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Abstract.
BACKGROUND: Lung cancer is the most common cancer in the world. Computed tomography (CT) is the standard
medical imaging modality for early lung nodule detection and diagnosis that improves patient’s survival rate. Recently, deep
learning algorithms, especially convolutional neural networks (CNNs), have become a preferred methodology for developing
computer-aided detection and diagnosis (CAD) schemes of lung CT images.
OBJECTIVE: Several CNN-based research projects have been initiated to design robust and efficient CAD schemes for
the detection and classification of lung nodules. This paper reviews the recent works in this area and gives an insight into
technical progress.
METHODS: First, a brief overview of CNN models and their basic structures is presented in this investigation. Then,
we provide an analytic comparison of the existing approaches to discover recent trend and upcoming challenges. We also
introduce an objective description of both handcrafted and deep learning features, as well as the types of nodules, the medical
imaging modalities, the widely used databases, and related works in the last three years. The articles presented in this work
were selected from various databases. About 57% of reviewed articles published in the last year.
RESULTS: Our analysis reveals that several methods achieved promising performance with high sensitivity rates ranging
from 66% to 100% under the false-positive rates ranging from 1 to 15 per CT scan. It can be noted that CNN models have
contributed to the accurate detection and early diagnosis of lung nodules.
CONCLUSIONS: From the critical discussion and an outline for prospective directions, this survey provide researchers
valuable information to master the deep learning concepts and to deepen their knowledge of the trend and latest techniques
in developing CAD schemes of lung CT images.

Keywords: CAD of CT images, deep learning, lung cancer screening, lung nodule detection, lung nodule classification

1. Introduction

Today, lung cancer is considered the leading cause of cancer deaths worldwide. According to the
American Cancer Society for 2020, about 228,820 new cases will be diagnosed and approximately
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135,720 deaths are expected [1]. The five-year survival rate could be increased from 18.6% to 56%
when lung cancer is diagnosed and localized at an early stage [2]. However, more than 60% of patients
are diagnosed at a metastatic stage [1].

A nodule is a small soft tissue growth (<30 mm) in the lung parenchyma [3]. It corresponds to an
opaque lesion on the images. It is considered the main radiological feature of an early-developing lung
cancer [4]. The malignancy of a nodule is related to its characteristics: diameter, density, contours and
content.

Computed tomography (CT) is the imaging modality generally used to detect and diagnose lung
nodules as well as to characterize them and to control their progress, thanks to its high resolution
and its low cost. Computer-Aided Detection (CADe) system can overcome these deficiencies by
extracting valuable and relevant information on nodules, and can assist radiologists to establish the
correct diagnosis

In CAD systems, we distinguish Computer Aided Detection systems (CADe) that detect potential
lesions and discriminates nodules and non-nodules such as consolidations and, blood vessels; and
Computer Aided Diagnosis systems (CADx) that aim to characterize lesions (type, progression, stage)
and to classify them as malignant and benign [5]. Some CAD systems proceed simultaneously as
CADe and CADx by identifying suspicious nodules and quantitatively or qualitatively evaluating the
selected lesions.

Actually, CAD systems have become essential for the overall assessment and early diagnosis of lung
nodules while minimizing the time required for radiologists to interpret CT images. These systems
have greatly improved the health care sector’s efficiency and performance, specifically the lung cancer
screening process. According to the global CAD market, the estimated compound annual growth rate
for the year 2025 is 11.6% worldwide and 23% of CAD systems will be intended for lung cancer
detection [6, 7].

Traditional CAD systems are based on handcrafted feature extraction engineering such as texture and
shape analysis. Hand-crafted features come from direct visual experience and may not be useful because
they are abstract and constructed from poor quality of medical image samples. Besides, they suffer
from a deficiency of uniformity, normalization, universality, and require an excessive time-consuming.

Recently, researchers have paid a lot of attention to deep learning methods, especially to Convo-
lutional Neural Networks (CNNs), because of their accurate results and time-saving compared to
conventional CAD systems. CNN method has found a solution to various learning problems such as
the extraction of relevant features, object recognition, accurate detection, and so on. It has sufficiently
proven its performance in different fields, including medical image analysis.

This paper reviews the latest CNN methods used in the development of CAD systems for the
segmentation, the detection and the classification of lung nodules in 2D/3D CT images. The state
of the art comes mainly from recent articles, selected from various databases such as PubMed, IEE
Explore and Science Direct from April 2016 to February 2020.

2. CNN overview

Convolutional Neural Network (CNN) is a basic category of deep neural networks which are denoted
as a branch of machine learning techniques based on regularized multilayer networks and which are all
subtypes of artificial intelligence systems. The CNN model is mainly characterized by its capacity to
gather features from several ascertained data, especially from images. Furthermore, it uses a restricted
direct supervision in order to maximize the classification, also CNN is already able to auto-define
unknown characteristics [8]. The CNN architecture is built by a stack of distinct layers aiming to extract
relevant information directly from the input data sets without resorting to hand-crafted engineering
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Fig. 1. An overview of a typical convolutional neural network (CNN) structure and the training process.

processes thanks to a differentiable function. As shown in Fig. 1, convolutional layer, pooling layer,
fully connected and Softmax layers constitute the principal components of a typical CNN.

– Convolution layer represents the key component of the CNN architecture. Convolution is a math-
ematical operation where an element-wise product is achieved between a filter (kernel) and the
input tensor of the image, thus generating its feature map [8, 9]. It represents the fundamental
process for automatically extracting the deep features of images. Feature maps resulting from
several convolution operations will be then processed through the pooling layer.

– Pooling layer is a non-linear form of subsampling that reduces the spatial dimension of the input
while retaining relevant features [8, 9]. It is therefore, recommended to insert a pooling layer
between two consecutive convolutional layers of a CNN architecture in order to reduce over-
learning and numbers of parameters in the network. Max pooling is the most commonly used type
of pooling formulation in CNN that retains the maximum value of each feature pattern [9, 10]. It
is important to note that throughout the convolution and pooling phases, it is possible for pixels
to have negative values. An activation function to reset all negative pixels to zero is then required.
Rectified Linear Unit (ReLU) is the most commonly used activation function in the literature [10].

– Fully connected layers, consisting of multiple hidden layers, are mainly used at the end of the CNN
structure for classification. Final output feature maps are typically flattened, meaning transformed
to a vector array, and connected to fully-connected layer(s). Each neuron of a hidden layer is
linked to all neurons of another layer while adjusting its weights during the execution of network
training [9]. The last fully connected layer is often followed by a non-linear function, Softmax
function, which normalizes the actual output values to the target class likelihoods.

CNN’s type essentially depends on its convolution kernels. It can be either a 2D-CNN if its convolu-
tion kernels are two-dimensional or a 3D-CNN if the kernels are three-dimensional [11]. Furthermore,
it is important to mention that a small amount of relevant information included in the input data can
considerably decrease the performance of a CNN, and inversely.

2.1. CNN training process

CNN training process is a supervised learning that consists of optimizing internal parameters by max-
imizing, as far as possible, the consistency between network predictions and ground truth annotations
in the training dataset [12]. Back propagation is the most commonly used algorithm for CNN training,
whose loss function and gradient descent optimization algorithm ensure self-adjustment of learning
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Fig. 2. A routine check of the Loss for recognizing overfitting during the training iteration [12].

parameters and updating of neural weights [12]. Cross entropy is the frequently used loss function
while Adam, RMSprop and SGD [13, 14] are the commonly used gradient descent algorithms that
represent hyperparameters to be determined according to a desired assignment.

The database is generally divided as follows: one large dataset for training the network (70%), a
validation set to evaluate the network while training (20%) and a test set to evaluate the overall and final
performance of the CNN (10%), although there are some alternatives, as a cross-validation process
which used for training on a small amount of dataset [12].

For cross-validation technique, the training dataset is again randomly divided into equivalent k
subsets. Only one sample is retained as a validation dataset and the remaining k-1 sets are used for
training [15]. This process is repeated k times with different subset for validation. K-fold Cross-
validation is one of the excellent methods commonly used to avoid over-adjustment and to select
optimal hyperparameters in order to increase CNN’s accuracy.

2.2. Over fitting

Over fitting denotes the situation on which the number of CNN parameters far exceeds the number
of features in the input images [10], in a way that stores irrelevant noise rather than learning the signal
(Fig. 2). As a result, the accuracy of CNN model decreases due to the high variance during the validation
and test phases. Data augmentation and transfer learning are the most commonly used techniques to
provide effective CNNs training on a restricted dataset and to solve the over fitting problem [10, 12].

Data augmentation is a powerful solution to overcome this discrepancy. It consists in applying
various geometric transformations to the training dataset such as rotations, translations, zooming in
and out, horizontal and vertical flipping, so that the CNN will consider them as new data [16]. In
addition, Generative Adversarial Network (GAN), which is a type of trend in generative modeling,
has become highly recommended as an interesting strategy for augmenting medical data [12, 16]. It
consists of generating artificial images that approximate the original database while retaining similar
characteristics.

Transfer learning is an effective paradigm and interesting strategy to learn a network in a small
dataset [12]. It consists in training a source model on a big database as ImageNet [16] and transferring
its knowledge on other task problems. The fundamental principle of transfer learning is to share generic
characteristics learned from a large dataset between dissimilar datasets [16]. This portability of generic
characteristics is an asset in favor of deep learning in the medical imaging field, which suffers from
a lack of sufficient data. Today, there are several CNN models with different preformed structures
on ImageNet challenge dataset that are available to the public of which the most used in the medical
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field are AlexNet [17] VGG [18] Resnet [19] and Inception [20]. In practice, the fine-tuning of these
pre-trained architectures is the most common method in medical imaging analysis [12].

The fine-tuning process is a technique allowing preformed weights to be shared and used for the
initialization of a new network [12, 16]. To do so, all convolution layers or last few layers, in addition
to the fully connected layers, can be fine-tuned and re-trained with the new given data sets, while
the first layers can be frozen to retain relevant generic features such as edges, textures, morphologies,
intensities, etc. In this way, fine-tuned features will progressively grow more specific to the new dataset
[12, 16].

It is worthy noted that there are various methods to avoid overfitting other than data augmentation
and transfer learning like batch normalization and dropout, but these are not the subject of our review.

3. CAD system design

In most of the works selected in this literature review, a deep learning-based CAD system consists of
five main stages: data collection, data pre-processing, image segmentation (lung parenchyma segmen-
tation and/or nodule segmentation), candidate nodules detection and benign-malignant classification.

3.1. Data collection

Various public databases were found allowing worldwide researchers to have access to a wide
variety of data sets for the development of efficient CAD systems. Most of the public databases used
by researchers are:

– The Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI)
includes 1018 thoracic CT scans, collected during lung cancer screening in the USA, having 7371
lung nodules with 2669 lesions as nodules ≥3 mm along with their associated descriptive XML
files [21, 22]. All nodules were labeled by four skilled radiologists who provided a subjective
assessment of calcification, speculation, texture, and internal structure to describe the likelihood
of malignancy. In addition, all information regarding the diagnosis of each nodule, such as surgical
resection, two-year radiological review, and biopsy was archived and placed in the database. It
is worth pointing out that, this variety of annotated data forms the suitable basis of most recent
publications relevant to the training of CNNs for the detection and classification of lung nodules.

– The LUNA16 dataset that was created by the 2016 LUng Nodule Analysis challenge. It is a
reformatted version of the LIDC-IDRI database containing 888 CT scans in Meta Image format
(mhd/raw) format with a resolution of 512 × 512 pixels and a slice thickness of less than 2.5 mm.
The LUNA16 database includes all nodules larger than 3 mm annotated by at least 3 out of 4
radiologists, resulting in 1186 nodules. Non-nodules and nodules (<3 mm and > = 3 mm) annotated
by less than 3 radiologists are treated as non-nodules [23].

– The Early Lung Cancer Action Program (ELCAP) database, available since 2003 and includes
50 datasets of Low-Dose CT (LDCT) scans with a 1.25 mm slice thickness from a lung cancer
screening-related study. The locations of non-nodules and nodules between 2 mm and 5 mm in
diameter, identified by expert radiologists were provided. [24].

– The 2009 Automated Nodule Detection Database (ANODE09) contains 55 CT scans with a
resolution of 512 × 512 pixels and a slice thickness of 1.0 mm, of which only 5 scans are annotated
by medical experts. In these scans, 39 nodules and 31 non-nodules were marked and can be used
for the training of CNN or for the optimization of its parameters. The 50 unlabeled CT scans are
only intended to test the algorithms [25].
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Fig. 3. Pre-processing steps for ROI nodules selection [26].

Fig. 4. Preprocessing of CT lung image. a) Original image. b) Image enhanced through Gabor filter [27].

3.2. Data pre-processing and region of interest (ROI) selection

It is sometimes necessary to proceed to some pre-processing steps before transmitting the benchmark
of candidate nodules to CNNs (Fig. 3) [26].

3.2.1. Data pre-processing
Computed Tomography uses X-rays to explore the lungs. To prevent the side effects of radiation,

radiologists should reduce the radiation dose, which decreases the image quality and generates noises.
Thus, a preprocessing phase is essential to improve the quality of raw CT images and to reduce noises
and artifacts to facilitate the nodule detection. Figure 4 illustrates an example of image preprocessing
using Gabor filter [27].

3.2.2. Region of interest (ROI) selection
To generate ROI dataset for the training of a 2D CNN model, candidate nodules must be cropped

around their (x, y, z) coordinates [28]. In addition, multiple 2D patches of different sizes can be centered
on the location of each candidate and extracted from various plane orientations. As lung nodule is a
small area in the whole CT image, it is easy to crop multiple views of a same nodule, thus providing
rich information. Details and specific information about the lung nodules are provided through small
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Fig. 5. 2D/3D dataset generation [28].

patches, while information around the nodal tissue is provided through large patches [28]. It is possible
to generate 3D patches to train 3D CNNs by grouping all the 2D ROIs of the same nodule. Figure 5
illustrates an example of a 2D and 3D dataset selection.

3.3. Image segmentation

Segmentation of the lung parenchyma or nodules is a fundamental technique aiming to simplify and
facilitate both the quantitative assessment of clinical parameters such as size, shape, location, density,
texture and the CAD system [12, 29]. However, some lung nodules extraction is challenging because
of their intensity, location or texture such as juxta-pleural (nodules directly attached to the pleura’s
surface), juxta-vascular (nodules connected to vessels) and ground glass nodules, as shown in Fig. 6.

Deep learning-based segmentation is considered as a pixel-by-pixel classification technique for
calculating organ probability [12, 29]. This technique is consisting of two phases: the first one is the
generation of the probability map using CNN and image patches, and the second ensures the refinement
based on the general background of images and the probability map [12]. U-Net [30] is the most widely
used architecture for medical image segmentation and it significantly improved the performance of
this process. It consists of a contraction way to capture the anatomical structure and a symmetrical
expansion way for an accurate localization [31]. Despite the difficulty of capturing both the global and
local context, U-Net has allowed the segmentation process to integrate a spatial context at multiple
scales. Consequently, it is able to be trained end-to-end from a limited amount of training data [31].
Table 1 presents a brief overview of several works based on deep learning for image segmentation
[32–39].

3.4. Candidate nodule detection and false positive reduction

Lung nodule detection and false positive reduction are the two most important approaches to ensure
an early diagnosis and reliable assessment of lung cancer [29]. The candidate nodule detection is
the principal phase in a CADe system. It consists of extracting all suspicious lung nodules from
the parenchyma by removing undesirable structures like alveoli, blood vessels, bronchi, ribs, etc.
However, this task is difficult because of the various features (density, shape, texture . . . ) of nodules.
The sensitivity is generally used to evaluate the performance of the algorithm detection. An efficient
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Table 1
Summary of deep learning architectures for Lung/Nodule segmentation

Ref Database (Trainset/
Testset)

Organ Architecture Sen DSC PPV

Usman et al. [32] LIDC-IDRI (356
nodules for
training, 45 for
validation and
492 for testing)

Nodule 3D Deep Residual
U-Net

91.62% 87.55% 88.24%

Wang et al. [33] LIDC-IDRI (450
nodules for
training, 50 for
validation and
393 for testing)

Nodule Multi-View
Convolutional
Neural Networks
(MV-CNN)

83.72% 77.67% 77.58%

Roy et al. [34] LIDC-IDRI (220
CT images for
training and 63
images for
testing)

Nodule encoder-decoder
CNN + Level set

– 0.93 –

Huang et al. [35] LUNA16 (5040
nodules for
training, 1411 for
validation and
1458 for testing)

Nodule Fully Convolutional
neural Network
(FCN).

91.4% 0.793 –

Khosravan et al. [36] LUNA16 (1186
nodules evaluated
with 10-fold
cross validation)

Nodule 3D deep multi-task
CNN

98% 0.91 –

Mukherjee et al. [37] LIDC (training sets
were 15231 solid
nodules and 9675
part-solid
nodules,
validation sets
were 93 solid
nodules and 35
part-solid
nodules)

Nodule U-Net
FCN + Graph cut

– Solid = 0.69
Part-
solid = 0.65

–

Liu et al. [38] LUNA16 (2134
images for
training, 711 for
validation and
711 for testing)

Nodule Mask R-CNN 79.65% – –

Xu et al. [39] Private (121728
image patches
evaluated with
8-fold cross
validation)

Lung parenchyma k-means
clustering + CNN

98.8% 0.968 99.5%
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Fig. 6. Different categories of lung nodules: (a) Solid & isolated nodule, (b) Ground Glass Opacity (GGO) nodule, (c) Mixte
nodule (d) Juxta-pleural nodule and (e) Juxta-vascular nodule.

(a) (b)

Fig. 7. Sample of candidate nodules: (a) True nodules, (b) False nodules, from the LUNA16 database [23].

CADe system provides a high sensitivity rate, which can be expressed as:

Sensitivity = TP

TP + FN
× 100 (1)

Where TP indicates the rate of True Positives and FN indicates the rate of False Negatives. A TP
indicates that the nodules are correctly identified and a FN indicates that the nodules are incorrectly
rejected.

False Positive (FP) reduction is an important step that focuses on identifying the true nodules from
all candidates and rejecting the pseudo nodules to increase the performance and efficiency of a CADe
system (Fig. 7). The major challenge in the development of CADe is to minimize the FP rate as much
as possible without affecting the efficiency of the system, while maintaining a high sensitivity rate.
Thus, intensive research works based on deep learning have been developed in order to improve the
early and automatic detection of pulmonary nodules [29]. In addition to the standard CNN models
dedicated to various recognition tasks, there are numerous models designed specifically for a precise
object detection that have demonstrated outstanding performance in the early and accurate detection
of lung nodules (Table 2).

3.5. Benign-malignant classification (CADx)

The automatic and accurate distinction between benign and malignant nodules presents a great
challenge that has been addressed in several research studies to support the decision-making [11, 40].
However, the classification of lung nodules is still quite difficult due to the diversity of statuses and the
complexity of the characteristics of each nodule type [70]. In addition, it is important to know that not
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all lung nodules are malignant tumors and cannot all become cancers [11]. Thus, given the numerous
images to be daily analyzed by the radiologist and the critical nature of the task, and because of its
self-learning and reliable features generation capabilities, many deep learning-based CADx systems
have been proposed in the literature for the automatic classification and early diagnosis of pulmonary
nodules (Table 2).

4. Selected works

The articles presented in this work were selected from the following databases: Science Direct, IEE
EXplore and PubMed. The most relevant keywords used during our searches are: Nodule detection;
Lung cancer; Lung segmentation; CAD for lung nodule detection; CT image analysis, CNN for lung
nodules classification . . . Initially, we selected 108 articles. Then, we filtered them according to their
pertinence to the subject and based on statistical measures such as sensitivity; accuracy; FP rate;
precision and time-consuming. This gave us 73 articles up to February 2020. About 60% of preselected
articles are from the last two years.

In 2020, Usman et al. [32] proposed a new approach for the 3D segmentation of lung nodules on CT
scans. The proposed approach had two stages; the first was based on a Deep Residual U-Net model
allowing the binary segmentation of the lung nodule. Then, the segmented mask was processed by the
adaptive ROI algorithm which enables to locate the ROI on the following slice. All the 2D segmented
masks of the nodule were concatenated, giving thus a volumetric segmentation result. On second stage,
two other 2D patch-wise segmentations of the nodule were achieved on coronal and sagittal planes
using two extra Residual U-Nets architectures; and as in the first stage, all the 2D segmented masks
of the nodule were concatenated, producing VOIs on both the coronal and sagittal axes. Finally, a
consensus model was used to process VOIs of the nodule provided by the three planes and to generate
the final 3D segmented nodule. The proposed method was evaluated on 12821 images containing 893
nodules from LIDC-IDRI database and achieved a Dice score, a sensitivity and a Positive Predictive
Value (PPV) of 87.55%, 91.62% and 88.24%, respectively.

Masood et al. [26] proposed a new CAD system for the early detection and classification of lung
nodules on CT scans based on an enhanced multidimensional Region-based Fully Convolutional Net-
work (mRFCN). First, Authors used a VGG16 architecture ameliorated with a deconvolutional layer
as a Faster RCNN model for candidate nodules detection. The accurate ROI selection of lung nodules
was provided through a new multi-Layer fusion Region Proposal Network that successfully selected
nodules of various positions, shapes and locations. Finally, a position-sensitive score map was used
for the malignant and benign nodule classification step. The proposed system was trained using leave-
one-out cross validation method and evaluated on 892 images from the public LIDC-IDRI database.
Performance of the proposed CADe system achieved a sensitivity of 98.1% with a FP rate of 2.19 per
scan, while the proposed CADx system achieved an accuracy rate of 97.91% with an AUC of 98.13%.

In 2019, Monkam et al. [41] developed an ensemble learning of five 3D CNNs with different path
sizes to discriminate lung micro-nodules (with diameter <3 mm) and non-nodules from CT images.
The authors implemented various fusion strategies (ELM, majority voting, and operator, averaging
and auto-encoder) to integrate the five 3D-CNN outputs and construct ensemble models. The Extreme
Learning Machine (ELM) strategy presented the best performance results for nodule classification.
The proposed system was evaluated on 34494 3D images containing 13 179 micro-nodules and 21
315 non-nodules from the LIDC-IDRI database. It achieved a sensitivity of 96.57%, an accuracy of
97.35% and F-score of 96.42%.

Winkels et al. [42] proposed a new CNN architecture using 3D roto-translation group convolutions
(3D G-CNNs) to improve CNN’s traditional performance in reducing false lung nodules. The proposed
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architecture, which based on progressive data augmentation, gave performances that resemble those
of pre-trained CNNs with 10× more data without additional setting, providing outstanding efficiency.
It was more sensitive to malignant nodules. Performance system was evaluated using about 30000
datasets and 8889 datasets for training and validation, respectively, from NLST database and about
8582 datasets from LIDC-IDRI database for testing. The system achieved a sensitivity to malignant
nodules of 77% and a FROC rate of 88% with only 3 epochs that gained training time.

Roy et al. [34] proposed to combine a Deep Learning architecture with level set algorithm to segment
lung nodules from 2D CT scans. The authors implemented the method proposed by Shen et al. [43] to
extract lung parenchyma and they integrated them into an encoder-decoder CNN to perform a coarse
segmentation of nodules. Then, level set algorithm was used to reduce false positives. From the output
of CNN, a centroid of each detected object was calculated and a bounding box around the centroid
were initialized the level sets. Performance system was evaluated on 220 CT images for training and
63 images for testing from LIDC-IDRI database. It achieved dice scores of 93% for solid nodules and
of 90% for juxtapleural nodules with an error of 11% and of 15% respectively. The proposed system
proved its efficiency to segment lung nodules compared to literature methods.

Xie et al. [44] developed a novel and automated method based on 2D CNN to detect lung nodule
and to reduce false positives. An improved faster R-CNN which integrated a deconvolution layer, to
extend the feature map, with two networks for region proposal to fuse the relevant information from
the bottom layer, were used. Three sub-networks models (feature extraction network; region proposal
network; ROI classifier) were trained and their results were fused to obtain the candidate nodules.
Thereafter, a candidate augmentation was used and a boosting CNN model was trained to minimize
false nodules in which 3 models are sequentially trained, and each handle harder was mimed than last
model. Finally, the outputs of these networks were merged, and the result of the classification was
voted out. The algorithm was trained and tested on 888 CT scan from the public LUNA16 database.
As results, the sensitivity of 86.42% for nodules detection, and 73.4% and 74.4% for false positive
reduction at 1/8 and 1/4 FPs/scan, respectively, with 10-fold cross validation were achieved.

In 2018, Monkam et al. [45] developed three CNN architectures with 1, 2 or 4 convolutional layers
to discriminate lung micro-nodules (with diameter <3 mm) and non-nodules from CT images with
3 different patch sizes (16 × 16, 32 × 32 and 64 × 64). The proposed CNNs with appropriate depths
were evaluated on the LIDC-IDRI database and proved their effectiveness to distinguish between lung
micro-nodules and non-nodules. The model with 2 convolutional layers, in case of 32 × 32 patches
size, presented the best performance. The results, by fivefold cross-validation, showed a sensitivity, an
accuracy, an AUC and an F-score of 83.82%, 88.28%, 0.87 and 83.45%, respectively.

Ali et al. [10] developed and validated a Reinforcement Learning (RL) model based on CNN for early
lung nodules detection. The authors normalized the datasets by calculating the Z score for each image to
reduce the effects of artifacts and different contrast values between CT images. The Data normalization
was helpful to fine-tune the input information fed into RL model. Thus, a data augmentation of 888
CT scan from publicly LUNA16 database was made. As a result, a sensitivity of 99.2%, a specificity
99.1% and a Positive Predictive Value (PPV) of 99.1% were achieved for training step. For test step,
the model achieved a sensitivity of 58.9%, a specificity of 55.3% and a PPV of 54.2%.

Masood et al. [46] developed a system based on Deep Fully Convolutional Neural Network (DFCNet)
to detect and classify the pulmonary nodules in thoracic CT images. An initial nodules classification
into 2 classes (nodules vs non-nodules) was done. Then, the authors used a data augmentation for the
nodule class to improve the training of the DFCNet model. A second classification into 4 classes was
made to show the stage of nodules. The proposed CAD was evaluated on various publicly databases
(LIDIC-IDRI, LUNA16, RIDER and Lung CT-Diagnosis) and the results yielded a sensitivity of
83.91%, a specificity of 89.32% and an average FP rate of 2.9 for 2669 nodules from LIDIC-IDRI
database.
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Kaya et al. [47] proposed a cascaded classification method for predicting lung nodules malignancy.
The authors used a CNN model (AlexNet architecture) to automatically extract features from nodules.
Then, a hand-crafted feature extraction was made and a cascaded classifier was used. Handcrafted and
Deep features were combined to train various classifiers (SVM, kNN, Adaboost, and Random Forest).
The proposed method was validated on LIDC-IDRI database and the best performing cascaded classifier
was showed an accuracy of 84.70%, a sensitivity of 67.37% and a specificity of 95.46%.

Kido et al. [48] developed a CAD system for the detection and classification of lung nodules based on
CNN and R-CNN. In the primary phase, the authors used a pre-trained Alexnet architecture to extract
features of 1304 nodules, obtained with data augmentation. Then, these features were used to train a
multiclass SVM that classified malignant and benign nodules. The classification results achieved an
accuracy of 95.2% without data augmentation and 99.4% with data augmentation. In the second phase,
the authors applied an R-CNN framework to detect lung nodules from CT images. R-CNN is a famous
object detector based on selective search algorithm that produce bounding boxes and region proposals.
Every proposal passed through to a CNN model which contain on its final layer an SVM classifier.
The SVM indicated that if the region was a lung nodule and marked its corresponding bounding box.
The proposed method proved its efficiency to correctly detect various types of nodules especially the
juxtapleural nodules.

Yuan et al. [49] used hybrid descriptors to classify and distinguish different nodule types through a
multi-class SVM. The authors extracted statistical and geometric features from multi-view multi-scale
CNNs and Fisher Vector (FV) encodings, respectively, to consist the hybrid descriptors. They selected
744 CT scans (1738 nodules and 1000 non-nodules) from LIDC-IDRI database, and 421 nodules from
ELCAP database (used for the test) to evaluate the proposed system. The latter achieved an overall
classification rate of 93.1% and 93.9% for LIDC-IDRI and ELCAP databases respectively.

Li et al. [50] developed a new CNN-based CAD to detect lung nodules. The authors started by
applying a fuzzy mask to enhance images. Then, they proposed 3 different CNNs with different input
sizes to detect candidate nodules and an Ensemble of CNNs (E-CNNs) for FPs reduction. To evaluate
the proposed system, authors used a 5-fold cross-validation with a free-response receiver-operating
characteristic for the test of 154 scans from the publicly available JSRT database. The system showed
a sensitivity of 94% and 84% with a FP/image of 5 and 2, respectively.

Silva et al. [51] developed a CNN architecture ameliorate by a Particle Swarm Optimization
method for nodule classification. The PSO algorithm was very helpful for optimizing the CNN hyper-
parameters. A total of 16157 nodule candidates were selected from the public LIDC-IDRI database
to evaluate the performance of the proposed CNN scheme. The experiment showed a sensitivity of
92.20%, a specificity of 98.64%, an accuracy of 97.62% and an AUC of 0.955.

In 2017, Hamidian et al. [52] proposed to train a 3D CNN with selected Volumes Of Interest (VOI)
to automatically detect lung nodules from CT scans. The authors converted the 3D CNN into a 3D
Fully Convolutional Network (FCN) that efficiently generated the score map of all volume. In addition,
the FCN scheme was performed to generate negative examples for the training of a new discriminant
CNN. The proposed method was validated on 534 CT scans from publicly available LIDC database
and the system reached a sensitivity and a FP rate of 80% and of 15.28/scan, respectively.

Fu et al. [53] proposed to combine thresholding followed by morphological operations with a growing
region method, both for lung segmentation and for candidate nodule detection. The authors trained 3
CNNs using 3 different data sets and hand-crafted features were assembled to train an SVM classifier
in order to reduce FPs. Performance system was evaluated on 1366 nodules from public LIDC database
and reached a precision of 90.90% with a PF rate of 4 per scan.

Wang et al. [33] developed a Multi-View Convolutional Neural Networks (MV-CNN) for nodule
segmentation in CT scans. The proposed architecture had three offshoots including six convolution
layers to extract deep features of transversal, frontal and sagittal representation of the image. At the
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end, the 3 CNNs were fused in a fully connected layer to predict the nodule area. The proposed method
proved its efficiency to segment several nodule types such as juxta-pleural, cavitary, and non-solid
nodules. The system was validated on 893 nodules form publicly LIDC-IDRI database and it achieved
a sensitivity of 83.72%, a PPV of 77.58% with an average Dice Similarity Coefficient (DSC) and
Average Surface Distance (ASD) of 77.67% and 0.24 mm respectively.

The previous articles [5, 8, 18, 54, 55] reviewed and discussed other relevant works published before
2016. A comparative analysis is provided through Table 2.

5. Discussion

As CT scan is the gold standard for lung parenchyma exploration, most researchers are interested
in developing CAD systems for chest CT scans. In the last years, deep learning has gained a lot of
attention and several CNN architectures were progressively implemented in CAD schemes for lung
nodule diagnosis. The CNN procedure is essentially characterized by its capacity to acquire from
several ascertained data. Furthermore, it uses a restricted direct supervision in order to maximize the
classification, also CNN is already able to auto-define unknown characteristics. Some methods show
convincing results with either high sensitivity rates or low FP rates, but never both at the same time.
However, the maintenance of a high sensitivity rate associated with a low FP level is necessary to build
powerful CADe systems and to prove their importance in the discrimination of pulmonary nodules.
From the chosen works’ capacity to correctly identify pulmonary nodules using CNN, the sensitivity
varies from 66% to 100% and the false positives range from 1 to 15 per scan. Yuan et al. [49], Wang et
al. [33] and Shen et al. [56] applied a novel deep learning architecture named Multi-Crop CNN, which
allowed to crop nodule regions with salient information from convolutional feature maps and to apply
several max pooling. On the other hand, Tajbakhshet al. [57] realized a general comparison between
MTANNs and different CNN models. MTANNs proved their efficiency, as appropriate methods, to
detect and classify nodules with less-level semantic features. Some researchers used more than one
CNN architecture to improve the performance of the system. Li et al. [50] used an ensemble of CNNs
to reduce false positives as much as possible. Monkam et al. [45], Xie et al. [44] and Monkam et al.
[41] implemented three CNNs with various patch sizes for candidate nodule detection. Hamidian et
al. [52] and Fu et al. [53] applied CNN models for feature extraction and nodule classification, while
Yuan et al. [49] and Teramoto et al. [58] applied CNNs just for feature extraction and they used SVM
classifier to distinguish between nodules and non-nodules.

As the SVM is considered a binary classifier, it was one of the most widely used machine learning
models for the lung nodule classification task [40]. From the selected works, it was found that in some
cases, the combination of handcrafted features with deep features achieved a greater performance than
using one of them with SVM alone or CNN alone. Consequently, some researchers have combined
CNN architecture with SVM classifier to take advantages of both. CNN models were typically used
for automatic feature extraction. Kaya et al. [47] extracted deep features using AlexNet architecture
and combined them with hand-crafted features to train a cascaded classifier. Yuan et al. [49] extracted
statistical features from multi-view multi-scale CNNs and combined them with geometrical features
from FV encodings based on SIFT to train a multi-class SVM. In some hybrid CAD systems, classic
methods were used to segment the lung parenchyma and detect candidate nodules, while the CNN
model was implemented to reduce FPs and discriminate the nodules malignancy [53].

Since CT scans are 3D in nature, 3D CNNs were more appropriate for detecting and classifying
pulmonary nodules than 2D CNNs. Moreover, 3D CNN presented a more adaptable ability to model
spatial information through 3D convolution and 3D pooling operations than 2D CNN. However, 3D
CNNs were little used in the fields of medical image analysis compared to widely used 2D CNN
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architectures. In this review, about 91% of selected deep learning-based CAD works [45, 46] used 2D
CNN architectures.

Only few works of selected papers used 3D CNN for lung nodules detection. Dou et al. [59] applied
three multi-level contextual 3D CNNs for the detection of candidate nodules. Then, they merged the
networks to minimize FPs.

Meanwhile, Ding et al. [63] started with introducing a deconvolutional layer into Faster R-CNN
model to detect candidate nodules. Secondly, they used a 3D CNN to reduce false nodules. Likewise,
Masood et al. [26] introduced an enhanced multidimensional Faster R-CNN with a deconvolutional
layer for candidate nodules detection. As for Anirudh et al. [65], they trained a 3D CNN using a weakly
tagged data from expanded voxel locations. We found that the works discussed above did not attach
importance to the detection of small nodules, which is a difficult and a challenging task. In addition,
it has been proven that CNNs surpass limits of other supervised learning methods, which improves
the performance of lung nodule detection method. We estimate that CNN will reach a great progress
thanks to its advantages.

Compared to conventional CAD methods and other machine-learning techniques, deep learning-
based CAD system has denoted an important advancement in several applications. It was found that
over the past three years, more than 70% of researchers have followed a strong trend towards the
development of CAD systems based on deep learning, especially the CNN. An obvious advantage of
deep learning over conventional machine learning methods is its less reliance on feature extraction
techniques since it can automatically generate relevant features through its convolution and pooling
layers [8, 9]. In addition, it enables to directly learn from input data by means of the back-propagation
process which allows to automatically adjust the weights of layers according to the supervised learning
parameters provided through validated data [8]. In the other hand, the implementation of a traditional
CAD system often requires regular human interventions and consistent engineering to ensure its smooth
operation. In comparison, the CNN has the capability to greatly improve the global detection rate of lung
nodules whenever an output is reported as wrong using iterative self-learning technique [8]. It is worth
noting that the more the iterations increase during the learning stage, the greater the sensitivity of the
system. Additionally, as CNN learns directly from images, there is no need for a nodule segmentation
step, which ensures that most of the information is preserved and nothing is lost [66]. On contrast, in a
traditional CAD system, the segmentation of nodules is a necessary step for the extraction of relevant
features. Thus, important information can be lost especially when an inaccurate segmentation arises
[66].

Feature extraction engineering for the classification of lung nodules in CT images is the subject
of several researches in the machine learning field and plays a predominant and important role in
the construction of classifiers. CAD system based on handcrafted features is essentially reliant on the
expert’s professional knowledge and analysis, although this may be subjective [8, 66]. Besides, it suffers
from a deficiency of uniformity, normalization and universality [33]. Hand-crafted features come from
a straightforward visual experience and usually include a limited number of stringent hypotheses
which are varied, and sometimes cannot be useful since they are abstract and constructed with poor
medical image samples. However, deep features have an impressive representational capacity thanks
to massive training data and a sophisticated structure allowing looking for high-level patterns directly
from the lung nodule images [33]. Moreover, performing a classification with a pre-trained network is
comparatively fast and time-saving [66]. In addition, since the classification process in the CNN is an
end-to-end mechanism and feature calculation is unnecessary, all steps of ROI segmentation, feature
calculation and relevant feature selection are useless, allowing for prompt and efficient development
of the CAD system [66]. To highlight even more the differences in performance between conventional
methods and deep learning methods, previous works are summarized in Table 3 and compared in terms
of accuracy, sensitivity, false positive rate and AUC.
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Table 3
Comparison between machine learning models and deep learning-based models for the detection and classification of lung

nodules

Ref Method Database CADe/ Accuracy Sensitivity FPs/ AUC
CADx scan

Conventional machine learning-based systems
Gupta et al. [67] Three layered

feed-forward
LIDC-IDRI (1390

nodules)
CADe – 85.6% 8 0.957

neural network ELCAP (40
nodules)

– 70.4% 8 0.847

Gong et al. [60] 3D tensor filtering
analysis with

LUNA16 (1186
nodules)

CADe – 79.3% 4 –

Random forest
classifier

ANODE09 (39
nodules)

– 84.62% 2.8 –

Zhang et al. [68] 3D skeletonization
feature with SVM
classifier

LIDC-IDRI (168
nodules)

CADe – 89.3% 2.1 –

Aresta et al. [69] Rule-based
classifier, SVM

LIDC-IDRI (510
nodules)

CADe – 57.4% 4 –

Hussein et al. [70] Clustering and
SVM

LIDC-IDRI CADx 78.06% 77.85% – –

Nishio et al. [71] (1) 3D LBP + SVM
+ TPE

LUNGx challenge
and

CADx 79.7% – – 0.850

(2) 3D LBP +
XGBoost + TPE

NSCLC CADx 82% – – 0.896

Wei et al. [72] Spectral clustering LIDC-IDRI CADx 85.4% – – –

Deep learning-based systems
Masood et al [26]. (1) Enhanced

Faster RCNN
LIDC-IDRI (892

images)
CADe – 98.1% 2.19 –

(2) Position-
sensitive score
map

CADx 97.91% – – 0.981

Xie et al. [44] 2D CNN LUNA16 (888 CT
scans)

CADe – 74.4% 1/4 0.954

Dou et al. [59] Ensemble 3D deep
CNN

LIDC CADe – 92.2% 8 –

Setio et al. [23] 3D deep CNNs LIDC-IDRI CADe – 96.9% 1 –
98.2% 4

Shen et al. [54] 2D CNN LIDC-IDRI CADx 87.14% – – 0.93
Zhu et al. [61] (1) 3D faster

RCNN
LIDC-IDRI CADe – 95.8% 8

(2) 3D CNN with
GBM

CADx 90.44% – – –

Causey et al. [73] 3D CNN LIDC-IDRI CADx 95.2% 94.2% – 0.993

Based on Table 3, we can conclude that the CNN-based CAD system with its advantages repre-
sents the most efficient model for the detection and classification of lung nodules in CT images. The
significant achievement found when using CNN for nodules detection and classification motivates
researchers to utilize it in the precocious analysis of cancers. Nevertheless, we should highlight that
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there are likewise some inconveniences in using deep learning in actual application:

(1) In order to attain higher results comparing to other techniques, Deep learning systems frequently
need a wide number of training data.

(2) The deep learning technique body looks like a black box. We, therefore, have no information
about the ideal methodology to entirely understand its system.

(3) These models are extremely complicated and computationally expensive to train even using the
support of most powerful GPU hardware.

6. Conclusion and prospects

The detection and classification of pulmonary nodules is an open challenge. They are the subject
of much research over the past decade. In this review, we critically described and analyzed the most
common techniques used in CAD systems for the detection and classification of pulmonary nodules
from CT scans. We reviewed the current trends in the detection and classification of this type of nodules.
We have also tried to identify the future challenges and issues that need to be addressed to improve
the performance of CADs. This paper is the result of research work analysis from various scientific
databases published during the last three years, until February 2020.

A brief description of the structure of a CNN-based CAD system has been introduced in this paper:
CAD for lung parenchyma and nodule segmentation, CAD for nodule detection and CAD for nodule
classification. In addition, a general description for each selected work was established with statistical
results to provide a systematic analysis. We have also noticed that LIDC-IDRI database are widely
used by researchers compared to other databases.

While analyzing various research works related the lung nodules detection and classification, we
found out that CAD systems based on deep learning achieve a great progression thanks to its advantages.
The main advantage of CNN lies in its ability to directly learn from a variety of data sources. In addition,
CNN itself can determine unknown characteristics, which maximizes classification with limited direct
supervision.

Overall, some selected works have shown good capabilities in the detection and classification of
pulmonary nodules in CT images. However, there are still many limitations, such as low sensitivity,
high false-positive rate, high time-consuming, low database, low performance rates, etc.

We believe that the accuracy, reliability, and rapid evolution of CAD systems improve both the early
detection of lung cancer and the survival rate of affected patients. Therefore, CAD optimization is
needed for the early diagnosis of lung cancer. This review is useful for researchers and radiologists to
deepen their knowledge of trends and latest techniques in computer-aided diagnosis systems.

In the future, researches on CNN-based CAD systems development for lung nodules detection and
classification should mainly focus on:

• Developing new and more robust technique for nodule detection that increase sensitivity and
maintain a low number of false positives in order to overcome the challenge of using automated
system in daily medical practice.

• Developing a deep learning method able to detect different histological types of lung nodules
(solid, non-solid, mixed) at different locations, (isolated, juxta-vascular or juxta-pleural) and with
diameter ≤3 mm.

• Developing a new CAD system based on powerful feature map visualization techniques to better
analyze CNN’s decision and transfer it to radiologists.

• Fine-tuning a pre-trained CNN model instead of training it from scratch to increase its robustness
and surpass the limitation of annotated medical data.
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• The development of in-depth research on GAN models which, with their varieties and various
advantages, can solve the problem of the lacking medical database and which can give promising
results in the detection and classification of pulmonary nodules.

• Design new CAD systems including two or more of the CNN architectures such as Bilinear CNN
[74], Unet-Vnet-Fast-R-CNN [11], AgileNet [75], to address the problem of overfitting that occurs
during the training process; this will therefore contribute to better and early lung cancer diagnosis.
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