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Abstract:  The optimum selection of process parameters plays a significant role to ensure 

quality of product, to reduce the machining cost and to increase the productivity of any 

machining process. This paper presents the optimization aspects of process parameters of three 

machining processes including an advanced machining process known as abrasive water jet 

machining process and two important conventional machining processes namely grinding and 

milling. A recently developed advanced optimization algorithm, teaching-learning-based 

optimization (TLBO), is presented to find the optimal combination of process parameters of the 

considered machining processes. The results obtained by using TLBO algorithm are compared 

with those obtained by using other advanced optimization techniques such as genetic algorithm 

(GA), simulated annealing (SA), particle swarm optimization (PSO), harmony search (HS), and 

artificial bee colony (ABC) algorithm. The results show better performance of the TLBO 

algorithm. 
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1    Introduction 

In today’s manufacturing environment many large industries have attempted to introduce the 

highly automated and computer controlled machines as their strategy to adapt to the ever-

changing competitive market requirement. Due to high capital and machining costs, there is an 

economic need to operate these machines as efficiently as possible in order to obtain the required 

pay back. The success of the machining operation depends on the selection of machining process 

parameters. 

Determination of optimum process parameters of any machining process is usually a 

difficult work where the following aspects are required: knowledge of manufacturing process, 

empirical equations to develop realistic constraints, specification of machine tool capabilities, 

development of effective optimization criteria, and knowledge of mathematical and numerical 

optimization techniques. A human process planner selects proper machining process parameters 

using his own experience or from the handbooks. But these parameters do not give optimal 

result. The selection of optimum process parameters play a significant role to ensure quality of 

product, to reduce the machining cost, to increase productivity in computer controlled machining 

processes and to assist in computer aided process planning. . The present study is mainly focused 

on the optimization aspects of one of the advanced machining processes namely abrasive water 

jet machining and two important conventional machining processes, grinding and milling. 

Several attempts have been made to study the influence of different process parameters of 

abrasive water jet machining process such as water pressure and water flow rate, abrasive type, 

size, shape, and flow rate, stand-off-distance, number of passes, angle of attack, abrasive 

condition etc. on the important performance measures such as depth of cut and material removal 

rate [1-5]. However, very few efforts have been reported for optimization of process parameters 
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of abrasive water jet machining process parameters. Chakravarthy and Babu [6] applied genetic 

algorithm to achieve two conflicting objectives i.e. maximization of production rate and 

minimization of abrasive consumption. However, the authors had not considered any constraint 

and no bounds for variables were specified. To overcome above limitations, Jain et al. [7] used 

genetic algorithm as a tool for maximization of the material removal rate with power 

consumption as a constraint. Rao et al. [8] used simulated annealing algorithm to the 

optimization of abrasive water jet machining process and reported significant improvement in the 

material removal rate over that obtained by Jain et al. [7].      

Previous work on the optimization of grinding process parameters has concentrated on 

possible approaches for optimizing constraints during grinding. Amitay [9] reported the 

technique of optimizing both grinding and dressing conditions for the maximum workpiece 

removal rate subjected to constraints on workpiece burn and surface finish in an adaptive control 

system. Wen et al. [10] applied successive quadratic programming (QP) approach using a multi-

objective function model with a weighted approach for optimization of surface grinding process 

parameters. Rowe et al. [11] provided an extensive review on various approaches based on 

artificial intelligence to the grinding process. A genetic algorithm (GA) based optimization 

procedure was developed by Saravanan et al. [12] to optimize the grinding conditions. 

Dhavalikar et al. [13] applied combined Taguchi and dual response methodology to determine 

the robust condition for minimization of out of roundness error of workpiece for centerless 

grinding operation. Optimization was then carried out by using Monte Carlo simulation 

procedure.  Mitra and Gopinath [14] used non-dominated sorting genetic algorithm for multi-

objective optimization of industrial grinding process. Krishna [15] applied differential evolution 

(DE) algorithm for optimization of process parameters of grinding operation. Pawar et al. [16] 
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used particle swarm optimization algorithm for optimization of grinding process parameters and 

showed superiority of particle swarm optimization algorithm over traditional optimization 

techniques. For the same problem, Rao and Pawar [17] presented that artificial bee colony and 

harmony search algorithms provide better accuracy of solution as compared to particle swarm 

optimization.    

Various investigators have proposed optimization techniques, both traditional and 

advanced, for optimization of multi-pass milling operation. Shin and Joo [18] used the dynamic 

programming optimization method for milling process parameter optimization. Wang [19] used a 

neural network based approach to optimize milling process parameters. Tolouei-Rad and 

Bidhendi [20] used the method of feasible direction and considered maximization of profit rate 

as an objective function in milling operation. Sonmez et al. [21] applied dynamic programming 

to determine optimum number of passes and the optimal values of the cutting conditions were 

found by using geometric programming. Shunmugam et al. [22] used genetic algorithm (GA) for 

milling process parameter optimization with total production cost as the objective function.  

During the past decade, different optimization methods had been integrated to improve 

performance of algorithms and to reach the global optimum results. In order to optimize the 

machining parameters, the evolutionary methods had been modified or hybridized by using other 

optimization techniques. Liu and Wang [23] modified the genetic algorithm by defining and 

changing the operating domain and used for optimization of milling parameters. Wang et al. [24] 

proposed a new hybrid approach, named parallel genetic simulated annealing (PGSA), based on 

genetic algorithm and simulated annealing to find optimal machining parameters in milling 

operations. Bhaskar et al. [25] used memetic algorithm for optimization of milling process 

parameters. Onwubolu [26] proposed a new optimization technique based on Tribes for 
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determination of the cutting parameters in multi-pass milling operations.  Yildiz [27] developed a 

new hybrid optimization approach by hybridizing the immune algorithm with hill climbing local 

search algorithm to maximize the total profit rate in milling operations. Zarei et al. [28] 

presented a harmony search (HS) algorithm to determine the optimum cutting parameters for 

multi-pass face-milling. Rao and Pawar [29] applied various advanced optimization algorithms 

such as artificial bee colony, particle swarm optimization, and simulated  annealing to the 

optimization of process parameters of multi-pass milling process. 

It is observed from the literature that various traditional methods of optimization such as 

sequential quadratic programming, dynamic programming, and method of feasible direction have 

been employed to the optimization of machining processes considered in this work. However, 

these traditional methods of optimization and search do not fare well over a broad spectrum of 

problem domains. These methods are not efficient when practical search space is too large. Also 

these traditional methods tend to obtain a local optimum solution. To overcome these drawbacks 

of traditional methods of optimization, researchers are employing a commonly used evolutionary 

algorithm known as genetic algorithm (GA) for parametric optimization of machining processes. 

Although GA has advantages over the traditional optimization techniques, the successful 

application of GA depends on the population size or the diversity of individual solutions in the 

search space. If GA cannot hold its diversity well before the global optimum is reached, it may 

prematurely converge to a local optimum. To overcome these limitations of basic genetic 

algorithms, recently developed popular algorithms such as particle swarm optimization (PSO), 

harmony search algorithm (HS), and artificial bee colony algorithms (ABC) are also tried 

successfully by various researchers. However, the major difficulty in application of these 

algorithms lies in their selection of appropriate algorithm-specific parameters such as crossover 
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probability, mutation probability, scaling function, selection function, etc. in case of GA; inertia 

coefficient and acceleration coefficients in case of PSO; proportion of employed and scout bees 

in case of ABC; and harmony memory consideration rate and pitch adjusting rate in case of HS 

algorithm. The performance of all the above mentioned algorithms is greatly influenced by their 

respective algorithm-specific parameters in addition to the common control parameters such as 

population size and number of generations. Selection of suitable values of these algorithm-

specific parameters for a particular application is itself is a complex optimization problem. To 

overcome this drawback of existing advanced optimization algorithms, an optimization 

algorithm known as teaching-learning-based optimization (TLBO) has been recently developed 

by Rao et al. [30,31]. TLBO requires only common controlling parameters like population size 

and number of generations for its working. In this way TLBO can be said as an algorithm-

specific parameter-less algorithm. 

       Various researchers have started applying the TLBO algorithm to their research problems. 

Hosseinpour et al. [32] presented a multi-objective placement of Automatic Voltage Regulators 

(AVRs) in distribution systems in the presence of distributed generators (DGs). Satapathy and 

Naik [33] used TLBO algorithm for data clustering. It was shown how TLBO could be used to 

find the centroids of a user specified number of clusters. The TLBO algorithm was evaluated on 

some datasets and was compared with the performance of K-means and PSO clustering. Results 

showed that TLBO clustering techniques have much potential. 

 Krishnanand et al. [34] applied a multiobjective TLBO algorithm with non-domination 

based sorting to solve the environmental/economic dispatch (EED) problem containing the 

incommensurable objectives of best economic dispatch and least emission dispatch. The 

simulation result revealed that the TLBO algorithm is a competitive one to the current existing 
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methods for finding the best optimal pareto front of two conflicting objectives and has the better 

robustness.  

Toğan [35] presented a design procedure employing TLBO algorithm for discrete 

optimization of planar steel frames. Several frame examples from the literature were examined to 

verify the suitability of the design procedure and to demonstrate the effectiveness and robustness 

of the TLBO for creating an optimal design for frame structures. The results of the TLBO were 

compared to those of the genetic algorithm (GA), ant colony optimization (ACO), harmony 

search (HS) and the improved ant colony optimization (IACO). The results had shown that 

TLBO is a powerful search and applicable optimization method for the problem of engineering 

design applications. 

Niknam et al. [36] proposed θ-Multiobjective Teaching-Learning-Based optimization for 

Dynamic Economic Emission Dispatch. The applicability of the method was validated on three 

test systems, including 5-unit, 10-unit, and 120-unit test systems. In another work, Niknam et al. 

[37] integrated the optimal operation management of Proton Exchange Membrane FCPPs (PEM-

FCPPs) and the optimal configuration of the system through an economic model of the PEM-

FCPP. Azizipanah-Abarghooee [38] presented probabilistic multiobjective wind-thermal 

economic emission dispatch based on point estimated method and modified TLBO algorithm 

was proposed to determine the set of non-dominated optimal solutions.  

Rao and Patel [39] described the TLBO algorithm for solving complex constrained 

optimization problems. The code of TLBO algorithm was also included. The distinction between 

the algorithm-specific control parameters and common control parameters such as population 

size and the number of generations was explained. TLBO algorithm can be considered as an 
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algorithm-specific parameter-less algorithm and it requires only the common control parameters. 

Thus, the total efforts required for tuning of parameters are very less in TLBO algorithm.           

It is with this spirit that TLBO algorithm is considered in this work for optimization of 

process parameters of selected machining processes. TLBO algorithm was not applied previously 

for the parameter optimization of machining processes and hence an attempt is made in the 

present work to apply the algorithm to the selected machining processes.  This paper provides the 

comparative performance of the TLBO algorithm with other traditional and advanced algorithms 

in terms of its ability to find global optimum solution, accuracy of solution, and convergence 

rate.  

 

2  Teaching-learning-based optimization algorithm 
 
Teaching-learning-based optimization algorithm (TLBO) is a teaching-learning process inspired 

algorithm proposed by Rao et al. [30, 31], which is based on the effect of influence of a teacher 

on the output of learners in a class. The algorithm mimics the teaching-learning ability of teacher 

and learners in a class room. Teacher and learners are the two vital components of the algorithm 

and describes two basic modes of the learning, through teacher (known as teacher phase) and 

interacting with the other learners (known as learner phase). The output in TLBO algorithm is 

considered in terms of results or grades of the learners which depend on the quality of teacher. 

So, teacher is usually considered as a highly learned person who trains learners so that they can 

have better results in terms of their marks or grades. Moreover, learners also learn from the 

interaction among themselves which also helps in improving their results. TLBO is population 

based method. In this optimization algorithm a group of learners is considered as population and 

different design variables are considered as different subjects offered to the learners and learners’ 
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result is analogous to the ‘fitness’ value of the optimization problem. In the entire population the 

best solution is considered as the teacher. 

The working of TLBO is divided into two parts, ‘Teacher phase’ and ‘Learner phase’. 

Working of both the phases is explained below. 

2.1 Teacher phase  

During this phase a teacher tries to increase the mean result of the class in the subject taught by 

him or her depending on his or her capability. At any iteration i, assume that there are ‘m’ 

number of subjects (i.e. design variables), ‘n’ number of learners (i.e. population size, 

k=1,2,…,n) and Mj,i be the mean result of the learners in a particular subject ‘j’ (j=1,2,…,m)  The 

best overall result Xtotal-kbest,i  considering all the subjects together obtained in the entire 

population of learners can be considered as the  result of best learner kbest. However, as the 

teacher is usually considered as a highly learned person who trains learners so that they can have 

better results, the best learner identified is considered by the algorithm as the teacher. The 

difference between the existing mean result of each subject and the corresponding result of the 

teacher for each subject is given by, 

Difference_Meanj,k,i = ri (Xj,kbest,i -  TFMj,i)                                             (1) 

Where, Xj,kbest,i is the result of the best learner (i.e. teacher) in subject j. TF is the teaching factor 

which decides the value of mean to be changed, and ri is the random number in the range [0, 1]. 

Value of TF can be either 1 or 2. The value of TF is decided randomly with equal probability as,  

TF = round [1+rand(0,1){2-1}]               (2) 

TF is not a parameter of the TLBO algorithm. The value of TF is not given as an input to the 

algorithm and its value is randomly decided by the algorithm using Eq. (2). After conducting a 

number of experiments on many benchmark functions it is concluded that the algorithm performs 
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better if the value of TF is between 1 and 2. However, the algorithm is found to perform much 

better if the value of TF is either 1 or 2 and hence to simplify the algorithm, the teaching factor is 

suggested to take either 1 or 2 depending on the rounding up criteria given by Eq.(2).     

Based on the Difference_Meanj,k,i, the existing solution is updated in the teacher phase according 

to the following expression.  

X'j,k,i = Xj,k,i + Difference_Meanj,k,i                                                 
(3) 

Where X'j,k,i is the updated value of Xj,k,i.  Accept X'j,k,i if it gives better function value. All the 

accepted function values at the end of the teacher phase are maintained and these values become 

the input to the learner phase. The learner phase depends upon the teacher phase. 

2.2 Learner phase 

Learners increase their knowledge by interaction among themselves. A learner interacts 

randomly with other learners for enhancing his or her knowledge. A learner learns new things if 

the other learner has more knowledge than him or her. Considering a population size of ‘n’, the 

learning phenomenon of this phase is expressed below.  

Randomly select two learners P and Q such that X'total-P,i ≠ X'total-Q,i (where, X'total-P,i and X'total-Q,i 

are the updated values of Xtotal-P,i and Xtotal-Q,i respectively at the end of teacher phase) 

X''j,P,i = X'j,P,i + ri (X'j,P,i -  X'j,Q,i), If X'total-P,i < X'total-Q,i                                       (4) 

X''j,P,i = X'j,P,i + ri (X'j,Q,i - X'j,P,i), If X'total-Q,I < X'total-P,i                                  (5) 

Accept X''j,P,i  if it gives a better function value.  
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3   Examples  

Now to demonstrate and validate the teaching-learning-based optimization algorithm for 

parameter optimization of machining processes, abrasive water jet machining, grinding, and 

milling processes are considered.  

3.1   Optimization of abrasive water jet machining (AWJM) 

The AWJM process uses a high velocity water jet in combination with abrasive particles for 

cutting different types of materials. A stream of small abrasive particles is introduced and 

entrained in the water jet in such a manner that water jet’s momentum is partly transferred to the 

abrasive particles. The role of carrier water is primarily to accelerate large quantities of abrasive 

particles to a high velocity and to produce a highly coherent jet. Important process parameters of 

abrasive water jet machining can be categorized as hydraulic parameters: water pressure, and 

water flow rate, abrasive parameters: type, size, shape, and flow rate of abrasive particles; cutting 

parameters: traverse rate and stand-off-distance. The model is based on the analysis given by 

Hashish [2]. The decision variables, objective function, and constraint  considered in the present 

work are given below. 

3.1.1 Optimization model of abrasive water jet machining process 

The five decision variables considered for this model are, water jet pressure at the nozzle exit 

(Pw), diameter of abrasive water jet nozzle (dawn), feed rate of nozzle (fn), mass flow rate of water 

(Mw), and mass flow rate of abrasives (Ma).   The objective function and constraint are discussed 

below: 
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Objective function: 

The objective is to maximize the material removal rate (Z1) as given by equation (6).  

Maximize )(1 dcnawn
hhfdZ +=                                                                                                       (6) 

Where, ‘hc’ is the indentation depth due to cutting wear as given by equation (7). 
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‘hd’ is the indentation depth due to deformation wear as given by equation (9). 
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Constraint: 

Constraint is on power consumption as given by equation (15).  



13 
 

00.1
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≥−
P

MP ww                                                                       (15) 

Description of various symbols appeared in equation (6) to (15) is provided in Table 1.  

Variable bounds: 

The bounds for the five variables are given in equations (16) to (20). 

50 ≤ Pw ≤ 400 (MPa)                                     (16) 

0.5≤ dawn ≤ 5 (mm)                          (17) 

0.2 ≤ fn ≤ 25 (mm/s)                                     (18) 

0.02  ≤ Mw ≤ 0.2 (Kg/s)              (19) 

0.0003 ≤ Ma ≤ 0.08 (Kg/s)                                     (20) 

3.1.2 Optimization using TLBO algorithm 

As TLBO algorithm is an algorithm-specific parameter-less algorithm, only population 

size and number of generations need to be specified to run the algorithm. Based on several trial 

runs, the population size decided for the present example is 20 and the number of generations is 

50. The results of optimization of AWJM process using TLBO algorithm are presented in Table 

2 along with those obtained by using other optimization algorithms.   

  For abrasive water jet machining, if angle of impingement at the top of the machined 

surface ‘αt’ exceeds the critical impact angle ‘α0’ then no material removal is assumed to occur 

by cutting wear (i.e. hc=0) and the material removal occurs only due to the deformation wear 

(hd), which results into relatively less material removal rate [4]. As shown in Table 2, for the 

solution obtained by using GA [7], as ‘αt’ exceeds ‘α0’, indentation depth of cutting wear (hc) 

becomes zero and hence results in very poor  material removal rate as compared to the solution 
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obtained by using TLBO algorithm for which, as ‘αt’< ‘α0’ significant amount of material 

removal rate is contributed by cutting wear. Besides that, the optimum values of process 

variables obtained by using TLBO algorithm also results in higher value of depth of deformation 

wear (hd) than that obtained by using genetic algorithm, which further increases the material 

removal rate. The combined effect thus leads to the significant improvement in material removal 

rate by from 90.257 mm3/s to 239.54 mm3/s. It can also be observed that TLBO algorithm 

provides better solution accuracy as compared to the solution obtained by using SA algorithm. 

TLBO algorithm provides an improvement of about 9% in objective function over that obtained 

by using SA algorithm. The convergence of TLBO algorithm is shown in Fig. 1. From Fig. 1, it 

is observed that the algorithm requires only 30 generations to achieve the global optimum 

solution.  

3.2 Optimization of grinding process 

Grinding is one of the important and widely used manufacturing processes in engineering 

industries. The success of grinding process in terms of cost and quality depends on proper 

selection of various operating conditions in grinding process such as wheel speed, work piece 

speed, depth of dressing and lead of dressing, area of contact, grinding fluid etc. However, owing 

to the complexity in process dynamics, problems related to determination of optimal cutting 

conditions in grinding process are faced with discrete and continuous parameter spaces with 

multi-modal, differentiable, as well as non-differentiable objective functions.   
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3.2.1 Optimization model of grinding process 

The optimization model for grinding process formulated in the present work based on the 

analysis given by Wen et al. [10]. The four decision variables considered for this model are, 

wheel speed ‘Vs’ (m/min), work piece speed ‘Vw’ (m/min), depth of dressing ‘doc’ (mm) and lead 

of dressing ‘L’ (mm/rev). 

Objectives: 

The two objectives considered in this example are: 

a) Minimize production cost as given by Equation (21). 
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Where, Mc is cost per hour labor and administration, Lw is length of workpiece, Le is empty 

length of grinding, bw is width of workpiece, be is empty width of grinding, fb is cross feed rate, 

aw is total thickness of cut, ap is down feed of grinding, Sp is number of spark out grinding, De is 

diameter of wheel, bs is width of wheel, G is grinding ratio, Sd is distance of wheel idling, p is 

number of workpieces loaded on the table, Vr is speed of wheel idling, t1 is time of loading and 

unlading workpieces, tch is time of adjusting machine tool,  Nt is batch size of the workpieces, Nd 

is total number of workpieces to be ground between two dressing, Ntd is total number of 

workpieces to be ground during life of dressing, Cd is cost of dressing.  

b) Maximize the production rate in terms of workpiece removal parameter ‘WRP’ given by  
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Where, VOL= wheel bond percentage, dg =grind size, Rc= workpiece hardness.  

The combined objective function (ZR) is formulated as given in equation (23). 
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Where, W1 and W2 are the weighting factors for production cost and workpiece removal 

parameter respectively. In the present example equal weights are considered for both objectives. 

Thus W1 = W1=0.5.  NmmWRPpcC
T

.min/20),/($10 3** == . 

Constraints:   

Following four constraints are considered.  

a) Thermal damage constraint 

The grinding process requires very high energy per unit volume of material removed. Whatever 

the energy that is concentrated within the grinding zone, it is converted into heat. The high 

thermal energy causes damage to the work piece, and it leads to the reduced production rate. The 

specific energy U is calculated by equation (24). 
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Ku=wear constant. 

The critical specific energy U* at which burning starts is expressed in terms of the operating 

parameters as 
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The thermal damage constraint is then specified as  

0* ≥−UU                                       (26) 

b) Wheel wear parameter constraint 

Wheel wear parameter WWP (mm3/min.N) is related directly to the grinding conditions.  For 

single-point diamond dressing, it is given by Eq. (27). 
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The wheel wear constraint is obtained as 

0≥− G
WWP

WRP
                        (28) 

c) Machine tool stiffness constraint 

Chatter results in poorer surface quality and lowers machining production rate. Chatter 

avoidance is therefore a significant constraint in selection of machining parameters. The 

relationship between grinding stiffness Kc (N/mm), wheel wear stiffness Ks (N/mm) and 

operating parameters during grinding is given below: 

WRP

fV
K bw

c

1000
=                                      (29) 

WWP

fV
K bs

s

1000
=                                  (30) 

To avoid chatter during machining, the constraint given by equation (31) has to be fulfilled: 

0≥−
m

em

K

R
MSC                           (31) 

Where, 
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
+= ,                              (32) 

Rem=dynamic machine characteristics, Km=Static machine stiffness.  
 
  

d) Surface roughness constraint 

The surface roughness constraint is as given by equation (33) below. 

Ra ≤ 1.8 µm                 (33) 
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30.04587.0 avea TR =   for 254.00 <<
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72.078667.0 avea TR =  for   0.254 < Tave < 2.54                                                         (34) 

27/16

27/16

27/8

27/1927/16

3 1105.12 















+×=

s

w

e

pg

ave
V

V
L

L

doc

D

ad
T                                 (35)  

Values of the constants and parameters considered in the present example are as given below: 

Mc=30 $/hr, Lw = 300 mm, Le = 150 mm, bw = 60 mm, be = 25 mm, fb =2 mm/pass, aw = 0.1mm, 

ap = 0.0505 mm/pass, Sp = 2, De = 355 mm, bs = 25mm, G = 60, Sd = 100 mm, p = 1, Vr = 254 

mm/min, t1 = 5 min, tch = 30 min,  Nt = 12, Nd = 20, Ntd = 2000, Cd =25 $, VOL=6.99 %, dg =0.3 

mm, Rc=58 HRC, Ku=3.937×10-7 mm-1, Rem=1, Km=100000  N/mm, Ka=0.0869.   

3.2.2 Optimization using TLBO 

Results of optimization of grinding process using TLBO algorithm are presented in Table 3 

along with those obtained with other advanced optimization algorithms such as genetic 

algorithm, simulated annealing, particle swarm optimization, artificial bee colony, and harmony 

search algorithm. It is observed from Table 3 that TLBO algorithm shows significant 

improvement in the combined objective function value over quadratic programming by about 

77% and that over genetic algorithm by about 16%. The TLBO algorithm also shows better 

solution accuracy as compared to SA, PSO, and HS algorithms.  The solutions obtained by using 

TLBO and ABC algorithms are equally better although they provide different combinations of 

variables to achieve optimum performance. The convergence of TLBO algorithm along with 

other advanced algorithms is shown in Fig. 3. It is observed from Fig. 3, that TLBO algorithm 

requires only 30 iterations to converge to optimum solution as compared to other algorithms 

which requires 60-80 iterations.  
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 A real case study of grinding operations of an industry located in Nasik city of India was 

taken up and the mathematical models given by Equations (21) 

 to (35) were considered and the TLBO algorithm was applied. The results of application of 

TLBO algorithm have been found more suitable and useful to the concerned industry.   

3.3 Optimization of milling process 

The optimization model for grinding process formulated in the present work based on the 

analysis given by Sonmez et al. [4]. The decision variables considered for this model are feed per 

tooth (fz), cutting speed (V) and depth of cut (a).  

 

3.3.1 Optimization model of milling process 
 

The objective function in this model is to minimize the production time (Tpr) as given by the 

equation (36). 
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Where, Ts = setup time; Nb = total number of components in batch; TL = loading and unloading 

time; Np = total number of passes and subscript ‘i’ denotes ith pass; Ta = process adjusting and 

quick return time; Td = tool changing time; fz = feed per tooth; z = Number of teeth on milling 

cutter; D = cutter diameter; L = length of the cut; ar = width of the cut; a = depth of cut; V = 

cutting speed; Bm, Bk, Bp, Bt, m, ev, uv, rv, nv, qv, Cv, bv,  Czp, bz, uz, are process constants.  

Following three constraints are considered in this optimization model: 

a) Arbour strength: 

Fs - Fc ≥ 0                           (37) 
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Where, Mean peripheral cutting force = zzz u

z

eb

rzpc fazDaCF =                                           (38)     

Permissible force for arbour strength (Kg) = Fs 
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where, kb = permissible bending strength of arbor; da = arbor diameter=27 mm; La = arbor length 

between supports; α = kb / (1.3 kt); kt = permissible torsional strength of arbor. 

b) Arbour deflection:  

Fd - Fc ≥ 0               (40) 

Where, Permissible force for arbour deflection (Kg) = 
3

44

a

a
d

L

Eed
F =                               (41)  

Where, E = modulus of elasticity of arbor material; e = permissible value of arbor deflection. 

For roughing operation ‘e’=0.2 mm and for finishing operation ‘e’=0.05 mm.   

c) Power: 

0
6120

≥−
VF

P c
c

                                                     (42) 

where, Pc = Cutting power (KW) = Pm × η 

Pm = nominal motor power; η = overall efficiency. 

The three process variables and their bounds considered in this work are as given below. 

a) Feed per tooth:  

0.000875 ≤ fz ≤ 3.571                                     (43) 

b) Cutting speed:  

6.234 ≤ V ≤ 395.84                                                                     (44) 
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c)  Depth of cut: 

0.5 ≤ a ≤ 4 (mm)                          (45) 

Values of the constants and parameters considered in the present example are as given below: 

Pm = 5.5 kW, η = 0.7, da = 27 mm,  La = 210 mm, kb: 140 MPa,  kt: 120 MPa,  E = 200 GPa, D = 

63 mm, z = 8, La = 160 mm, ar = 50 mm,  a = 5 mm, TL = 1.5 min, Ts = 10 min, Tc = 5 min, Ta = 

0.1 (min/part), Nb = 100; Constants: Bm = 1, Bk=1, Bp=0.8, Bt=0.8, m=0.33, ev=0.3, uv=0.4, 

rv=0.1, nv=0.1, qv=0, Cv=35.4, bv=0.45,  Czp = 68.2, bz = -0.86, ez = 0.86, and uz = 0.72.  

3.3.2 Optimization using TLBO 

Results of optimization of milling process using TLBO algorithm are presented in Table 4 for the 

optimum cutting strategy indicating 3 rough passes each of 1.5 mm and one finishing pass of 0.5 

mm. Table 5 provides the results of optimization of milling process obtained by various 

algorithms. As shown in Table 5, the results obtained by using geometric programming (GP), 

genetic algorithm (GA), parallel genetic simulated annealing (PGSA), and Tribes are 

inappropriate, as these results violates the specified constraints. It can be seen from Table 5 that, 

the solution obtained by using TLBO algorithm is slightly better in terms of accuracy of solution 

as compared to ABC, PSO, and SA algorithms. 

4   Conclusion 

In the present work, optimization aspects of process parameters of three machining processes are 

considered using a recently developed advanced algorithm known as teaching-learning–based 

optimization (TLBO) algorithm. The three machining processes considered are abrasive water jet 

machining, grinding and milling. The performance of the TLBO algorithm is studied in terms of 

convergence rate and accuracy of the solution. Compared to other advanced optimization 
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methods, TLBO algorithm does not require selection of the algorithm-specific parameters.  It 

makes this algorithm to apply to the real life optimization problems easily and effectively. The 

TLBO algorithm requires only 20 to 30 iterations for convergence to the optimal solution. The 

algorithm outperformed GA and SA in all three examples in terms of accuracy of solution. The 

results obtained by TLBO also show slight superiority over those obtained by using PSO, HS, 

and ABC algorithms. This is mainly due to the fact that TLBO uses the best solution of the 

iteration to modify the existing solution as in PSO and it does not divide the population as in case 

of ABC. The algorithm can also be easily modified to suit optimization of process parameters of 

other machining processes such as turning, drilling, advanced machining processes, etc. Also the 

presented algorithm can efficiently handle the multi-objective optimization models. 
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Table 1.  Values of the constants and parameters for abrasive water jet machining process 

___________________________________________________________________________ 
Notation Description                Unit  Value 
___________________________________________________________________________ 
ρa Density of abrasive particles    Kg/mm3 3.95x10-6 

νa Poisson ratio of abrasive particles     0.25 

EYa Modulus of elasticity of abrasive particles  MPa  350000 

fr Roundness factor of abrasive particles    0.35 

fs Sphericity factor of abrasive particles    0.78 

ηa Proportion of abrasive grains effectively     0.07 

 participating in machining 

νw Poisson ratio of work material     0.20 

EYw Modulus of elasticity of work material  MPa  114000 

σew Elastic limit of work material    MPa  883 

σfw Flow stress of work material    MPa  8142 

Cfw Drag friction coefficient of work material    0.002 

ξ Mixing efficiency between abrasive and     0.8 

water 

Pmax Allowable power consumption value   kW  56 

___________________________________________________________________________ 
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Table 2. Results of optimization of AWJM process using TLBO  

__________________________________________________________________________________ 
 Method dawn fn Mw  Pw  Ma α0 αt hc hd MRR Power  

 (mm) (mm/s) (Kg/s)   (MPa) (Kg/s) ( °) ( °) (mm) (mm) (mm3/s) (kW) 
__________________________________________________________________________________ 

GA [1] 3.726 23.17 0.141 398.3 0.079 0.384 0.572 0.00 1.045 90.257  56 

SA [2] 2.9 15 0.138 400 0.08 0.385 0.378 2.97 2.04 218.19     56   

TLBO 5.0 5.404 0.141 400 0.07 0.379 0.350  5.694 3.238 239.54  56 
__________________________________________________________________________________ 
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Table 3. Results of optimization for grinding process using TLBO 

_____________________________________________________________________ 
Method   Vs Vw   doc L CT WRP Ra ZR 
_____________________________________________________________________________________ 
Quadratic 2000 19.96  0.055 0.044 6.2 17.47 1.74 -0.127 
Programming [10]  
 
Genetic algorithm [12] 1998 11.30  0.101 0.065 7.1 21.68 1.79 -0.187 
  
PSO [16]  2023  10.00 0.110 0.137 8.33 25.63 1.798 -0.224 

Simulated annealing [17] 2023  11.48  0.089 0.137 7.755 24.45 1.789 -0.223 

Harmony search   2019.35  12.455  0.079 0.136 7.455 23.89 1.796 -0.225 
Algorithm [17] 

 
Artificial bee colony  2023 10.973  0.097 0.137 7.942 25.00 1.80 -0.226 
Algorithm [17] 

 
TLBO   2023      11.537 0.0899 0.137 7.742 24.551 1.798 -0.226  
_____________________________________________________________________________________ 
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Table 4. Results of optimization of milling process using TLBO 
 
Cutting strategy fz mm/tooth V 

m/min 
T2  

(per pass) 
min 

T2  
 min 

T1 

min 
Tpr 

(T1+T2) 
(min) 

arough =1.5 0.341 46.641 0.342 

1.237 2.0 3.237 

arough =1.5 0.341 46.641 0.342 

arough =1.5 0.341 46.641 0.342 

afinish =0.5 0.434 66.8576 0.211 

Where, a
rough 

= depth of cut for rough pass (mm); a
finish

 = depth of cut for finish pass (mm); 
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Table 5.    Results of optimization of milling process by using various optimization algorithms 

 
Method Cutting 

strategy 
fz mm/tooth V 

m/min 
SC DC PC T2  

min  
Tpr 

(T1+T2) 
(min) 

GP [21]  
arough = 3 0.338 26.40 -405 24.92 -0.08 

0.813 2.614 
afinish =2 0.570 25.16 -430 -702 0 

GA[24]  
 

arough = 3 0.366 24.69 -459 -28.81 -0.04 
0.8102 2.61 

afinish =2 0.5667 25.16 -427 -698 0 

PGSA[24]  
arough = 3 0.3693 24.25 -465 -35 0.2 

0.8 2.60 
afinish =2 0.5886 24.58 -452 -74 0 

Tribes[26]  
arough = 3 0.587 36.27 -8.50 -420 -4.18 

0.512 2.212 
afinish =2 0.902 30.16 -797 -1069    -2.57 

ABC[29] 

arough = 1.5 0.337 46.982 4.708 435.02 0.0047 

1.240 3.240 
arough = 1.5 0.337 46.982 4.708 435.02 0.0047 
arough = 1.5 0.337 46.982 4.708 435.02 0.0047 
afinish =0.5 0.432 64.410 271.97 1.131 1.400 

PSO[29] 

arough = 1.5 0.340 46.610 1.5 431.9 0.01 

1.240 3.240 
arough = 1.5 0.340 46.610 1.5 431.9 0.01 
arough = 1.5 0.340 46.610 1.5 431.9 0.01 
afinish =0.5 0.434 63.580 271.9 0.35 1.422 

SA[29] 

arough = 1.5 0.336 44.633 5.779 436.09 0.204 

1.263 3.263 
arough = 1.5 0.336 44.633 5.779 436.09 0.204 
arough = 1.5 0.336 44.633 5.779 436.09 0.204 
afinish =0.5 0.429 57.230 273.91 2.296 1.683 

TLBO 

arough = 1.5 0.341 46.641 0.435 430.755 0.0001 

1.237 3.237 arough = 1.5 0.341 46.641 0.435 430.755 0.0001 

arough = 1.5 0.341 46.641 0.435 430.755 0.0001 

afinish =0.5 0.434 66.8576 271.975 0.355 1.297 
SC: Arbor strength constraint, DC: Arbor deflection constraint, and PC: Power constraint  
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Fig. 1. Convergence of TLBO algorithm for optimization of abrasive water jet machining 

process 
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Fig. 2. Convergence of TLBO algorithm for optimization of grinding process 
 


