Raymond D Blind

Raymond D Blind
Vanderbilt University | Vander Bilt · Department of Pharmacology

Doctor of Philosophy

About

27
Publications
5,578
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,064
Citations
Introduction
The nucleus of every eukaryotic cell contains a pool of phosphoinositide lipids that do not exist in a bilayer structure, but are complexed to proteins. We uncovered a new paradigm explaining how nuclear lipid/protein complexes are regulated—certain lipid kinases and phosphatases remodel lipids while they are bound to non-membrane nuclear proteins, with very unique kinetic properties. This discovery explains how lipid signaling in the nucleus works.
Additional affiliations
June 2015 - present
Vanderbilt University
Position
  • Professor (Assistant)
April 2008 - May 2015
University of California, San Francisco
Position
  • PostDoc Position
January 2008 - December 2009
University of California, San Francisco

Publications

Publications (27)
Article
Full-text available
Nuclear receptors are transcription factors that bind lipids, an event that induces a structural conformation of the receptor that favors interaction with transcriptional coactivators. The nuclear receptor Steroidogenic Factor-1 (SF-1, NR5A1) binds the signaling phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), and our previous crystal str...
Article
Liver receptor homolog-1 (LRH-1; NR5A2) is a nuclear receptor that regulates a diverse array of biological processes. In contrast to dimeric nuclear receptors, LRH-1 is an obligate monomer and contains a subtype-specific helix at the C terminus of the DNA-binding domain (DBD), termed FTZ-F1. Although detailed structural information is available for...
Article
The higher-order inositol phosphate second messengers inositol tetrakisphosphate (IP4), inositol pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) are important signaling molecules that regulate DNA-damage repair, cohesin dynamics, RNA-editing, retroviral assembly, nuclear transport, phosphorylation, acetylation, crotonylation, and ubiqui...
Article
Full-text available
Using an integrated approach to characterize the pancreatic tissue and isolated islets from a 33-year-old with 17 years of type 1 diabetes (T1D), we found that donor islets contained β cells without insulitis and lacked glucose-stimulated insulin secretion despite a normal insulin response to cAMP-evoked stimulation. With these unexpected findings...
Article
Full-text available
Inositol polyphosphate multikinase (IPMK) is a member of the IPK-superfamily of kinases, catalyzing phosphorylation of several soluble inositols and the signaling phospholipid PI(4,5)P2 (PIP2). IPMK also has critical non-catalytic roles in p53, mTOR/Raptor, TRAF6 and AMPK signaling mediated partly by two disordered domains. Although IPMK non-cataly...
Preprint
Inositol polyphosphate multikinase (IPMK) is a member of the IPK-superfamily of kinases, catalyzing phosphorylation of several soluble inositols and the signaling phospholipid PI(4,5)P2 (PIP2). IPMK also has critical non-catalytic roles in p53, mTOR/Raptor, TRAF6 and AMPK signaling mediated partly by two disordered domains. Although IPMK non-cataly...
Article
Full-text available
Phosphoinositide membrane signaling is critical for normal physiology, playing well-known roles in diverse human pathologies. The basic mechanisms governing phosphoinositide signaling within the nucleus, however, have remained deeply enigmatic owing to their presence outside the nuclear membranes. Over 40% of nuclear phosphoinositides can exist in...
Article
Full-text available
Phospholipid signaling has clear connections to a wide array of cellular processes, particularly in gene expression and in controlling the chromatin biology of cells. However, most of the work elucidating how phospholipid signaling pathways contribute to cellular physiology have studied cytoplasmic membranes, while relatively little attention has b...
Article
Nuclear receptors are ligand-activated transcription factors whose diverse biological functions are classically regulated by cholesterol-based small molecules. Over the past few decades, a growing body of evidence has demonstrated that phospholipids and other similar amphipathic molecules can also specifically bind and functionally regulate the act...
Article
Full-text available
Inositol polyphosphate multikinase (IPMK, ipk2, Arg82, ArgRIII) is an inositide kinase with unusually flexible substrate specificity and the capacity to partake in many functional protein-protein interactions (PPIs). By merging these two activities, IPMK is able to execute gene regulatory functions that are very unique and only now beginning to be...
Article
Full-text available
The nuclear receptor LRH-1 (Liver Receptor Homolog-1, NR5A2) is a transcription factor that regulates gene expression programs critical for many aspects of metabolism and reproduction. Although LRH-1 is able to bind phospholipids, it is still considered an orphan nuclear receptor (NR) with an unknown regulatory hormone. Our prior cellular and struc...
Article
Full-text available
The signaling phosphatidylinositol lipids PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3) bind nuclear receptor 5A family (NR5As), but their regulatory mechanisms remain unknown. Here, the crystal structures of human NR5A1 (steroidogenic factor-1, SF-1) ligand binding domain (LBD) bound to PIP2 and PIP3 show the lipid hydrophobic tails sequestered in the h...
Article
Full-text available
An unresolved problem in biological signal transduction is how particular branches of highly interconnected signaling networks can be decoupled, allowing activation of specific circuits within complex signaling architectures. Although signaling dynamics and spatiotemporal mechanisms serve critical roles, it remains unclear if these are the only way...
Article
Full-text available
Phosphatidylinositol 4,5-bisphosphate (PIP₂) is best known as a plasma membrane-bound regulatory lipid. Although PIP₂ and phosphoinositide-modifying enzymes coexist in the nucleus, their nuclear roles remain unclear. We showed that inositol polyphosphate multikinase (IPMK), which functions both as an inositol kinase and as a phosphoinositide 3-kina...
Article
This Podcast features an interview with Holly Ingraham and Raymond Blind, authors of a Research Article published in the 19 June 2012 issue of Science Signaling. Ingraham and Blind discuss their discovery of an unusual mechanism by which the activity of the nuclear receptor steroidogenic factor 1 (SF-1) is modulated. The phospholipid phosphatidylin...
Article
Full-text available
The crystal structure of LRH-1 ligand binding domain bound to our previously reported agonist 3-(E-oct-4-en-4-yl)-1-phenylamino-2-phenyl-cis-bicyclo[3.3.0]oct-2-ene 5 is described. Two new classes of agonists in which the bridgehead anilino group from our first series was replaced with an alkoxy or 1-ethenyl group were designed, synthesized, and te...
Article
Full-text available
Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3, a long-chain acyl-CoA synthase, causes enhanced intestin...
Article
Full-text available
Estrogens and selective estrogen receptor (ER) modulators such as tamoxifen are known to increase uterine cell proliferation. Mounting evidence suggests that estrogen signaling is mediated not only by ERalpha and ERbeta nuclear receptors, but also by GPR30 (GPER), a seven transmembrane (7TM) receptor. Here, we report that primary human endometrioti...
Article
Full-text available
Despite the fact that many nuclear receptors are ligand dependent, the existence of obligate regulatory ligands is debated for some receptors, including steroidogenic factor 1 (SF-1). Although fortuitously bound bacterial phospholipids were discovered in the structures of the SF-1 ligand-binding domain (LBD), these lipids might serve merely as stru...
Article
Full-text available
Teaching to large classes is often challenging particularly when the faculty and teaching resources are limited. Innovative, less staff intensive ways need to be explored to enhance teaching and to engage students. We describe our experience teaching biochemistry to 350 students at Muhimbili University of Health and Allied Sciences (MUHAS) under se...
Article
Full-text available
Teaching to large classes is often challenging particularly when the faculty and teaching resources are limited. Innovative, less staff intensive ways need to be explored to enhance teaching and to engage students. We describe our experience teaching biochemistry to 350 students at Muhimbili University of Health and Allied Sciences (MUHAS) under se...
Article
Full-text available
The glucocorticoid receptor (GR) is phosphorylated at multiple sites within its N terminus (S203, S211, S226), yet the role of phosphorylation in receptor function is not understood. Using a range of agonists and GR phosphorylation site-specific antibodies, we demonstrated that GR transcriptional activation is greatest when the relative phosphoryla...
Article
Full-text available
The human glucocorticoid receptor (GR) is phosphorylated on its N-terminus at three major sites (S203, S211 and S226) within activation function 1 (AF1). Although GR has been shown to assemble at glucocorticoid responsive elements (GREs) in the presence of hormone, the timing and specificity of GR phospho-isoform recruitment to receptor target gene...
Article
Full-text available
The glucocorticoid receptor (GR) has been shown to undergo hormone-dependent down-regulation via transcriptional, post-transcriptional, and posttranslational mechanisms. However, the mechanisms involved in modulating GR levels in the absence of hormone remain enigmatic. Here we demonstrate that TSG101, a previously identified GR-interacting protein...

Network

Cited By