracted feature by
f1 and f2, respectively; the final bilinear feature φ(I) is then
a general-purpose image descriptor of sizeM×N that will be
used with a classification function C. The bilinear descriptor
is reshaped to 1D bilinear vector V(I) and undergoes an
element-wise signed square root operation as:

Y(I) � sign(V(I))
√
V(I) (4)

Y(I) followed by �2 normalization to improve model per-
formance in practice.

Z(I) � Y(I)

Y(I)2
. (5)

The proposedmodel

In this section, we describe our proposed BCNNmodel used
for the classification of pulmonary nodules on CT images. As
shown in Fig. 2, we used two pre-trained CNN architectures
for feature extraction. It is worth noting that the right choice
of the feature extractor is critical and deemed to be the main
part in a BCNN architecture because of its influence on the

Fig. 3 End-to-end gradient computation in BCNN model [18]

determination of model performance. In our BCNN model,
we chose the most popular VGG16 [19] and VGG19 [19]
networks as feature extractors. We designed three combina-
tions using the twoCNNarchitectures: (1)Thebilinearmodel
consists of two VGG16 streams denoted by [VGG16]2, (2)
the bilinear model consists of two VGG19 streams denoted
by [VGG19]2, and (3) the bilinear model consists of VGG16
and VGG19 indicated by [VGG16, VGG19].

Since the bilinear form performs a much more straight-
forward gradient computation at the pooling layer, we built
our BCNNmodel with an end-to-end manner and we trained
it by back-propagating the gradients of classification loss
(e.g., cross-entropy loss function). Here, we considered two
matrices C and D of size K × N and K × M , respectively,
to represent the output maps of the two feature extractors,
and X � CT D of M × N dimension is the pooled bilin-
ear feature obtained by formula (2). We denoted by ∂�

∂X , the
gradient of the loss function � with respect to representation
X . As the classification gradient and normalization layer are
straightforward, we efficiently obtained the backward prop-
agation of bilinear pooling layer by the following chain rule
of gradients:

∂�

∂C
� D

(
∂�

∂X

)T

,
∂�

∂D
� C

(
∂�

∂X

)
(6)

The global scheme describing the end-to-end gradient com-
putation in the BCNN model is illustrated in Fig. 3.

Afterward, we introduced the extracted bilinear vector
features in various SVM types that are adopted for final pre-
diction instead of the original softmax classifier. SVM is a
supervised classifier originally developed for a binary clas-
sification. Its objective is to find an optimal hyperplane that
separates sets of negative and positive nodules with a max-
imum margin depending on the extracted bilinear features.
For further study,we implementedSVMwith different kernel
functions:

Linear kernel : K (x, xi ) � xt × xi (7)

Polynomial kernel : K (x, xi ) � (
xt × xi + b

)d ; b > 0 (8)
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(9)

Radial basis function kernel (RBF)

: K (x, xi ) � exp

(
|x − xi |2

2σ 2

)

; σ �� 0

where is degree polynomials, ∈ R, and is the point belonged
to the hyperplane satisfying (w · x)+b � 0, where is normal
to the hyperplane.

Moreover, wemodified the parameters of SVMs and com-
pared their performances to get a better classification rate.
Finally, we compared our best results to various classifiers
[AdaBoost, k-nearest neighbor (KNN) and random forest
(RF)] results and other state of the arts.

Results and discussion

In this section, we evaluate the achievements of our BCNN-
based system and we describe the details of the experiment
and analyze the results. Finally,we compare our experimental
results with previous works to highlight the model perfor-
mances.

BCNN-softmax parameter settings

All experiments were performed using NVIDIA GeForce
GTX 1080 Ti with 11 GB of graphics memory and via Keras
libraries. In thiswork,we took into account the prominenceof
the cost of calculation and the training time of BCNN mod-
els. In medical applications, the most important parameter
is the error rate. Thus, we attributed optimal parameters to
best reduce mis-classification rates while focusing on train-
ing time.

Moreover, we fine-tuned the networks and we trained in
our models the last 4 layers of the VGG16 [19] architecture
and the last 5 layers of the VGG19 [19] architecture. Figure 4
and Table 2 show the training/validation errors/accuracy in
each epoch of the three proposed BCNN-softmax models
and the used hyper-parameters for the training of models,
respectively.

BCNN-SVM parameter settings

As described in “The proposed model” section, we intro-
duced the extracted bilinear features in various SVM types
that are adopted for final prediction instead of the original
softmax classifier. To improve the computational efficiency
of the system and obtain a better classification rate, we com-
pared themulti-SVM classifier (linear, RBF and polynomial)
with different parameters (C, γ and d). Thus, we tested the
performance of each SVM type in each BCNNmodel with a
different combination of parameters. To clarify the influence

of these parameters on nodules classification efficiency, we
presented in Fig. 5 the results of different performed tests.

Using the optimal parameters and among the different
SVMs that were tested, we have significantly found that a lin-
ear SVMwithCSVM � 0.1 gave the best accuracy rate for the
threeBCNNcombinations. In fact, the systemachieved accu-
racies of 91.84%, 90.58% and 91.99% for features extracted
from [VGG16]2, [VGG19]2 and [VGG16, VGG19] models,
respectively, as best results of the linear SVM with CSVM �
0.1.

In the next section, we will consider only the linear SVM
classifier to interpret and discuss the performance results of
the proposed models.

Experiments

In our approach, we executed three BCNN combinations
using two of the most popular pre-trained networks (VGG16
andVGG19). First, we trained each combination using a soft-
max classifier. Then, we fed the bilinear vector features of
each combination into a linear SVM classifier. In addition,
we implemented various other classifiers and we compared
their performances. Table 3 shows the classification perfor-
mance of each bilinear model with the softmax and the linear
SVM classifiers.

To further demonstrate the effectiveness of the proposed
approach, we displayed in Fig. 6 the receiver operating char-
acteristic (ROC) curves and the AUC for each BCNN-SVM
model. The nearest curve of the upper left corner of the
figure corresponds to the best model. As shown here and
when we took AUC into account, [VGG16, VGG19] outper-
forms [VGG16]2 and [VGG19]2 architectures by 1% and
2%, respectively, since it covers more surface than other
models. Thus, considering the three combinations, [VGG16,
VGG19]-SVM achieves promising results with an accuracy
rate of 91.99% and an AUC of 95.9%, which exceed those
of the other two models.

Furthermore, an objective comparison between our results
and the existing works was made and is denoted in Table 4.
We noticed that the three BCNN structures performed bet-
ter than those in the literature. Our experimental studies
substantiated the efficiency and reliability of the proposed
BCNN-SVM method in regard to accuracy and AUC met-
rics.

Discussion

In this study, we proposed three BCNN structures associated
with a linear SVM for the classification of lung nodules on
CT scans. We used two of the most known pre-trained net-
works (VGG16 andVGG19) as feature extractors to build our
three bilinear proposed architectures. First, we fine-tuned the

123



International Journal of Computer Assisted Radiology and Surgery

Fig. 4 Validation accuracy and training loss of the three BCNN-softmax models

Table 2 Setup of hyper-parameters

Model Initializer Optimizer Batch size Learning rate Steps/epoch Epoch Trained layer

[VGG16]2 Random SGD 16 0.1 800 32 − 4

[VGG19]2 Random SGD 16 0.1 800 32 − 5

[VGG16, VGG19] He_uniform SGD 16 0.1 800 27 [− 4, − 5]

Fig. 5 Various SVM tests with different parameters
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Table 3 Performance metrics of
each BCNN architecture with
softmax and SVM classifiers

Bilinear CNN architecture Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) FPR (%)

[VGG16]2 Softmax 91.46 91.94 90.63 93.35 9.28

SVM 91.84 93.28 89.36 93.52 8.14

[VGG19]2 Softmax 91 91.73 89.82 92.97 10.18

SVM 90.58 92.29 87.66 92.52 12.29

[VGG16,
VGG19]

Softmax 91.62 91.81 91.44 93.50 8.63

SVM 91.99 91.85 92.27 93.76 7.72

Table 4 Classification results of BCNN models compared to previous works

References Database Methods Accuracy (%) AUC

Monkam et al. [5] LIDC–IDRI (2635 nodules) Three CNNs with various patch sizes 88.28 0.87

Shen et al. [7] LIDC–IDRI (2618 nodules) Multi-crop CNN 87.14 0.93

Kaya et al. [10] LIDC–IDRI (1402 nodules) AlexNet + cascaded classifier 84.70 –

Shi et al. [20] LIDC–IDRI (1400 images) VGG16 with SVM 91.5 –

Zhao et al. [21] LIDC–IDRI (743 images) Agile CNN (LeNet + AlexNet) 82.23 0.877

Zhao et al. [22] LIDC–IDRI (743 images) Transfer learning CNNs 85 0.94

Shen et al. [23] LIDC (4252 images) Hierarchical semantic CNN 84.2 0.856

Our proposed method LIDC–IDRI (3186 images) [VGG16]2 + SVM 91.84 0.948

[VGG19]2 + SVM 90.58 0.94

[VGG16,VGG19] + SVM 91.99 0.959

Fig. 6 ROC curves and AUC of the proposed BCNN-SVM structures

CNNs andwe compared the performance of eachBCNNwith
a softmax classifier. We found that [VGG16, VGG19] struc-
ture exceeded the [VGG16]2 and [VGG19]2 architectures
and achieved an accuracy rate of 91.62% against 91.46%
and 91%, respectively.

Originally, CNN-based image classification is provided
by the fully connected layers with a softmax function for its
ease of use. In fact, the softmax itself is not a classifier but

just a typical logistic regressor that generates a vector repre-
senting the probability distributions ranging between 0 and
1 of a list of logits scores. So, it is suitable as a cost func-
tion for multi-class categories detection. However, the SVM
performs a different interpretation of the scores: Thanks to
its loss function, which results in a hyperplane of maximum
margin, it considers them as class scores and induces the
correct class to have a higher score than those of the other
classes. In addition, it is considered as very efficient for a
binary classification.

In order to decrease the false positive rate and improve
our experiment results, we decided to use the SVM classifier
instead of the softmax. Series of experimentswere carried out
while varying several parameters to determine the most suit-
able classifier. Hence,we found that the linear SVMwithC �
0.1 is themost appropriate for the classification of pulmonary
nodules. As shown in Table 3, the accuracy of the system
was enhanced from 91.62–91.99% and from 91.46–91.84%
for [VGG16, VGG19] and [VGG16]2 architectures, respec-
tively, when we used the linear SVM classifier. However, it
was decreased from 91 to 90.58% for the [VGG19]2 struc-
ture when we used the SVM. We can, therefore, report
that, in some cases, bilinear CNN may be more efficient for
nodule classification than when coupled with an SVM.Addi-
tionally, the sensitivity was enhanced from 91.94–93.28%,
from 91.73–92.29% and from 91.81–91.85% for [VGG16]2,
[VGG19]2 and [VGG16, VGG19] architectures, respec-
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Table 5 Classification
performances of BCNN models
with various classifiers

BCNN Model Classifier Sensitivity
(%)

Specificity
(%)

F1-score (%) Accuracy (%) FP/scan

[VGG16]2 RF 91.89 88.70 92.69 90.74 0.113

KNN 91.81 87.18 92.15 90.11 0.128

AdaBoost 92 86.50 92 89.95 0.135

SVM 93.28 89.36 93.52 91.84 0.081

[VGG19]2 RF 90.27 87.17 91.49 89.16 0.128

KNN 90.55 84.68 90.77 88.38 0.153

AdaBoost 91.48 85.29 91.36 89.17 0.147

SVM 92.29 87.66 92.52 90.58 0.123

[VGG16,
VGG19]

RF 91.28 89.73 92.74 90.74 0.102

KNN 91.11 87.61 92.40 90.42 0.124

AdaBoost 91.60 87.50 92.17 90.11 0.125

SVM 91.85 92.27 93.76 91.99 0.077

tively, whenwe used the linear SVMclassifier.Moreover, the
FP of the models was decreased from 9.28–8.14% and from
8.63–7.72% for [VGG16]2 and [VGG16, VGG19] architec-
tures, respectively, with the SVM classifier. However, it was
increased from 10.18 to 12.29% for the SVM-[VGG19]2

structure. In addition, the ROC curve demonstrated the
outperformance of the [VGG16, VGG19] combination com-
pared to [VGG16]2 and [VGG19]2 architectures achieving
an AUC rate of 95.9% against 94.8% and 94%, respectively.

We noticed that the performance of BCNN [VGG16,
VGG19] with and without SVM excelled over the other
two BCNN structures. The outcomes indicated that a BCNN
model with two different architectures could provide greater
performance. This may be due to a low correlation between
the outputs of feature extractors with different structures.
Thus, this can be effective in increasing the discriminating
ability, leading to more consistent classification accuracy.
Moreover, we compared our results to those of conventional
CNN models as shown in Table 4. Since the bilinear CNN
generates wealthy representations compared to conventional
CNN models, our three BCNN structures presented promis-
ing results and outperformed existing state-of-the-artmodels.

We evaluated the performance of various other classifiers
including RF, KNN and AdaBoost coupled to BCNNmodels
using the testing datasets. The obtained results are summa-
rized in Table 5.

As shown in Table 5, the best performances were obtained
with the SVM classifier. As shown in Table 5, the pro-
posed SVM-[VGG16]2 model, surpassed the RF classifier
by 1.39%, 0.66%, 0.83% and 1.1%, in terms of sensitiv-
ity, specificity, F1-score and accuracy, respectively, and the
FP rate decreased by 3.16% which presented a significant
improvement with (p<0.01) in a one-tailed z-test. Themodel
also surpassed the KNN and AdaBoost classifiers by 1.47%
and 1.28%, respectively, in terms of sensitivity, by 2.18%

and 2.86% in terms of specificity, by 1.37% and 1.52%
in terms of F1-score and by 1.73% and 1.89% in terms
of accuracy, respectively. This also represented a signifi-
cant improvement with (p<0.05) in a one-tailed z-test for
accuracy and specificity, but there is no significant improve-
ment with (p<0.05) for the sensitivity and F1-score. FP rate
decreased by 4.66% and 5.36% for KNN and AdaBoost
classifiers, respectively, and this also presented a significant
improvement with (p<0.01) in a one-tailed z-test. Again,
the proposed SVM-[VGG19]2 model outperformed the RF,
KNN and AdaBoost classifiers in terms of sensitivity by
2.02%, 1.74% and 0.48%, respectively, which presented a
significant improvement with (p<0.05) over the RF and
KNN classifiers, but there is no significant improvement over
the AdaBoost classifier (p<0.05) in a one-tailed z-test. It
also outperformed them in terms of specificity by 0.49%,
2.98% and 2.37%, respectively, F1-score by 1.03%, 1.75%
and 1.16%, respectively, and accuracy by 1.42%, 2.2% and
1.41%, respectively. FP rate decreased by0.5%, 3%and2.4%
over RF, KNN and AdaBoost classifiers, respectively. This
is represented as significant improvement with (p<0.01) in
a one-tailed z-test. Similarly, the proposed SVM-[VGG16,
VGG19] model outperformed the RF classifier by 0.57%,
2.54%, 1.02% and 1.25%, in terms of sensitivity, speci-
ficity, F1-score and accuracy, respectively, and the FP rate
decreased by 2.48% which presented a significant improve-
ment with (p<0.01) in a one-tailed z-test. Also, the proposed
model surpassed theKNNandAdaBoost classifiers by0.74%
and 0.25%, respectively, in terms of sensitivity (no signifi-
cant improvement (p<0.05) in a one-tailed z-test), by 4.66%
and 4.77% in terms of specificity (significant improvement
(p<0.01) in a one-tailed z-test), by 1.36% and 1.59% in
terms of F1-score (no significant improvement (p<0.05) in a
one-tailed z-test) and by 1.57% and 1.88% in terms of accu-
racy, respectively,whichpresented a significant improvement
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over the AdaBoost classifier (p<0.05). FP rate decreased by
4.68% and 4.78% for KNN andAdaBoost classifiers, respec-
tively, and this also presented a significant improvement with
(p<0.01) in a one-tailed z-test.

Conclusion

In this paper, we proposed a lung nodule classification sys-
tem using three BCNN models, followed by a linear SVM
classifier. BCNN models are built using two of the best-
known pre-trained CNNs, which are VGG16 and VGG19.
The fine-tuning process has been performed for the pro-
posedmodel’s adjustments. Aiming to improve classification
results, we trained the SVM classifier instead of the original
softmax.We investigated various SVM types to find the most
appropriate one for our classification problem. Experimen-
tal results indicated that the BCNN architecture combining
VGG16 and VGG19 networks, followed by the linear SVM,
outperformed the other two architectures in terms of accu-
racy and AUC. The performance results were very promising
and surpassed those of existing works.

Limitations and future works

The bilinear pooling is high dimensional, and it generally
contains several thousand features,which often requiresmas-
sive calculation and storage costs and makes it impractical
for further analysis. This is the main drawback of the bilin-
ear CNN implementation. In the future, we plan to overcome
this limitation by adopting the idea proposed in [24] allowing
to compact the bilinear CNN by polynomial kernel approx-
imation of random projection of the bilinear descriptor or
by kernel approximation of Random Maclaurin and Tensor
Sketch, as proposed in [25]. Moreover, it has turned out that
the BCNN model cannot handle the information inherent in
different convolutional layers [26]. Thus, we propose in the
future work to overcome this limitation by using the bilinear
pooling function in the outputs of cross-convolutional layers
of a single CNN. This is inspired by the forward propaga-
tion of ResNet [27] architecture, which is characterized by
cross-layer connections.
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