The Existence of Positive Solutions for the Sturm-Liouville Boundary Value Problems

R. P. AGARWAL
Department of Mathematics
National University of Singapore
10 Kent Ridge Crescent, Singapore 119260

HUEI-LIN HONG AND CHEH-CHIH YEH
Department of Mathematics
National Central University
Chung-Li, 32054 Taiwan, R.O.C.

(Received and accepted July 1997)

Abstract—For the Sturm-Liouville boundary value problem

\[(p(t)u'(t))' + \lambda f(t, u(t)) = 0, \quad 0 < t < 1,\]
\[\alpha_1 u(0) - \beta_1 p(0)u'(0) = 0,\]
\[\alpha_2 u(1) + \beta_2 p(1)u'(1) = 0,\]

where \(\lambda > 0\), we shall use a fixed point theorem in a cone to obtain the existence of positive solutions for \(\lambda\) on a suitable interval.

Keywords—Sturm-Liouville boundary value problem, Cone, Fixed point theorem.

1. INTRODUCTION

Consider the Sturm-Liouville boundary value problem

\[(p(t)u'(t))' + \lambda f(t, u(t)) = 0, \quad 0 < t < 1,\]
\[\alpha_1 u(0) - \beta_1 p(0)u'(0) = 0,\]
\[\alpha_2 u(1) + \beta_2 p(1)u'(1) = 0,\]

where \(\lambda > 0\), \(\alpha_i, \beta_i \geq 0\) for \(i = 1, 2\) and \(\alpha_1 \alpha_2 + \alpha_1 \beta_2 + \alpha_2 \beta_1 > 0;\)

\(f(t, u) \in C([0, 1] \times [0, \infty), \mathbb{R})\), and there exists a positive constant \(M\) such that \(f(t, u) \geq -M\) for every \(t \in [0, 1], u \geq 0.\)

Recently, Anuradha, Hai and Shivaji [1] have established the following interesting result.

Theorem A. If \((H_1)-(H_3)\) hold, and

\[\lim_{u \to \infty} \frac{f(t, u)}{u} = \infty\]
uniformly on a compact subinterval \([\alpha, \beta]\) of \((0,1)\), then the boundary value problem (BVP) has a positive solution for \(0 < \lambda < \min\{(1/B)\|\bar{\omega}\|, (1/\gamma M)\}\), where
\[B = \sup_{0 \leq t \leq 1, 0 \leq u \leq 1} (f(t, u) + M) \]
and \(\bar{\omega}, \gamma\) are defined as in Remark 1 below.

The purpose of this paper is to offer the existence of a positive solution to (BVP) for \(\lambda\) on a suitable interval. The obtained results improve Theorem A.

For other related results, we refer to [2–6].

2. MAIN RESULTS

In order to prove our main results, we need the following three useful lemmas. The first is due to \([7,8]\), the other two are due to [1].

Lemma 1. (See \([7,8]\).) Let \(K\) be a cone in a Banach space \(E\) and \(\Omega_1, \Omega_2\) be two bounded open sets in \(E\) such that \(\theta \in \Omega_1\) and \(\bar{\Omega}_1 \subset \Omega_2\). Let \(A : K \cap (\bar{\Omega}_2 \setminus \Omega_1) \to K\) be a completely continuous operator. If
\[
\|Ax\| \leq \|x\|, \text{ for all } x \in K \cap \partial \Omega_1 \quad \text{and} \quad \|Ax\| \geq \|x\|, \text{ for all } x \in K \cap \partial \Omega_2 ,
\]
or
\[
\|Ax\| \geq \|x\|, \text{ for all } x \in K \cap \partial \Omega_1 \quad \text{and} \quad \|Ax\| \leq \|x\|, \text{ for all } x \in K \cap \partial \Omega_2 ,
\]
then \(A\) has at least one fixed point in \(K \cap (\bar{\Omega}_2 \setminus \Omega_1)\).

Lemma 2. (See \([1]\).) Let \((H_1), (H_2)\) hold and let \(u(t)\) satisfy
\[
(p(t)u'(t))' = -v(t), \quad 0 < t < 1,
\]
\[
\alpha_1 u(0) - \beta_1 p(0)u'(0) = 0,
\]
\[
\alpha_2 u(1) + \beta_2 p(1)u'(1) = 0,
\]
where \(v(t) \in L^1(0,1), v(t) \geq 0\). Then,
\[
u(t) \geq \|u\|q(t), \text{ for } t \in [0,1],
\]
where
\[
q(t) = \min \left(\frac{\beta_1 + \alpha_1 \int_0^t (dr/p(r))}{\beta_1 + \alpha_1 \int_0^1 (dr/p(r))}, \frac{\beta_2 + \alpha_2 \int_0^1 (dr/p(r))}{\beta_2 + \alpha_2 \int_0^1 (dr/p(r))} \right).
\]
Here \(\| \cdot \|\) stands for the sup norm.

Lemma 3. (See \([1]\).) Let \((H_1), (H_2)\) hold and let \(\bar{\omega}(t)\) be the solution of following boundary value problem:
\[
(p(t)u'(t))' = -1, \quad 0 < t < 1,
\]
\[
\alpha_1 u(0) - \beta_1 p(0)u'(0) = 0,
\]
\[
\alpha_2 u(1) + \beta_2 p(1)u'(1) = 0.
\]
Then, there exists a positive constant \(\gamma\) such that \(\bar{\omega}(t) \leq \gamma q(t)\) for every \(t \in [0,1]\), where \(q(t)\) is defined in Lemma 2.

Remark 1. It follows from the proof of Lemma 3 in [1] that
\[
\bar{\omega}(t) = \rho^{-1} \left[\left(\beta_2 + \alpha_2 \int_0^1 \frac{dr}{p(r)} \right) \left(\int_0^t \left(\beta_1 + \alpha_1 \int_0^s \frac{dr}{p(r)} \right) ds \right) + \left(\beta_1 + \alpha_1 \int_0^t \frac{dr}{p(r)} \right) \left(\int_0^1 \left(\beta_2 + \alpha_2 \int_0^1 \frac{dr}{p(r)} \right) ds \right) \right] \geq 0,
\]
where
\[\rho = \alpha_1 \beta_2 + \alpha_1 \alpha_2 \int_0^1 \frac{dr}{p(r)} + \beta_1 \alpha_2. \]

After a simple calculation, we find that
\[\gamma = \rho^{-1} \left(\beta_1 + \alpha_1 \int_0^1 \frac{dr}{p(r)} \right) \left(\beta_2 + \alpha_2 \int_0^1 \frac{dr}{p(r)} \right). \]

Throughout this paper, we shall denote
\[\sigma = \min_{t \in [1/4, 3/4]} q(t), \]
\[Q = \left(\int_{1/4}^{3/4} G \left(\frac{1}{2}, s \right) ds \right)^{-1} \]
and
\[R = \left(\int_0^1 G(s, s) ds \right)^{-1}, \]
where \(q(t) \) is defined in Lemma 2 and \(G(t, s) \) is the Green's function of the differential equation \((p(t)u'(t))' = 0 \) with the boundary conditions \(\alpha_1 u(0) - \beta_1 p(0)u'(0) = 0, \alpha_2 u(1) + \beta_2 p(1)u'(1) = 0, \) i.e.,
\[G(t, s) = \left\{ \begin{array}{ll}
\rho^{-1} \left(\beta_1 + \alpha_1 \int_0^s \frac{dr}{p(r)} \right) \left(\beta_2 + \alpha_2 \int_t^1 \frac{dr}{p(r)} \right), & \text{for } 0 \leq s \leq t \leq 1, \\
\rho^{-1} \left(\beta_1 + \alpha_1 \int_0^t \frac{dr}{p(r)} \right) \left(\beta_2 + \alpha_2 \int_0^1 \frac{dr}{p(r)} \right), & \text{for } 0 \leq t \leq s \leq 1,
\end{array} \right. \]
where \(\rho \) is defined in Remark 1. By the definition of \(G(t, s) \), it is clear that \(G(t, s) \leq G(s, s) \), for all \(t \in [0, 1] \).

THEOREM 1. Let (H1)-(H3) hold. Assume that there exist a function \(h : [0, 1] \to \mathbb{R} \) and a positive constant \(k \) such that
\[f(t, u) + M \geq h(t), \quad \text{for } t \in \left[\frac{1}{4}, \frac{3}{4} \right], \quad u \in [0, \gamma k(M + 1)], \quad (H_4) \]
\[\int_{1/4}^{3/4} G \left(\frac{1}{2}, s \right) h(s) ds \geq \gamma (M + 1), \quad (H_5) \]
where \(\gamma \) is defined in Lemma 3. If
\[\lim_{u \to \infty} \max_{t \in [0, 1]} \frac{f(t, u)}{u} = C_1 \in \left(0, \frac{R}{k}\right). \quad (H_6) \]

Then, (BVP) has at least one positive solution for \(\lambda \in (0, k] \).

PROOF. Let \(\lambda \in (0, k] \) be given and \(q(t) \) be as in Lemma 2. Set \(w(t) = \lambda M \bar{w}(t) \), where \(\bar{w}(t) \) is defined in Remark 1. Since \(q(t) \leq 1 \) on \([0, 1]\), it follows from Lemma 3 that
\[w(t) \leq \lambda \gamma M, \quad \text{for all } t \in [0, 1]. \quad (3) \]

Hence, \(u_1(t) \) is a positive solution of (BVP) if and only if \(\bar{u}(t) = u_1(t) + w(t) \) is a solution of the boundary value problem
\[(p(t)u')' = -\lambda \bar{g}(t, u - w), \quad 0 < t < 1, \]
\[\alpha_1 u(0) - \beta_1 p(0)u'(0) = 0, \quad (BVP^*) \]
\[\alpha_2 u(1) + \beta_2 p(1)u'(1) = 0, \]
with $\tilde{u}(t) > w(t)$ on $(0, 1)$, where

$$g(t, u) = \begin{cases} g(t, u), & \text{for } u \geq 0, \\ g(t, 0), & \text{for } u < 0, \end{cases}$$

with $g(t, u) = f(t, u) + M$ is a nonnegative continuous function on $[0, 1] \times [0, \infty)$.

Let $K = \{ u \in C[0, 1] : u(t) \geq \| u \| q(t), \ t \in [0, 1] \}$. Clearly, K is a cone. If $u(t)$ is a solution of (BVP*), then $u(t)$ satisfies the integral equation

$$u(t) = \lambda \int_0^1 G(t, s)g(s, u(s) - w(s)) \, ds.$$

Now we define the operator T_λ on K by

$$T_\lambda u(t) = \lambda \int_0^1 G(t, s)g(s, u(s) - w(s)) \, ds. \tag{4}$$

From Lemma 2 and Ascoli's Lemma, it is easy to show that $T_\lambda : K \to K$ is completely continuous.

Now, we will show that T_λ has a fixed point in K, for all $\lambda \in (0, k \cdot R)$. Since

$$w(t) = \lambda M \tilde{w}(t) \leq \lambda \gamma M q(t) \leq \frac{\lambda \gamma M}{\| u \|} u(t),$$

it follows that

$$u(t) - w(t) \geq \left(1 - \frac{\lambda \gamma M}{\| u \|}\right) u(t), \quad \text{for } u \in K. \tag{5}$$

By (Hδ),

$$\lim_{u \to \infty} \max_{t \in [0, 1]} \frac{f(t, u) + M}{u} = \lim_{u \to \infty} \max_{t \in [0, 1]} \frac{f(t, u)}{u} = C_1 \in \left[0, \frac{R}{k}\right).$$

Taking $\varepsilon = R/k - C_1$, there exists $\xi > 0$ such that

$$\max_{t \in [0, 1]} \frac{g(t, u)}{u} \leq \varepsilon + C_1 = \frac{R}{k}, \quad \text{for } u \in [\xi, \infty). \tag{6}$$

Therefore, for $\eta > \max\{\xi, \lambda \gamma (M + 1)\}$ large enough,

$$g(t, u) \leq \frac{\eta R}{k}, \quad \text{on } [0, 1] \times [0, \eta].$$

By this and (5) and (6), for $u(t) \in K$ and $\| u \| = \eta$, we have

$$\tilde{g}(t, u - w) = g(t, u - w) \leq \frac{\eta R}{k}, \tag{7}$$

for $t \in [0, 1]$. Let

$$\Omega_1 = \{ u \in K : \| u \| < \lambda \gamma (M + 1) \}$$

and

$$\Omega_2 = \{ u \in K : \| u \| < \eta \}.$$

Then, by (2) and (7),

$$T_\lambda u(t) = \lambda \int_0^1 G(t, s)\tilde{g}(s, u(s) - w(s)) \, ds \leq \frac{\lambda \eta R}{k} \int_0^1 G(t, s) \, ds \leq \eta,$$

for $u \in \partial \Omega_2$. Thus

$$\| T_\lambda u \| \leq \| u \|, \quad \text{for } u \in \partial \Omega_2. \tag{8}$$
On the other hand, it follows from Lemma 2 that
\[\gamma k(M + 1) \geq \lambda \gamma (M + 1) \geq u(t) \geq u(t) - w(t) \geq \|u\|q(t) - \lambda M \bar{w}(t) \geq \lambda \gamma q(t) > 0, \] (9)
for \(u \in \partial \Omega_1 \). Combining (9), (H4), and (H5), we obtain
\[
T_\lambda u \left(\frac{1}{2} \right) = \lambda \int_0^1 G \left(\frac{1}{2}, s \right) \bar{g}(s, u(s) - w(s)) \, ds \\
\geq \lambda \int_{1/4}^{3/4} G \left(\frac{1}{2}, s \right) \bar{g}(s, u(s) - w(s)) \, ds \\
\geq \lambda \int_{1/4}^{3/4} G \left(\frac{1}{2}, s \right) \bar{h}(s) \, ds \geq \lambda \gamma (M + 1).
\]
Thus,
\[\|T_\lambda u\| \geq \|u\|, \quad \text{for } u \in \partial \Omega_1. \] (10)

It follows from (8), (10), and Lemma 1 that there exists \(\bar{u} \in K \cap (\overline{K} \setminus \Omega_1) \) such that \(T_\lambda \bar{u}(t) = \bar{u}(t) \) and \(\|\bar{u}\| \) is between \(\lambda \gamma (M + 1) \) and \(\eta \). By (3), \(\bar{u}(t) > w(t) \) on \([0,1]\), and so \(u_1(t) = \bar{u}(t) - w(t) \) is a positive solution of (BVP) for \(\lambda \in (0, k] \). This completes the proof.

Remark 2. We can take the constant \(k \) in Theorem 1 as
\[k = \frac{1}{\gamma (M + 1)} \sup \{ \|u\| : f(t, u) + M \geq h(t) \text{ on } [0,1], \text{ and } u \geq 0 \}. \]

Theorem 2. Let (H1)-(H3) hold. Assume that there exist a function \(h : [0,1] \to \mathbb{R} \) and a positive constant \(k \) such that
\[f(t, u) + M \leq h(t), \quad \text{for } t \in [0,1], \quad u \in [0, \gamma k(M + 1)], \] (H7)
\[\int_0^1 G(s, s) h(s) \, ds \leq \gamma (M + 1), \] (H8)
where \(\gamma \) is defined in Lemma 2.
(a) If
\[\lim_{u \to \infty} \min_{t \in [1/4,3/4]} \frac{f(t, u)}{u} = \infty, \] (H9)
then (BVP) has at least one positive solution for \(\lambda \in (0, k] \).
(b) If \(k > 1 \) and
\[\lim_{u \to \infty} \min_{t \in [1/4,3/4]} \frac{f(t, u)}{u} = C_2 \in \left(\frac{Q}{\sigma}, \infty \right), \] (H10)
then (BVP) has at least one positive solution for \(\lambda \in [1, k] \).

Proof. Let \(w(t), \bar{g}(t, u), \bar{g}(t, u), K, \) and \(T_\lambda \) be as in the proof of Theorem 1. Thus (3), (5), and (9) hold. Moreover, \(u_1(t) \) is a positive solution of (BVP) if and only if \(\bar{u}(t) = u_1(t) + w(t) \) is a solution of the boundary value problem (BVP*). If we can prove that \(T_\lambda \) has a fixed point \(\bar{u}(t) \in K \) with \(\bar{u}(t) > w(t) \) on \([0,1]\), then \(u(t) = \bar{u}(t) - w(t) \) is a positive solution of (BVP).

Case (a). Let \(\lambda \in (0, k] \). By (H9),
\[\lim_{u \to \infty} \min_{t \in [1/4,3/4]} \frac{f(t, u) + M}{u} = \lim_{u \to \infty} \min_{t \in [1/4,3/4]} \frac{f(t, u)}{u} = \infty. \] (11)
Let $\tilde{M} = 2Q/\lambda \sigma$. Using (5) and (11), we see that, for $\eta > \max\{2\lambda \gamma M, \lambda \gamma (M + 1)\}$ large enough and $u \in K$ with $\|u\| = \eta$,

$$u(t) - w(t) \geq \frac{1}{2} u(t) \geq \frac{1}{2} \eta \sigma$$

and

$$\tilde{g}(t, u - w) = g(t, u - w) \geq \tilde{M} (u(t) - w(t)) \geq \frac{\tilde{M} \eta \sigma}{2} = \eta Q,$$

for $t \in [1/4, 3/4]$. Again, let $\Omega_1 = \{u \in K : \|u\| < \lambda \gamma (M + 1)\}$ and $\Omega_2 = \{u \in K : \|u\| < \eta\}$. Then, by (1) and (12),

$$T_\lambda u \left(\frac{1}{2} \right) = \lambda \int_0^{1/4} G \left(\frac{1}{2}, s \right) \tilde{g}(s, u(s) - w(s)) \, ds$$

$$\geq \lambda \int_{1/4}^{3/4} G \left(\frac{1}{2}, s \right) \tilde{g}(s, u(s) - w(s)) \, ds$$

$$\geq \eta Q \int_{1/4}^{3/4} G \left(\frac{1}{2}, s \right) \, ds = \eta,$$

for $u \in \partial \Omega_2$. Thus,

$$\|T_\lambda u\| \geq \|u\|, \quad \text{for } u \in \partial \Omega_2. \quad (13)$$

On the other hand, by (9), (H1), and (H8),

$$T_\lambda u(t) = \lambda \int_0^t G(t, s) \tilde{g}(s, u(s) - w(s)) \, ds$$

$$\leq \lambda \int_0^t G(s, s) h(s) \, ds \leq \lambda \gamma (M + 1),$$

for $u \in \partial \Omega_1$. Hence,

$$\|T_\lambda u\| \leq \|u\|, \quad \text{for } u \in \partial \Omega_1. \quad (14)$$

It follows from (13), (14), and Lemma 1 that there exists $\bar{u} \in K \cap (\Omega_2 \setminus \Omega_1)$ such that $T_\lambda \bar{u}(t) = \bar{u}(t)$ and $\|\bar{u}\|$ is between $\lambda \gamma (M + 1)$ and η. By (3), we obtain that $\bar{u}(t) > w(t)$ on $[0, 1]$, and so $u_1(t) = \bar{u}(t) - w(t)$ is a positive solution of (BVP) for $\lambda \in (0, k]$. This completes the proof of Case (a).

Case (b). Let $\lambda \in [1, k]$. By (H10),

$$\lim_{u \to \infty} \min_{t \in [1/4, 3/4]} f(t, u) + \frac{M}{u} = \lim_{u \to \infty} \min_{t \in [1/4, 3/4]} \frac{f(t, u)}{u} = C_2 \in \left(\frac{Q}{\sigma}, \infty \right). \quad (15)$$

Taking $\epsilon = C_2 - Q/\sigma$, there exists $\eta > \gamma (M + 1)$ large enough such that

$$\min_{t \in [1/4, 3/4]} \frac{g(t, u)}{u} \geq -\epsilon + C_2 = \frac{Q}{\sigma}, \quad \text{for } u \in [\delta \eta, \infty),$$

where $\delta \in (0, \sigma) \subset [0, 1]$. Hence, for $u(t) \in K$ and $\|u\| = \eta$,

$$g(t, u(t)) \geq \frac{Q}{\sigma} u(t) \geq \frac{Q}{\sigma} \|u\| q(t) \geq \eta Q, \quad \text{on } \left[\frac{1}{4}, \frac{3}{4} \right] \times [\delta \eta, \eta]. \quad (16)$$

Since (5) holds and $\delta \in (0, \sigma) \subset (0, 1)$, we can choose η so large that, for $\|u\| = \eta$,

$$u(t) - w(t) \geq \left(1 - \frac{\gamma (M + 1)}{\|u\|} \right) \sigma \|u\| \geq \delta \|u\| = \delta \eta.$$
This and (16) imply
\[g(t, u(t) - w(t)) = g(t, u(t) - w(t)) \geq \eta Q, \] (17)
for \(t \in [1/4, 3/4], u \in \mathcal{K}, \) and \(\|u\| = \eta. \) Let \(\Omega_1 \) and \(\Omega_2 \) be as in Case (a) for \(\lambda \in [1, k]. \) Then, by (1) and (17),
\[
T_\lambda u \left(\frac{1}{2}\right) = \lambda \int_0^1 G \left(\frac{1}{2}, s\right) g(s, u(s) - w(s)) \, ds \\
\geq \int_{1/4}^{3/4} G \left(\frac{1}{2}, s\right) g(s, u(s) - w(s)) \, ds \\
\geq \eta Q \int_{1/4}^{3/4} G \left(\frac{1}{2}, s\right) \, ds = \eta,
\]
for \(u \in \partial \Omega_2. \) Thus,
\[
\|T_\lambda u\| \geq \|u\|, \quad \text{for } u \in \partial \Omega_2. \tag{18}
\]
On the other hand, it follows from (9), (H_7), and (H_8) that (14) holds for \(u \in \partial \Omega_1. \) By (14), (18), and Lemma 1, there exists \(\bar{u} \in \mathcal{K} \cap (\Omega_2 \setminus \Omega_1) \) such that \(T_\lambda \bar{u}(t) = \bar{u}(t) \) and \(\|\bar{u}\| \) is between \(\lambda \gamma (M+1) \) and \(\eta. \) By (3), we obtain \(\bar{u}(t) > w(t) \) on \([0,1],\) and so \(u(t) = \bar{u}(t) - w(t) \) is a positive solution of (BVP) for \(\lambda \in [1, k]. \) This completes the proof.

Remark 3. The constant \(k \) in Theorem 2 can be taken as
\[
k = \frac{1}{\gamma(M+1)} \sup\{\|u\| : f(t, u) + M \leq h(t) \text{ on } [0,1], \text{ and } u \geq 0\}.
\]

Example 1. Consider the boundary value problem
\[
\begin{align*}
u''(t) + \lambda f(t, u(t)) &= 0, \quad \text{for } 0 < t < 1, \\
u(0) &= u(1) = 0, \tag{19}
\end{align*}
\]
where
\[f(t, u) = 214 t e^{1000-u} - 9t \cos u \geq -9 = -M, \quad \text{for } t \in [0,1] \text{ and } u \geq 0. \]
Clearly, \(\bar{u}(t) = 1/2 t(1-t), \gamma = 1. \) Since \(f(t, u) \) satisfies
\[
\lim_{u \to \infty} \frac{f(t, u)}{u} = 0 \text{ uniformly on each compact subset of } (0,1),
\]
Theorem A cannot be applied to (19). However, if we take \(h(t) = 214t, \) then \(k = 100, \gamma k(M+1) = 1000. \) Therefore,
\[
f(t, u) + M \geq 214 t e^{1000-u} \geq 214t = h(t), \quad \text{on } [0,1] \times [0,1000].
\]
Since the Green's function of (19) is
\[
G(t, s) = \begin{cases} t(1-s), & 0 \leq t \leq s \leq 1, \\ s(1-t), & 0 \leq s \leq t \leq 1, \end{cases}
\]
we have
\[
\int_{1/4}^{3/4} G \left(\frac{1}{2}, s\right) h(s) \, ds = \frac{321}{32} \geq 10 = \gamma (M+1)
\]
and
\[
\lim_{u \to \infty} \max_{t \in [0,1]} \frac{f(t, u)}{u} = 0.
\]
Hence \((H_4)-(H_6)\) hold. Thus, by Theorem 1, we see that (19) has at least one positive solution for all \(\lambda \in (0, 100]\).

Example 2. Consider the boundary value problem

\[
\begin{align*}
 u''(t) + \lambda f(t, u(t)) &= 0, \quad \text{for } 0 < t < 1, \\
 u(0) = u(1) &= 0,
\end{align*}
\]

where \(f(t, u) = t^{10}u^{3/2} - 9t \cos u \geq -9 = -M, \quad \text{for } t \in [0, 1] \text{ and } u \geq 0.\)

Clearly, \(\bar{w}(t) = (1/2)t(1-t), \quad \gamma = 1.\) Since \(f(t, u)\) satisfies

\[
\lim_{u \to \infty} \frac{f(t, u)}{u} = \infty \quad \text{uniformly on a compact subset of } (0, 1),
\]

by Theorem A, we find that (20) has a nonnegative solution for

\[
0 < \lambda < \min \left\{ \frac{1}{B\|\bar{w}\|}, \frac{1}{\gamma M} \right\} \leq \frac{1}{\gamma M} = \frac{1}{9}.
\]

However, if we take \(h(t) = 1000t^{10} + 18, \) then \(k = 10, \quad \gamma k(M+1) = 100\) and

\[
f(t, u) + M \leq t^{10}u^{3/2} + 18 \leq 1000t^{10} + 18 = h(t), \quad \text{on } [0, 1] \times [0, 100].
\]

Since the Green’s function of (20) is the same as in Example 1, it is easy to see that

\[
\int_0^1 G(s, s)h(s) \, ds = \int_0^1 s(1-s)(1000s^{10} + 18) \, ds = \frac{1468}{156} < 10 = \gamma(M+1)
\]

and

\[
\lim_{u \to \infty} \min_{t \in [1/4, 3/4]} \frac{f(t, u)}{u} = \infty.
\]

Hence \((H_7)-(H_9)\) hold. Thus, by Theorem 2(a), we see that (20) has at least one positive solution for all \(\lambda \in (0, 10].\)

References

