Raziel A. Ordóñez

Raziel A. Ordóñez
Pennsylvania State University | Penn State · Department of Plant Science

PhD

About

22
Publications
6,929
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
596
Citations
Additional affiliations
April 2016 - present
Iowa State University
Position
  • Postdoctoral Research Associated
December 2011 - October 2014
Universitat de Lleida
Position
  • PhD Student
February 2008 - February 2010
International Maize and Wheat Improvement Center
Position
  • Research Assistant

Publications

Publications (22)
Article
Quantifying maize root response to nitrogen (N) fertilizer, soil texture, and weather is crucial to understand complex soil-root-plant processes. We performed a 2-year x 4 locations (sand content range: 5-95%) x N treatments (range: 0 to 336 kg N ha − 1) field experiment in Iowa, U.S. to (1) determine the response of root traits to N fertilizer, an...
Article
Full-text available
This study investigated the differences in microbial community abundance, composition and diversity throughout the depth profiles in soils collected from corn and soybean fields in lowa, USA using 16S rRNA amplicon sequencing. The results revealed decreased richness and diversity in microbial communities at increasing soil depth. Soil microbial com...
Article
Root traits are important to crop functioning, yet there is little information about how root traits vary with shoot traits. Using a standardized protocol, we collected 160 soil cores (0−210 cm) across 10 locations, three years and multiple cropping systems (crops x management practices) in Iowa, USA. Maximum root biomass ranged from 1.2 to 2.8 Mg...
Preprint
Full-text available
The determination of how microbial community structure changes within the soil profile, will be beneficial to understanding the long-term health of agricultural soil ecosystems and will provide a first step towards elucidating how deep soil microbial communities contribute to carbon sequestration. This study aimed to investigate the differences in...
Article
Full-text available
We used the Agricultural Production Systems sIMulator (APSIM) to predict and explain maize and soybean yields, phenology, and soil water and nitrogen (N) dynamics during the growing season in Iowa, USA. Historical, current and forecasted weather data were used to drive simulations, which were released in public four weeks after planting. In this pa...
Article
Full-text available
Aims Root distributions determine crop nutrient access and soil carbon input patterns. To date, root distribution data are rare but needed to improve knowledge and prediction of cropping system sustainability. In this study, we sought to (i) quantify variation in maize (Zea mays) and soybean (Glycine max) roots by depth and environment across Iowa,...
Article
Full-text available
A delayed harvest of maize and soybean crops is associated with yield or revenue losses, whereas a premature harvest requires additional costs for artificial grain drying. Accurately predicting the ideal harvest date can increase profitability of US Midwest farms, but today’s predictive capacity is low. To fill this gap, we collected and analyzed t...
Article
Shallow water table (WT) influences crop growth and production in many major agricultural regions across the globe. We enhanced the APSIM-soybean model to accurately simulate root depth in fields with shallow water tables. We used data from a controlled experiment (Rhizotron facilities) that included root depth observations for nine WT treatments t...
Article
Physiological causes for grain weight determination in maize (Zea mays L.) are not clear. Source–sink relationships during grain filling modulate grain weight, and there are controversies regarding the degree of source limitation that may exist during grain filling. We aimed to analyze likely causes of the responsiveness of maize grain weight to de...
Article
Full-text available
The transmission of HIV can be prevented by the application of neutralizing monoclonal antibodies and lectins. Traditional recombinant protein manufacturing platforms lack sufficient capacity and are too expensive for developing countries, which suffer the greatest disease burden. Plants offer an inexpensive and scalable alternative manufacturing p...
Article
Quantitative measurements of root traits can improve our understanding of how crops respond to soil and weather conditions, but such data are rare. Our objective was to quantify maximum root depth and root front velocity (RFV) for maize (Zea mays) and soybean (Glycine max) crops across a range of growing conditions in the Midwest USA. Two sets of r...
Article
Full-text available
To increase maize (Zea mays L.) yields in drought-prone environments and offset predicted maize yield losses under future climates, the development of improved breeding pipelines using a multi-disciplinary approach is essential. Elucidating key growth processes will provide opportunities to improve drought breeding progress through the identificati...

Network

Cited By

Projects

Project (1)
Project
Physiological understanding of root growth .