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Abstract
In this article, we apply an optimal control over a
convectively unstable flow to attenuate the disturbance
amplitudes downstream of the flow. In this regard, we
adopt Ginzburg-Landau (GL) equation to model the con-
vectively dominated unstable flow over a flat plate. The
motivation to design the appropriate controller is to delay
the transition process over a flat plate. We integrate the
GL equation with standard optimal control (LQR) to
design the controller. We supply proper control actuation
and observe a substantial decrease in the amplitude of the
perturbations downstream of the flow.
Keywords - Transition delay; Active flow control;
Ginzburg-Landau (GL) equation; LQR Linear quadratic
regulator

I. INTRODUCTION
Linear amplification caused by initial fluctuations in

any flow is among one of the several paths to induce
the transition to turbulence. Other mechanism includes
transient growth possessing higher amplitude to the eigen-
mode growth (TS path) [1], or transient growth directly
result in secondary instability, or receptivity bypasses and
undergoing breakdown to turbulence (bypass transition)
[2]. Once the flow undergoes turbulence, it will be
difficult to control as the flow is chaotic. We intend
to control the convectively growing instabilities before
the flow starts undergoing transition. The stability of a
flow can be determined by calculating the response to
an impulse at, say x = 0 and t = 0. If the response
of the flow amplifies and convected away from x = 0,
the flow is locally convectively unstable. In this regard,
Huerre [3] and Monkewitz [4] extensively studied the
global and convective instability behavior of the basic
flow. Although in the convectively unstable flows, the
disturbances eventually flush out of the domain, it causes
unnecessary drag and noise in the system. Our aim
in this paper is to limit the further increment of the
disturbances in the flow downstream. Researchers have
successfully achieved delay in transition process by lim-

iting the amplitude of unstable waves downstream [5], [6],
[7]. Nitsche [8] also studied transition delay over airfoil
using adaptive system identification approach. We start
with a simple mathematical model (one dimensional GL-
equation) which mimics and preserves essential stability
characteristic of fluid flow over a flat plate. Fabbiane [6]
achieved the control of these unstable waves through the
model based (KS equation model) and model free meth-
ods. In contrast we have adopted the similar approach
with GL equation model the flow and integrated the
optimal control to attenuate the growth of the convectively
unstable disturbances in the system. Although the GL
equation is not strictly used to model the flow over flat
plate, but it can also be extended to model the parabolic
flow, diverging flows as well. But in order to mimic the
dynamical behavior of the real flows, we need to tune
the parameters/co-efficients of the GL in such a way
that it inherits the essential stability characteristics of
the different flows. Nevertheless, the role of Reynolds
number associated with the real flow is taken care by the
parameters/coefficients in GL equation.

II. SYSTEM FORMULATION
We consider a steady uniform flow V over flat plate

of finite length L = 800 as shown in FIG. 1. One
dimensional domain is chosen at particular Y location =
δ?0 , where δ?0 is displacement thickness at x = 0. (see FIG.
1). It also shows a schematic of flow over flat plate with
discrete sensors and actuators. Flow is subjected to initial
disturbance signal d(t) via disturbance actuator near the
leading edge. Because of the convectively unstable nature,
disturbance grows and convects downstream. The flow
dynamics downstream is then measured by reference
sensor as y(t) signal. A control actuator is designed and
kept downstream which modulates the signal as u(t)
based on the desired attenuation of error signal z(t)
measured by error sensor even further downstream. For
a given reference signal y(t), our aim of this work is to
design the control signal u(t) in order to achieve a desired
attenuation of error signal z(t).
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Figure 1: Flow setup along with actuators and sensors.

A. Ginzburg-Landau equation model
Landau-Ginzburg equation [9] for convection domi-

nated flow, is described as,

∂v′

∂t
= −ν ∂v

′

∂x
+ γ

∂2v′

∂x2
+ µv′ (1)

where v′, x, t are stream wise perturbation velocity,
stream wise coordinate and time coordinate. The convec-
tive, dissipative and exponential nature of perturbations
are associated with coefficients ν, γ and µ respectively.
In general the coefficient µ = µ(x) is a function of x
for spatially developing flows, but we will consider it
as constant coefficient for the sake of simplicity of the
model. These coefficients are chosen in such a way that
the dynamics closely matches with the two dimensional
boundary layer behavior at Reynolds number Re(δ?0 ) =
1000. Where Re(δ?0 ) is defined based on characteristic
length scale as boundary layer thickness δ?0 at (x = 0).
Disturbance actuator placed at x = 35, impinges initial
Gaussian disturbance to the system as d(t). A reference
sensor placed at x = 300 senses the initial dynamics of
flow downstream as y(t). An actuator placed at x = 400,
supplies a control action as u(t) followed by sensing
of flow as z(t) by an error sensor placed at x = 700.
Coefficient values of ν = 0.4, γ = −0.0285 and
µ = −0.04 are chosen so that the dynamics mimics
the disturbance response of flow over flat plate. Inlet
boundary conditions are considered as, v′|x=0 = 0 and
∂v′

∂x |x=0 = 0, whereas outflow boundary conditions are
set to be, ∂v′

∂x |x=L = 0 and ∂3v′

∂x3 |x=L = 0, to ensure
the smooth exit of the disturbance wave. FIG. 2 shows
variation of v′rms with streamwise x location for KS
equation model along with. The perturbation response of
the system is obtained with initial random perturbation
at x = 35. Root mean squared velocity (v′rms(x)) is

defined as,
√

(v′(x)2 − v′(x)
2
, where v′(x) is time av-

eraged perturbation velocity at particular streamwise x
location. The perturbation response of Ginzburg-Landau
equation model (with constant coefficients as ν = 0.4,
γ = −0.0285 and µ = −0.04) is validated with
KS (kuramoto-sivashinsky) equation model and Navier-
stokes DNS model presented in [6] as shown in the FIG.
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Figure 2: Plot of perturbation responses (v′rms) with
streamwise x locations (at coefficient values of ν = 0.4,
γ = −0.0285 and µ = −0.04). Plot is also validated
with the Fabianne’s [6] KS-equation model data.

B. Linear stability approach
Stability properties are analyzed through normal mode

analysis by assuming,

v′ = v̂ei(kx−ωt) (2)

where k, ω and v̂ are spatial frequency, temporal fre-
quency and amplitude of the traveling wave respectively.
Substituting above assumed traveling wave solution in the
governing GL equation, we get the dispersion relation as,

ω = νk + i(µ− γk2) (3)

Positive values of (ωi) are associated with exponential
growth of disturbances. It is observed that for a particular
interval of wavenumber, i.e. for k >

√
µ
γ we have ωi>

0. Also the ωr/k = µ determines the wave propagation
speed.

C. Control integration
We modify GL equation by introducing a forcing

function f ′(x, t) into it. This forcing function includes
the disturbance d(t) and control actuation u(t) applied to
the system.

∂v′

∂t
=
[
− ν ∂v

′

∂x
+ γ

∂2v′

∂x2
+ µv′

]
+ f ′(x, t) (4)

we mathematical construct the model of actuators as,

f ′(x, t) = bd(x)d(t) + buu(t) (5)

where bd and bu are spatial dependence parameters of
actuators are given by Gaussian functions as,

bd = 1
σe

[
−
(
x−xd
σ

)2]
and bu = 1

σe

[
−
(
x−xu
σ

)2]
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where, σ is the variance of the Gaussian profile of
actuators and sensors and xd and xu are the locations
where the disturbance and control actuations are applied
respectively. Similarly measurement outputs y(t) and
z(t)are modeled as,

y(t) =

∫ L

0
cy(x)v′(x, t)dx (6)

z(t) =

∫ L

0
cz(x)v′(x, t)dx (7)

where spatially dependent kernal of sensors are also given
by Gaussian functions as,

cy = 1
σe

[
−
(
x−xy
σ

)2]
and cz = 1

σe

[
−
(
x−xz
σ

)2]
where xy and xz are the locations where reference and
error signals are measured respectively.

D. State space formulation and discretization
Assuming spatial discretization as v′(x, t) = v′(xi, t),

(where i = 1, 2, ..m). We may write it in vector form
as, v′ = [v′(x1), v

′(x2)...., v
′(xm)))]T . The governing GL

equation (1) can be written in the form as,
dv′

dt
= [A]v′ (8)

where [A] =
[
−ν ∂

∂x +γ ∂2

∂x2 +µ
]

=
[
−νD1+γD2+µ

]
is

the GL operator. D1,D2 are first and second order finite
difference operators and v′ forms the state vector. Upon
finite difference discretization, we can write,

v
′n+1
i − v′ni

∆t
= [A]v

′n
i (9)

Using Crank-Nicolson method, we rewrite,

v
′n+1
i − v′ni

∆t
= [A]

(v′ni
2

+
v
′n+1
i

2

)
(10)

v
′n+1
i =

(
I− ∆t

2
A
)−1(

I− ∆t

2
A
)

v
′n
i (11)

where index i represents the ith spatial node with step
length ∆x and n is the index for temporal node discretiza-
tion with step length ∆t.

Substituting the discretized forms in the equation (4),
we get the final state space form as,

dv′

dt
= [A]v′ +

[
Bd
]
d+

[
Bu
]
u (12)

and the measurement equations as,

Z =
[
Cz

]
v′ (13)

where
[
Bd
]
,
[
Bu
]

and
[
Cz

]
are kernals of actuators

and sensors also discussed previously. Equation (11) is
marched with time with the prescribed boundary con-
ditions and initial condition as random perturbation (of
gaussian profile at x = 35) all the times till (t = 5000).

E. Optimal control
Our goal is to design a controller which takes the

measurement from error sensor z(t) and supplies the
control signal u(t) in order to minimize the overall
perturbation amplitude. Cost function J is chosen as the
norm of output as,

J =
∫∞
0 norm

([
Z
u

])
dt (14)

where [
Z
u

]
=

[
Cz
0

]
v′ +

[
0
1

]
u (15)

J =

∫ ∞
0

(v
′TQv′ + uTRu)dt (16)

where Q = CT
z wCz , w and R are the weight matrices

(generally taken I identity matrix). In general, an op-
timization problem is formulated to minimize the cost
function J over over an infinite time horizon subject to the
constrain of equation (12). Solution of above optimization
problem is seek through the standard solution of Riccati
equation [10]. An optimal control gain K is then found
and shown in Figure 4 and is supplied through feedback
as u = −Kv′.

III. RESULTS AND DISCUSSION
We have designed an optimal control to attenuate

the convectively growing perturbation over a flat plate.
The aforementioned technique is successful to attenuate
the growing perturbation downstream of the flow. Figure

S
tr

ea
m

w
is

e 
x 

di
re

ct
io

n

Time
0

200

400

600

800

 
 

v(x,t)

−5 0 5

−2
0
2

d(
t)

−4
−2

0
2
4

y(
t)

−4
−2

0
2
4

u(
t)

0 1000 2000 3000 4000 5000

−10
0

10

Time

z(
t)

Figure 3: Perturbation evolution after applying LQR
control at time t = 2500.

3 shows the perturbation evolution and its controlled
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contour in space and time. The signal d(t) is the applied
disturbance signal (at x = 35) at all times. At a distance
x = 300 the reference sensor reads the y(t) signal. Fur-
ther downstream (at x = 400) a control actuation signal
is supplied to the system. This control signal is switched
on after time t = 2500. Once the control action is
supplied, the growing perturbations are getting canceled,
but we see the error sensor z(t) at x = 700, reads some
fluctuations till the previous instabilities washes out from
the domain. After supplying feedback after t = 2500, we
get the attenuation of overall perturbation amplitude. To
do so, we have found a static optimal control gain (shown
in the Figure 4) and supplied the control actuation as
u = −Kv′. A comparative plot of v′rms for uncontrolled
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Figure 4: Optimal control gain K

and with control effort is also shown in the Figure 5.
We see approximately 15 percent attenuation in the v′rms
of the perturbation data. However, it also evident that
after control application, the perturbations did not entirely
suppress forever, rather, the perturbations starts to grow
again in the downstream of the flow (because of the
growing dynamical nature of the flow). In other words we
did not cancel the disturbances entirely, but we eventually
delayed the transition process.

IV. CONCLUSIONS
We have designed an optimal controller in order

to attenuate the disturbances growth in a convectively
unstable flow. We have adopted Ginzburg-Landau (GL)
equation to model the convectively dominated unstable
flow over a flat plate. In order to delay the transition, we
have integrated the GL equation with standard optimal
control (LQR). After supplying the feedback control, we
have achieved a substantial decrease in the amplitude
of perturbation growth downstream of the flow. With
the suppression of perturbation field, subsequently we
achieve the delay in the transition process in the flow.
This work can be extend to the parabolic flows, diverging
flows too. It would be interesting to model different flow
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Figure 5: Plot comparison of uncontrolled v′rms with
controlled v′rms perturbation velocity.

situations with The GL equation integrated with control,
and at the same time preserving the essential stability
characteristics of the flows.
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