Mobile Networks and Applications (2020) 25:1816-1832
https://doi.org/10.1007/s11036-020-01563-x

®

Check for
updates

QoE Aware loT Application Placement in Fog Computing
Using Modified-TOPSIS

Gaurav Baranwal ' @ - Ravi Yadav' - Deo Prakash Vidyarthi?

Published online: 6 August 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

Over the years, fog computing has emerged as a paradigm to complement the cloud computing in handling the delay sensitive [oT
applications in a better manner. Using fog resources, better performance such as in-time service delivery, reduced network load,
optimal energy usage etc. can be achieved. With such performance gain, users availing the IoT services are more satisfied. A
well-known metric Quality of Experience (QoE), used to measure the satisfaction of IoT users, can be improved by enhancing the
performance of the IoT applications. Fog computing is a geographically distributed paradigm and primary service of fog
computing may not include the execution of offloaded tasks/applications from the IoT devices. This makes QoE aware placement
of applications in fog computing a greater challenge. Since placement algorithm is itself a computational task and both IoT
applications and fog nodes need a mediator fog node to execute the placement algorithm, the placement policy should be light
weighted in terms of computational complexity. This work proposes a lightweight QoE aware application placement policy in
fog computing using Modified TOPSIS that prioritizes the applications and fog instances based on their expectation and
computational capability respectively for the placement. Modified TOPSIS inherits all the features of classical TOPSIS while
it removes rank reversal problem of classical TOPSIS. Simulation experiments, for a comparative study, depict that the proposed
model not only achieves the desired resource utilization, processing time, and reduced network congestion but reduces the
application placement time also significantly compared to the state of art.

Keywords Internet of Things (IoT) - Fog-integrated Cloud - Modified TOPSIS (M-TOPSIS) - Quality of Experience (QoE) -
Application placement

1 Introduction

The vision of the Internet of Things (IoT) is the added auto-
mation and smartness to human life. A rapid growth in the
number of IoT devices is not unforeseen. Early IoT stages
have witnessed an enormous increase in data generation by
the [oT devices which are further expected to grow

>4 Gaurav Baranwal
gaurav.baranwal @bhu.ac.in

Ravi Yadav
ravics85 @ gmail.com

Deo Prakash Vidyarthi
dpv@mail jnu.ac.in

Department of Computer Science, Banaras Hindu University,
Varanasi, India

School of Computer and Systems Sciences, Jawaharlal Nehru
University, New Delhi, India

@ Springer

exponentially. Cloud resources may not suffice to process
such voluminous data in a timely manner [1]. It necessitates
the need of local computing devices to support the require-
ments of [oT. The emergence of the fog computing is essen-
tially to fill this gap [2]. Placement of IoT applications on fog
resources, improves the performance such as in-time service
delivery, reduced network load optimal energy usage etc. Fog
computing is a supplement to cloud computing as it provides
an additional layer of computing infrastructure between loT
devices and the cloud. Such integrated infrastructure is re-
ferred as fog-integrated cloud [3].

IoT applications are placed on fog nodes in anticipation of
satisfactory services which can be measured using a customer
centric measurement, Quality of Experience (QoE). Basically,
QoE is the evaluation of the requirement and expectation of an
application for a particular service. But fog computing is geo-
graphically distributed paradigm and generally the primary
service of the fog nodes does not include the execution of
the offloaded tasks or applications from the IoT devices. For
example, primary service of router (a possible fog node) is to

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-020-01563-x&domain=pdf
http://orcid.org/0000-0002-9540-3173
mailto:gaurav.baranwal@bhu.ac.in

Mobile Netw Appl (2020) 25:1816-1832

1817

forward data packets. Because of this, QoE dominating factors
such as availability of fog nodes, processing time of fog nodes
and round trip time of network change very frequently. In
addition, QoE is more of a subjective matter and involves
the experience of the users. This makes the design of QoE
aware resource allocation policies a big challenge in fog com-
puting. In [4], authors define QoE as degree of delight of the
user of a service and it is affected by the influencing factors
which are responsible for technically produced quality of the
service. Thus, QoE can be improved automatically by improv-
ing its influencing factors. In an application placement, these
influencing factors are network quality, resource utilization,
processing time etc. By improving these influential factors, we
do not only improve QoE but also make customer more loyal
resulting in the reduction of the relinquish rate for the service
[2]. In application placement, requirement of applications and
resource capabilities of fog nodes are submitted to a mediator
fog node which executes the placement algorithm and maps
the applications on suitable fog nodes. As such, application
placement algorithm should exhibit minimal computational
complexity as the computing resources of a mediator fog node
may be constrained and the network of fog nodes may be
highly unstable. Therefore, in case of failure of selected me-
diator fog node, next node should be quickly assigned this job
(need to rerun the application placement algorithm).

Various feedback based methods, such as Net Promoter
Score (NPS) and Mean Opinion Scores (MOS), are proposed
in [5, 6] to measure the QoE. These methods require human
intervention, often defeating the very purpose of automation
in [oT. Some other proposed works, to measure the QoE, are
based on prediction 7, 8] but highly unstable fog environment
does not seem suitable for prediction based method. A possi-
ble approach is to consider parameters which are directly re-
lated to influencing factors of QoE during the placement of
IoT applications onto the fog nodes i.e. to design a QoE aware
placement policy. This not only prevents the degradation in
QoE but also monitors it well. We may refer these parameters
as ‘QoE dominated factors’. The most recent work, towards
this, is [2] in which authors have proposed QoE aware appli-
cation placement policy in fog computing considering QoE
dominated factors in decision making. The work in [2] uses
fuzzy logic to prioritize the IoT applications as well as the fog
computing instances on the basis of their expectation and their
computational capability respectively. Mapping of these ap-
plications, on computing instances, is formulated as a single
objective multi-constrained optimization problem. Therefore,
some drawbacks have been identified in [2] which are as fol-
lows. It was observed that applied concept of fuzzy logic in
[2], may allot same priority to applications even with different
values of application dependent metric. Similarly, same prior-
ity may be assigned to fog computational instances with dif-
ferential computational capability. The third and very impor-
tant drawback is the very high computational complexity of

the application placement policy. These drawbacks, detailed
in Section 2, are the motivation for this work.

The proposed work designs a new QoE aware policy for
placement of [oT application on fog nodes by removing the
identified drawbacks of the state of the art work in [2]. In
the proposed work, all applications for execution are submit-
ted to a mediator fog node. It also collects the status of
available fog instances. Proposed application placement pol-
icy allocates the submitted applications to suitable fog com-
puting instances in a way such that QoE gain of the appli-
cation is maximized. To prioritize the applications as well as
fog computing instances, some method with less computa-
tional complexity is warranted. Multiple metrics are required
to prioritize the applications (i.e. service access rate, required
resources, expected processing time) and fog computing in-
stances (i.e. Proximity, Processing speed, Availability). This
necessitates a multi criteria decision making (MCDM) meth-
od. We observed that TOPSIS (Technique for Order of
Preference by Similarity to Ideal Solution) is a widely ac-
cepted, simple and efficient MCDM method. During the
implementation of TOPSIS, to rank the applications and
fog computing instances, it is noted that the rank reversal
problem prevails in TOPSIS. Therefore, inspired from the
work in [9], a modification is made to the TOPSIS that
handles the rank reversal problem well during the placement
of applications. The computational complexity of modified
TOPSIS is also very less. After prioritizing the applications
and fog computing instances, applications are mapped on
these computing instances in such a way that influencing
QOoE factors of the users, i.e. network quality, resource uti-
lization and processing time are improved significantly.
Further, computational complexity of the proposed applica-
tion placement algorithm is of polynomial time leading to a
significant reduction in application placement time (i.e. time
taken to rank applications and fog instances and to execute
proposed placement policy) is observed over the state of art
work [2]. This makes the proposed work most suitable for
fog computing environment.

The key contributions of the proposed work are as follows:

a) Both, applications and computing instances, are priori-
tized on the basis of their dependent metrics using
Modified TOPSIS.

b) Unlike state of art work [2], Modified TOPSIS have less
computational complexity, assigns different priority to
non-similar applications and computing instances and in
addition it removes rank reversal problem.

c) Applications are mapped to fog computing instances in
polynomial time to maximize the QoE of the users unlike
state of art work [2] which is a single objective multi-
constrained optimization problem.

d) Experimental study is provided which proves that the
proposed policy performs similar to state of art work [2]

@ Springer

1818

Mobile Netw Appl (2020) 25:1816-1832

in terms of network congestion, resource consumption,
processing time of applications. Also, application place-
ment time of the proposed work is much less in compar-
ison to state of art work.

The rest of the paper is organized as follows. Section 2
briefs a discussion on the existing work in the related area
identifying the drawbacks of state of art work. An overview
of the Fog integrated Cloud architecture is given in Section 3.
The proposed application placement policy is described in
Section 4. The computational complexity, of the proposed
policy, is given in Section 5. Case study, using the proposed
policy, has been illustrated in Section 6. The performance
evaluation of the proposed method, through simulation exper-
iments, has been carried out in Sections 7. Section 8 concludes
the work.

2 Related work and motivation

The QoE aware application placement, in fog-integrated cloud
computing, is a challenging problem. Though few works
[10-13], on application placement, have been proposed by
the researchers, only recent and most related QoE related
placement work in fog computing, are discussed here as
follows.

In [2], authors have proposed QoE-aware application
placement policy in fog environment. The policy aims in pri-
oritizing an application request based on the user’s expecta-
tion. In addition, the policy calculates the capability of fog
instances for matching the application’s resource requirement.
Users’ QoE is calculated in terms of utility access, resource
consumption and service delivery. Placement of applications
at suitable fog instances is done to maximize the users’ QoE.
This policy runs in a decentralized manner.

In [5], authors have proposed a methodology called MEdia
FOg Resource Estimation (MeFoRE). This prioritizes the re-
quests and fog nodes on the basis of users’ relinquish rate
(how frequently user gives up) and QoE measure obtained
using Net Promoter Score (NPS). NPS quantifies the feedback
given by the user on a scale of 0—10. The objective is to
maximize the utilization of fog nodes apart from the QoS
enhancement. The methodology keeps track of Service
Level Agreement (SLA) violation based on poor NPS score.
In order to regain the user loyalty, number of resources is
increased based on the degree of SLA violation.

P. Sondarabai et al. [14] presents various mechanisms such
as context-aware application placement, caching,
virtualization etc. to enhance the QoE in the fog environment.
The authors describe how QoE and QoS (Quality of Service)
are related and different at the same time. The authors also
highlight some challenges such as trustworthiness of fog

@ Springer

nodes, handover policy, data security etc. that arise during
the deployment of the fog environment.

In [15], authors considered the notion of fog colony to
create micro data centers. It consists of fog cells, a small soft-
ware running on the IoT devices. In a fog colony, an IoT
device is designated as control node to represent its colony.
The control node manages the computational resources of its
colony besides exploring the resources from other colonies to
meet out its computational requirement. A fog computing
management system, running in the cloud, manages the fog
colony and provides computational resources from cloud as
and when required. Authors have formulated the application
placement on virtualized fog nodes as an Integer Linear
Programming problem with deadline as QoS constraint.

Cloud computing facilitates online gaming with the re-
quired hardware and software. Due to its own limitation such
as user coverage, latency, network connection etc. the QoE of
players are affected. To overcome this, authors in [16] have
proposed lightweight system CloudFog by clubbing both
cloud and fog nodes. This system enables fog nodes to render
the game video and streaming to the nearby players. To en-
hance the playback continuity and to ensure the arrival of data
in players’ response latency, authors have proposed an adap-
tive video encoding strategy and a deadline driven sender
buffer scheduling respectively.

In [17], authors have proposed QoS-aware policy for the
placement of multi-component IoT applications on hierarchi-
cal fog infrastructure considering applications’ requirements
and the states of the fog nodes at the time of allocation. For the
profiling of the QoS, latency and bandwidth are considered.
Geographical location, access network level, type of connec-
tion and hardware and software capabilities are used to define
the characteristics of the fog nodes. Authors have developed a
Java based tool, called FogTorch, by incorporating the pro-
posed policy.

2.1 The motivation

The most recent QoE aware placement scheme is proposed in
[2]. We have identified some drawbacks (DBs) of [2] and have
listed them as follows. The proposed work addresses these
drawbacks and presents a new application placement policy.

DB1 Authors have proposed fuzzy logic based approach in [2]
to prioritize the application. The rating of the application is
based on the basis of application dependent metrics namely
Access Rate (Ar), Required Resources (Rr), and Processing
Time (Pf). Fuzzy logic is used to prioritize the fog computing
instances also by calculating the capacity score of the fog
nodes (similar to rating of application) on the basis of com-
puting instance dependent metrics namely Round Trip Time
(RTT), Resource Availability (Ra), and Processing Speed (Ps).
The applied fuzzy logic based approaches require maximum

Mobile Netw Appl (2020) 25:1816-1832

1819

and minimum values of each metric in [2], set by the mediator
fog node according to the scope of the metric in the fog envi-
ronment as given in Table 1.

It is also observed that in some of the cases the applications,
though differing in expectations, receive the same rating. A
possible reason may be that fuzzy logic based approach gives
higher weightage to comparatively rigid values of parameters.
Similar drawbacks are identified with the fog computing in-
stances as well. One such case with three applications and six
fog computing instances is given in Tables 2 and 3 respective-
ly. In both these tables, rating is calculated using the methods
given in [2] i.e. based on fuzzy logic.

Last column, in both the tables, shows the calculated rating
which indicates that even with different expectations (i.e. dif-
ferent values of application metrics), applications receive the
same rating. Also, fog computing instances with different ca-
pacity (different values of computing instance metrics) receive
same capacity score or rating.

DB2 Fuzzy inference engine, in itself, is a complex computa-
tional job which makes the use of fuzzy based approaches
computationally high. It is to be noted that the primary activity
of the fog devices is to execute its own set of tasks and not to
run users’ application. These devices are often not equipped
with high computing power. Therefore, some lightweight pol-
icy to prioritize the applications and fog computing instances
will be highly appreciated.

DB3 Application placement problem has been formulated as
an Integer Linear Problem in [2]. Some fog nodes, acting as
mediator, run the application placement algorithm. As the size
of the problem i.e. the number of applications and the number
of computing instances grows, more computing power is
needed to solve this problem in a limited amount of time.
This warrants an application mapping method that runs in
polynomial time and produces the result quickly.

The work, in this paper, proposes an application placement
policy considering application dependent metrics such as ser-
vice access rate needed for the application, resources required
by the application and expected processing time of the appli-
cation. The work also considers fog computing instance de-
pendent metrics such as proximity in terms of round trip time,
processing speed, and the resource availability of the fog

Table 1 Scope of computing instance metrics and application metrics
Computing Instance Metrics Application Metrics

Metric Value Metric Value

[ming,; maxg,] [100; 600] ms [mina,; max,,] [2; 10] per sec

[1; 10] CPU cores
[10; 70] TIPS

[ming,; maxg,] [1; 8] CPU cores
[30; 120] ms

[minRa; maxRa]

[minpg; maxpy) [minp; maxp,]

nodes. Both, applications and computing instances, are prior-
itized on the basis of their dependent metrics using Modified
TOPSIS. In the proposed work, non-similar applications and
computing instances are assigned different priority. In fog
computing, except the work in [2], no other work maximizes
the QoE gain. However, the computational complexity of the
method in [2] is very high. The proposed work maximizes the
QoE gain with better computational complexity compared to
[2]. This makes it suitable for fog computing as fog nodes
have limited computing power.

3 The system architecture

As the proposed model is an incremental improvement over
the one given in [2], the same architecture has been considered
in the proposed work and described here for better understand-
ing of the proposed policy. [oT applications are divided into
two modules: Client Module and Main Module. Client
Module helps to find the expectation of the user of the appli-
cation i.e. user’s preference and contextual information and
sends generated results from application module to users.
Main module involves data analysis, computation of decision
etc. Client module of an IoT application may execute over the
IoT device itself or on some closer fog nodes. Main module
requires heavier computing in compare to client module. The
objective of the proposed work is to identify some suitable fog
nodes for the placement of the main module.

In a fog enabled IoT system, most of the works consider
three tier architecture: Cloud at the top tier, fog/edge node at
the middle tier, and user’s devices at the bottom. Middle tier
may consist of multiple layers of fog nodes. This work con-
siders two layers in fog: Fog Gateway Nodes (FGN) at lower
level close to IoT devices and Fog Computational Nodes
(FCNs) at higher level [2]. Three tier architecture of the fog
enabled IoT system is given in Fig. 1.

The role of both types of fog nodes is summarized as
follows.

Fog Computational Node (FCN) FCN provides computational
services i.e. processing of tasks and analysis of data for the IoT
devices. It comprises of three components: Computing com-
ponent, Communication component and Controller. The ar-
chitecture of FCN is given in Fig. 2. Computing component,
equipped with computational resources, is responsible for the
execution of the main module of the application. In fog com-
puting, Micro Computing Instances (MCls) are created over
fog infrastructure using virtualization [18]. MCls can be dy-
namically provisioned and de-provisioned as per the require-
ment without degrading the QoS. Communication component
provides the required communication of FCNs with FGNs and
IoT devices. The responsibility of the controller component is
to manage all activities of computing component and

@ Springer

1820

Mobile Netw Appl (2020) 25:1816-1832

Table 2 Values of application

metrics Application (App) Access Rate (Ar) Required Resources (Rr) Processing Time (P¢f) Rating (RA)
Appl 2 120 5.6667
App2 70 5.6667
App3 7 50 5.6667

communication component. Controller component runs the
Computing Instance Rating Unit that collects status from
MClIs and calculates the rating using the method proposed in
this work. Controller component sends the rating of MClIs
using RESTful services to the connected FGN.

Fog Gateway Node (FGN) Computing devices, with network-
ing in proximity of IoT applications, can be used as FGNs
such as cable modems, set top boxes etc. [2]. The architecture
of FGN is given in Fig. 3. IoT devices/users and FCNs, both
need to subscribe/register on the FGN in order to avail the
services and to offer the services respectively of fog comput-
ing. Application Initiation Unit in FGN initiates the client
module of applications from the connected IoT devices. It
collects the expectation of an application and supplies it to
the Application Rating Unit which calculates the rating of
applications using the proposed method in this work. These
ratings are forwarded to the Application Placement Unit. The
calculated rating of computing instances by Computing
Instance Rating Unit of connected FCNs to FGN is also
forwarded to the Application Placement Unit. Upon receiving
both the inputs i.e. rating of applications and rating of com-
puting instances, Application Placement Unit runs the pro-
posed mapping algorithm and places the main module of the
application on FCNs in such a way that QoE is maximized.

4 The proposed model

This work proposes a model for an effective mapping of the
IoT application to the fog instances satisfying the QoE. The
main steps, of the algorithm, are as follows. Application
Rating Unit in FGN does the Rating of Applications (RoA)
on the basis of application dependent metrics. Rating of fog

instances (RoF) is done on the basis of fog instance dependent
metrics by the Computing Instance Rating Unit in FCN.
Thereafter, the placement of applications on the fog instances
takes place by the Application Placement Unit in FGN. To
increase the success rate, applications with relatively higher
expectations should be placed on the computing instance with
relatively high capacity. The notations, used in this work, are
given in Table 4.

4.1 Rating of application (RoA)

IoT user i subscribes to the FGN fz and submits the desired
value of application dependent metrics i.c. E; = {e, e, e/ }
for its application A; where ¢/ is expected value of access rate,
el is expected value of the required resources, and e!” is
expected value of the processing time of application A;.
These values may lie in a given range in the fog computing
environment e.g. processing time of an application may be
in the range [minp,, maxp,]. If expected value of any metric
of an application does not belong to the specified range, the
application will be discarded and may be placed elsewhere
such as on cloud VMs [2]. To maximize the success rate,
higher priority is assigned to the application with relatively
higher expectation i.e. access rate and required resources
should be maximized while processing time should be
minimized for the application. For each application A;, rat-
ing RA; is calculated taking E; as input

Since applications need to be prioritized on the basis of
various metrics, MCDM methods are highly useful. Various
MCDM methods such as AHP (Analytical Hierarchy
Process), ANP (Analytic Network Process), TOPSIS etc. are
available to rank the alternatives. TOPSIS is advantageous
over other MCDM methods [19] as TOPSIS creates hypothet-
ical best alternative and hypothetical worst alternative and

Table 3 Value of computing

instance metrics Computing Instance (CI) ~ Round Trip Time Resource Availability ~ Processing speed ~ Rating (RF')
(Rtt) (Ra) (Ps)
CIl 150 1 40 5.0
CI2 140 1 50 5.0
C13 150 2 40 5.0
CI4 100 2 70 5.0
CI5 110 2 60 5.0
CI6 100 2 50 5.0

@ Springer

Mobile Netw Appl (2020) 25:1816-1832

1821

S
57 \E

ﬂ,. .

P

S

Fog Gateway
Nodes
o o

10T Devices

Fog Computational
Nodes

<

Fig. 1 Fog enabled IoT system [2]

ranks the available alternatives on the basis of their closeness
from the best and the worst solutions. Further, TOPSIS is
simple, easy to understand, and widely accepted MCDM
method. The most important is the computational complexity
of TOPSIS which is far less and helps in the design of the
placement policy of less computational complexity warranted
for the placement in Fog computing.

Let n be the number of applications and & the number of
application dependent metrics, represented in form of matrix
0 as given in Eq. (1).

qn 91k
0= : : (1)
dni Dk
In Eq. 1, g; represents the value of jh application depen-
dent metrics of application i where { i=1, ...,n} and {j=1,

e K}
The steps of the TOPSIS algorithm, applied on the matrix
0, are as follows.

Step 1: Normalize Matrix Q using Eq. (2). q;j is the ele-
ment of the normalized matrix Q.

-)

Application
Initiation and
Display Unit
Data Application
Container Placement Unit
Application
Rating Unit

o

Fig. 3

)

Fog Gateway Node [2]

/ 45

Yy = =
\/ ;‘1:1‘15'

Step 2: Each metric is assigned a weight to reflect its
importance. Weighted normalized matrix V is obtained
by multiplying each column of matrix Q' by its corre-
sponding weight.

(2)

Vi = W; X q;j where {i=1, ..., n}, Z_l;:le =1, w; is the
weight of jzh application dependent metric.

Since all the applications need to be compared with the
same standard, in the fog environment of the proposed work,
each metrics are given equal weights. As three metrics are
considered, w; =w, =w3=0.333

Step 3: Positive Ideal Solution i.e. A* and Negative Ideal
Solution i.e. A are obtained from the matrix using the
rules given in Egs. (3) and (4).

AT =[] (3)
A =[] (4)

In this step, we try to find the best value and the worst value
of each metric. A" represents the vector of the best value for
each metric in V while A™ represents the vector of the worst
value for each metric in V. Here, metrics can be of two types;
one for which largest value is better (called benefit metrics),
and another for which lowest value of metric is better (called
cost metric). Among the considered application dependent

Fig. 2 Fog Computational Node

2]

C

Communication Component

~

g

Computing
Instance
Rating Unit

Controller Component

| Application Application Application
Micro Micro Micro

Computing Computing Computing
Instance Instance Instance

Data

Container

Unallocated Computational Space

Communication Component

N

=4

@ Springer

1822

Mobile Netw Appl (2020) 25:1816-1832

Table 4 Notation
Symbol

Representation

Ar
Rr
Pt

Rtt

mETEERE

>~

% S

L

=

ASHGISISTE

Q.29
~T ~T ~T
FTETR

=~ 3

Q
(&)

cqiji
NRR
RG
PTRR
dss;i
NoA

Access Rate

Required Resources

Processing Time

Round Trip Time

Resource Availability

Processing Speed

Rating of application

Rating of fog computing instance

FGN

" Application

Expectation ofA;

Expected value of access rate of applicationA;
expected value of the required resources of applicationA;
expected value of the processing time of applicationA;

Number of applications

Number of application dependent metrics

Matrix to represent expectations ofn applications
Value of /" application dependent metrics ofA;
Weight of /" application dependent metric
Offerings of computing instancej

Round trip time of computing instancej
Resource availability of computing instancej
Processing speed of computing instancej
Number of computing instances

Number of computing instance dependent metric
Matrix to represent offerings ofm applications
Value of j” computing instance dependent metric of computing instancei
Network Relaxation Ratio

Resource Gain

Processing Time Reduction Ratio

Data signal size of applicationi

Number of applications successfully placed

metrics, access rate and required resources are benefit metrics
and processing time is cost metric.

For benefit metrics, rules to obtain the best value and the
worst value are given in Egs. (5) and (6).

v;r:max{v,j,izl,...,n} (5)
v;:min{v,»j,izl,...,n} (6)

For cost metrics, rules to obtain the best value and the worst
value are given in Egs. (7) and (8).

v;r:min{v,»j,izl,...,n} (7)

@ Springer

v;:max{v,»j,izl,...,n} (8)

Step 4: Compute the distance of the requirement or ex-
pectation of each application from the positive ideal so-
lution and the negative ideal solution i.e. S and S re-
spectively as given in equations (9) and (10).

Mobile Netw Appl (2020) 25:1816-1832

1823

Step 5: Calculate the relative closeness i.e. rating of ap-
plication RA of each application from the ideal solution
based on S} and S; as given in Eq. (11).

S
RA; = —1— 11
ST+, (1)

Different metrics have different values of range. To elimi-
nate this difference, normalization has been done in TOPSIS
(Eq. (2)). However, the used normalization technique is prone
to inconsistency i.e. change in the value of a particular metric
for an application may change the obtained normalized values
of the metric of some other applications. This may affect the
rating of applications resulting in the change in their ranking.
In other words, rank of applications may change if a new
application is added or removed from the list. This abnormal-
ity is known as rank reversal problem. Since during mapping,
applications are sorted (explained in Section 5.3), rank rever-
sal may affect the mapping of the applications to the fog nodes
eventually affecting the performance of the application place-
ment policy.

To demonstrate rank reversal problem in the proposed
work, four applications Appl, App2, App3 and App4 with
the values of various application dependent metrics are shown
in Table 5. Fifth column represents the rating of the applica-
tions (RA) calculated using TOPSIS and the last column rep-
resent their ranks, obtained on the basis of the rating i.e.
highest rated application to get highest rank and vice-versa.

From Table 5, it can be observed that App3 gets highest
ranking. However, if App4 is removed from the list and
TOPSIS is applied on the remaining applications, App3 gets
lowest and App1 gets highest rating. Results are well depicted
in Table 6.

From Table 6, it is clear that the removal of application
reverses the order of the applications. Similarly, adding an
application also may reverse the ranking of the applications.
For example, in Appl, App2 and App3 when App4 is added,
order of Appl, App2 and App3 is reversed.

A solution is warranted that can overcome the rank reversal
problem but at the same time retains the basic features and
benefits of TOPSIS intact. Inspired from the work in [9], it is

observed that main responsible factor for the rank reversal
problem is normalization (step 1 of TOPSIS algorithm) be-
cause normalized value of a metric for an application depends
on the value of the same metric for all applications. Various
normalization techniques, proposed in literature, are capable
to remove rank reversal problem completely for a certain set-
ting. It is identified that the range of expected values of each
metrics in fog computing environment is fixed in the work in
[2]. Therefore, a normalization technique that removes the
rank reversal problem completely is selected in the proposed
work (step 1 in modified TOPSIS algorithm in Section 4.1.1).
It is because range of each metric is fixed and normalized
value of various metrics depends on the range and the expect-
ed value of that metric by the application only. Therefore, with
the new normalization technique, addition and removal of
new applications does not affect the normalized value. Thus,
in the classic TOPSIS method, normalization technique is re-
placed with a new normalization technique. For the placement
of the applications on fog nodes, two modifications are made
in the existing TOPSIS. First, equal weights are assigned to
each metric and second the normalization technique is modi-
fied. The algorithm of the Modified TOPSIS is given in
Section 4.1.1.

4.1.1 Modified TOPSIS to calculate RoA

The Rating of Application (RoA) is done using M-TOPSIS
which is as follows.

Let & be the number of application dependent metrics for n
number of applications. These are represented in form of a
matrix Q as given in Eq. (12).

911 91k

Q
I

(12)
dn1 U Yk

In matrix Q, g; represents the value of jth application de-
pendent metrics of application i for {i=1, ..., n} and {j=1,
..., k}. The value of &, considered in the present scenario, is 3.

The steps of M-TOPSIS (Modified-TOPSIS) algorithm,
applied on matrix Q to calculate RoA, are as follows.

Table 5 TOPSIS based rating of

applications Application Access Rate (e) Required Resources Processing Time Rating (RA) Rank
@) @)
Appl 4 4 30 0.5185 3
App2 4 40 0.5223 2
App3 2 6 30 0.5323 1
App4 10 3 120 0.4449 4

@ Springer

1824

Mobile Netw Appl (2020) 25:1816-1832

Table 6 TOPSIS based rating of

applications without App4 Application Access Rate (¢!) Required Resources Processing Time Rating (RA) Rank
") ")
Appl 4 30 0.5220 1
App2 5 40 0.5132 2
App3 6 30 0.5033 3

Step 1: Calculate Normalized Matrix Q' by applying the
following rule on the elements of matrix Q.

For benefit metrics, rule of normalization is given in Eq.
(13).

/ q;—min;
;= Ay T (13)

max ;—min;

For cost metrics, rule of normalization is given in Eq. (14).

, max;—q;

95 = max —min;
J J

(14)

Both max; and min; are fixed for each metric and do not
depend on a particular application. Therefore, values of max;
and min; will not change on the introduction of a new appli-
cation of same type or removal of any existing application
from the list.

As each metric is given equal weight and all the values are
multiplied by the same factor i.e. 1/k, step 2 of the classic
TOPSIS is not required in the modified TOPSIS i.e. weighted
normalized matrix is not needed V=0

Step 2: Obtain Positive Ideal Solution A™ = [v{, ..., /]
and Negative Ideal Solution A~ = [v}, ..., v,] using the
following rules.

For benefit metrics j best value v} = 1 and worst value
v =0.

For cost metrics j best value vj =0 and worst value
=1

Step 3: Compute the distance of the expectation of each
application from positive ideal solution S;” and negative
ideal solution S; as given in equations (15) and (16)

Si+ = k:1 (Vf—qé-,-)z (15)
s; =2 (vay) (16)

Step 4: Calculate the relative closeness of each applica-
tion or rating of each application i (RA,) (from ideal solu-
tion based on S} and S, as given in Eq. (17).

ST

RAj = ——1
ST+,

(17)

Using M-TOPSIS, rating for each application is calculated
and submitted to the Application Placement Unit for its allo-
cation to suitable fog nodes.

4.2 Rating of Fog nodes (RoF)

The Controller component in FCN runs the Computing
Instance Rating Unit which collects the status from MClIs
and calculates the rating on the basis of its computing instance
dependent metrics. For computing instance j, values of metrics

is 0; = {of” , 011?“, ofs} where 011?” is round trip time, of“ is

resource availability, and ofs is processing speed. Like appli-
cation dependent metrics, computing instance dependent met-
rics also have numerical values in a specified range [2]. RoF of
each computing instance j e.i. RF; is calculated taking Q; as

Table 7 TOPSIS based rating of

Computing Instances Computing Round Trip Time Resource Availability Processing speed Rating Rank
Instance (CI) (oR1) (0" (™) (RF)
Ccn 100 3 10 0.4910 3
CI2 200 4 20 0.5298 1
CI3 100 2 20 0.4824 4
Cl4 600 3 70 0.4955 2

@ Springer

Mobile Netw Appl (2020) 25:1816-1832

1825

Table 8 TOPSIS based rating of

computing instances removing Computing Round Trip Time (Resource Availability ~— Processing speed ~ Rating (R~ Rank
Cl4 Instance (CI) ofi) (o) (™) F)
Cll 100 3 10 0.4944 3
C2 200 20 0.5249 2
CI3 100 2 20 0.5407 1

input. A fog computing instance, offering better metric value,
should get the higher rating. To calculate the rating of each
computing instances, TOPSIS can be used. Rank reversal
problem, in classic TOPSIS, prevails with computing in-
stances as shown in Tables 7 and 8.

Table 7 shows that CI3 is the lowest rated computing in-
stance while in Table 8 CI3 becomes the highest rating in-
stance on the removal of the instance CI4. Each metric should
get equal preference for better comparison of the computing
instances of same standard. Therefore, M-TOPSIS is used to
calculate the rating of each computing instances also, as was
done for the applications.

4.2.1 Modified TOPSIS to calculate RoF

Let / be the number of computing instance dependent metric
and m be the number of computing instances, represented in
form of matrix CQ as given in Eq. (18).

c¢qdn Ty
cO = : : (18)

C4m1 U

In matrix CQ, cq;; represents the value of jth computing
instance dependent metric of computing instance i where
{i=1,...,m}andj=1, ...,] Value of /, considered in the
present scenario, is 3.

The steps of M-TOPSIS algorithm, applied on matrix CQO
to calculate the rating of computing instances, are as follows.

Step 1: Obtain Normalized Matrix CQ' by applying the
following rule on matrix CQ.

For benefit metrics, normalization method is as given in
Eq. (19).
, cqy—min;

= o
max_, mm_,

(19)

For cost metrics, normalization method is as given in Eq.
(20).

(20)

Both max; and min; are fixed for each metric and do not
depend on a particular computing instance. Therefore, values
of max; and min; will not change on the addition of a new
application of same type or removal of any existing applica-
tion from the list. Among the considered computing instance
dependent metrics, round trip time is cost metric while re-
source availability and processing speed are benefit metrics.

Step 2: Obtain Positive Ideal Solution CA" =

[ovi,...,cv[] and Negative Ideal Solution CA™ =
[cv}, e cv]_] using the following rules.
For benefit metrics j, best value cvjr = 1 and worst value
cv; =0

For cost metrics j, best value cvj = 0 and worst value
cv; = 1

Step 3: Compute the distance of status of each computing
instance from positive ideal solution CS; and negative
ideal solution CS; as given in equations (21) and (22)

respectively.
+ ! AT
CS = -1 (cvj —cqij> (21)
!)
CSi =1\ 2= (Cvj_cq[j) (22)

Step 4: Calculate the relative closeness of each comput-

ing instance i.e. rating of computing instance RF; from

ideal solution based on CS; and CS; as given in Eq. (23).
CS;

RFj=—"—— 23
'CSS+CS; (23)
Using M-TOPSIS, rating is calculated for each computing

instances and submitted to the Application Placement Unit of

connected FGN fi for mapping of applications to fog nodes.

4.3 Mapping of Applications to fog nodes
An application with higher value of RoA represents the high

intensity of associated application dependent metrics while a
fog instance with higher value of RoF represents the high

@ Springer

1826

Mobile Netw Appl (2020) 25:1816-1832

capacity computing instance. Therefore, for mapping of appli-
cations, first FGN f sorts both RoA and RoF (all applications
and all computing instances) in descending order. It then com-
pares the requirement of first application (sorted) with com-
puting instances in their sorted order and assigns first applica-
tion to the computing instance that satisfies the application’s
requirement. Both, the assigned computing instance and the
application are removed from their lists. fi repeats same steps
for the application on the top position now in the list and
continues until either list of applications or list of computing
instances are exhausted.

5 The computational complexity
of the proposed policy

In the first phase i.e. the calculation of RoA, complexity to nor-
malize the values of various metrics of application is O(n x k)
where 7 is the number of applications and k is the number of
application metrics. Complexity of steps for creation of positive
and negative ideal solution is O(k). Complexity for calculation of
distance of application’s expectation from positive and negative
ideal solution is O(n) while computational complexity of the last
step i.e. calculation of rating for all application is O(n) Therefore,
the computational complexity of first phase is O(n X k).

In the second phase i.e. calculation of RoF, complexity to
normalize the values of various metrics of all computing in-
stances of fog nodes registered on FGN is O(m x [) where m is
the number of all fog computing instances and / is the number
of computing instance metrics. Complexity of the steps for the
creation of positive and negative ideal solution is O(/).
Complexity for the calculation of distance of computing in-
stance’s capacity from positive and negative ideal solution is
while computational complexity of the last step i.e. calculation
of rating for all computing instances is O(m). Therefore, com-
putational complexity of the second phase is O(m X [).

In the last phase i.e. Placement Policy, the complexity of
sorting the application is O(n®) and the complexity of sorting
the computing instances is O(m?). In the next step, for each
application, all the computing instances can be scanned in the
worst case to find the most suitable one. Therefore, the compu-
tational complexity of this step is O(n x m). Thus, the computa-
tional complexity of the last phase is O(n* + 1 % m + m?).

The overall computational complexity of the proposed ap-
plication policy is (n k+m x [+n* + n x m +m?) where n is
the number of applications, m is the number of computing
instances, & is the number of application dependent metrics,
and / is the number of computing instance dependent metrics.
If m is large, compared to other variables, the computational
complexity of the proposed policy is O(m?)

6 The case study

For better illustration of the proposed policy, a FGN fn is
considered that receives request from five applications.
Applications and their expected value of application depen-
dent metrics are given in Table 9. fn calculates the rating of
applications. Obtained rating of applications is given in the
last column of Table 9. Then fin queries the connected fog
nodes about their computing instances. Fog nodes calculate
the rating of its computing instances and forwards the obtain-
ed result to fn. Obtained status and rating of the seven fog
computing instances are listed in Table 10. All the values of
metrics and range of each metric (Table 1 in Section 2.1) is
taken from [2] assuming that computing instances are satisfy-
ing the minimum applications’ requirement. fin applies the
proposed placement policy with rating of applications and
fog computing instances as input. Obtained result is shown
in Table 11, in which each row represents the placement of an
application on the computing instance.

7 The performance study

The proposed work, for the placement of applications using
modified TOPSIS, is compared with the state of art work in
[2]. The drawbacks of [2] have been identified and listed in
Sect. 2.1. This section exhibits how the proposed work per-
forms in comparison to [2].

7.1 Performance metrics

For a fair comparison, same performance metrics as in [2] are
considered including a new metric ‘Application Placement

Table 9 Expectation and rating of

applications Application Access Rate (') Required Resources (e?") Processing Time (e) Rating (RA)
Appl 2 2 120 0.0795
App2 5 5 70 0.5006
App3 3 3 90 0.2582
App4 7 8 60 0.7297
App5 8 3 50 0.5863

@ Springer

Mobile Netw Appl (2020) 25:1816-1832

1827

Time’ defined in this work. These are described in detail as
follows.

a. Network Relaxation Ratio (NRR): This metric ob-
serves the network congestion. If FGN fn, places the ap-
plication 7 on fog computing instance j at time #, NRR can
be calculated as given in Eq. (24).

2
Average NRR can be written as given in Eq. (25).
NRR,; = ——NRR;; 25
7 NoA y ()

where NoA is the number of applications successfully placed
on the fog computing instances.

In this, NRR > 1 for an application reflects low network
congestion possibility. For example, consider an application
in which expected access rate is 2 per second (it reflects that
for the application intermediate delay between two data sig-
nals will be 0.5 s) and round trip time of the fog node where
the application is placed is 0.3 s. Network will be free for
approximately 0.35 s even after propagating the data signal
from the application to the fog node and the obtained value of
NRR, in this case, is 3.33.

b. Resource Gain (RG): This performance metric mea-
sures the resource consumption of a user. If FGN fn,
places an application i on fog node j at time t, RG can
be calculated using Eq. (26).

Here if RG > 1, application is able to fetch the required
resources. For example, if for an application expected required
resources are 2 processing cores and resource availability of
fog node where the application is placed is 3 cores. Obtained
value of RG, in this case, will be 1.5.

c. Processing Time Reduction Ratio (PTRR): This per-
formance metric measures the reduction in the processing
time. If FGN fn places an application i on fog node ;j at
time ¢, PTRR can be calculated as given in Eq. (28).

(28)

where, dss; is the data signal size of application 7 in terms of
number of instructions.
Average PTRR can be written as given in Eq. (29).

1

PTRR ;= mPTRRi/ (29)

Here if PTRR > 1, it reflects that application is processed
faster than expected. For example, if for an application expect-
ed processing time is 0.12 s, data signal size is 1000 instruc-
tion and processing speed of fog node, where the application
is placed, is 30 TIPS (Thousand Instruction per Second), then
the obtained value of PTRR will be 3.6.

d. Application Placement Time: As discussed in Section
5, the computational complexity of the placement policy

RG; = %Iil (26) is in po.lynomial time and is very less. .To .calculate the
i actual time for the placement of an application, a perfor-
. . . mance metric called Application Placement Time is con-
Average RG is as given in Eq. (27). sidered. It measures the time required for the calculation
of rating of both; applications and fog nodes. It also mea-
1 sures the time taken in making a decision on the place-
RGaj = mRGij (27) ment of the applications on the suitable fog nodes.
Table 10 Status and rating of
computing instances Computing Round Trip Resource Processing Rating (RF")
Instance (CI) Time (of) Availability (0%) speed (0%)
CIl 100 3 20 0.4766
CI2 100 2 20 0.4556
CI3 200 4 40 0.5386
Cl4 300 5 30 0.4611
CI5 400 6 50 0.5389
CI6 500 8 70 0.6070
CI7 500 6 60 0.5233

@ Springer

1828

Mobile Netw Appl (2020) 25:1816-1832

7.2 Simulation experiments

Fog computing is introduced to remove the latency problem.
However, if the time in taking the decision to place an appli-
cation is high, fog computing may become a bottleneck.
Therefore, an application placement policy is called good only
when application placement time is very less. Application
placement time is an extremely important parameter for Fog
resources as fog computing has resource constraint and fog
nodes are highly unstable. The objective of this section is to
show that the proposed policy outperforms the state of art
work which is proved by showing that the proposed policy
gets results for NRR, RG and PTRR similar to the state of art
work in lesser application placement time. To simulate the fog
environment, we have used a computing node Intel(r)
Core(tm) 15-4460 cpu @ 3.20ghz 4 GB RAM which acts as
FGN. For simulation of the proposed policy and the state of art
work, Matlab is used. The proposed work is named as TQP
(TOPSIS based QoE aware placement) and state of art work
[2] is named FQP (Fuzzy based QoE aware placement).
Workload is generated using various simulation setting [2]
as given in Table 12. For an experiment, 50 simulations are
done and average is displayed in the figures.

7.2.1 Experiment 1: Performance analysis

In this experiment, both the proposed work and the state of art
work are analyzed on the basis of the discussed performance
metrics on the data for computing instances and applications
of the case study given in Section 6. The obtained values, for
different performance metrics, are given in Fig. 4.

From Fig. 4, it is observed that NRR of TQP is better in
comparison to FQP. For other two parameters, i.e. RG and
PTRR, TQP are insignificantly less than FQP. Application
placement time, in case of TQP, is significantly lower as com-
pared to FQP. Thus, it can be concluded that value of all the
performance metrics using TQP is greater than 1 while appli-
cation placement time in TQP is very less in comparison to the
state of art work. Hence, the proposed work exhibits signifi-
cant performance gain in limited amount of time.

7.2.2 Experiment 2: Effect of number of applications on NRR

In this experiment, TQP and FQP are evaluated on the gener-
ated workload using data in Table 12 and average NRR is
observed for different number of applications as given in
Fig. 5. From Fig. 5, it is clear that average NRR decreases
when the number of application increases. This fact is quite
obvious because resources are fixed and on growing number
of applications, fog instances won’t suffice. However, the per-
formance of both FQP and TQP is approximately same with
respect to NRR.

@ Springer

Table 11 Solution of

application placement Application Computing Instance
Appl Cll
App2 CI3
App3 CI7
App4 Cl6
App5 CI5

7.2.3 Experiment 3: Effect of number of applications on RG

In this experiment, average Resource Gain (RG) is observed
on varying number of applications for the generated workload.
Results are shown in Fig. 6 which makes it clear that average
RG decreases on an increase in the number of applications. It
seems quite natural as the resources are limited and fixed and
on increased volume of applications, there will be limited
computing instances to serve. However, the proposed work
performs almost similar to the state of the art work with re-
spect to RG.

7.2.4 Experiment 4: Effect of number of applications on PTRR

In this experiment, average PTRR (Processing time reduction
ratio) is observed on different number of applications with
both TQP and FQP. It is clear from the obtained results in
Fig. 7 that as the number of applications for placement in-
creases average PTRR decreases. Reason for this is the fixed
resource pool. Like NRR and RG, TQP again performs almost
similar to FQP for PTRR.

7.2.5 Experiment 5: Effect of number of FCNs on NRR

To observe the effect of number of FCNS, in this experiment
we have fixed the number of applications to 10 while number
of FCNs varies from 10 to 50. Average NRR is observed on
different number of FCNs in case of both TQP and FQP. It is

Table 12 Simulation parameters

Parameter Value
Expectation Metrics:

Access rate 2-10 per sec
Resource requirement 1-8 CPU cores
Processing time 30-120 ms
Status Metrics:

Round trip time 100-600 ms
Resource availability 1-10 CPU cores
Processing speed 10-70 TIPS
Applications service delivery deadline 250-750 ms
Number of accessible FCN per FGN 4-10

Data signal size 1000-2000 instructions

Mobile Netw Appl (2020) 25:1816-1832

1829

Fig. 4 Performance analysis of

(a)NRR

(b) RG

case study 3 z
=4

15
&2 &
%)

& |
« St

E ! Z 0.5

< < 0.

0 0

FQP TQP FQP TQP
(c) PTRR E (d) Application Placement Time

4 = 400

%3 g 300
= 5

@2 2 200
s -9

£1 S 100
) E

0 5 0

FQP TQP 2- FQP TQP

clear, from the obtained results in Fig. 8 that Average NRR is
increasing as the number of FCNs increases because number
of application is fixed and they are getting better FCN with
increasing number of FCNs.

7.2.6 Experiment 6: Effect of number of FCNs on RG

In the same environment as in experiment 5, Average RG is
observed on different number of FCNs with both TQP and
FQP and obtained results are shown in Fig. 9. It is clear that
increasing number of FCNs will provide improved value of
average RG in the system. Both TQP and FQP are giving
nearly similar results.

23 T T T T T

N —-%—FQP
2.2 \\ - & -TQP|

Average NRR
4

1.4 | . . | . . | .
5 10 15 20 25 30 35 40 45 50

Number of Applications

Fig. 5 NRR vs. applications

7.2.7 Experiment 7: Effect of number of FCNs on PTRR

In this experiment, effect on Average PTRR for both TQP and
FQP is observed on different number of FCNs in the same
environment as in experiment 5 and experiment 6. Obtained
results, shown in Fig. 10, depict that like NRR and RG, aver-
age PTRR can be improved by increasing the number of
FCNs. Like previous experiments, TQP again performs al-
most similar to FQP for PTRR.

7.2.8 Experiment 8: Application placement time

This experiment observes an important parameter Application
Placement Time, which is very crucial in fog computing.
Observation is done by varying the number of applications
and the number of fog computing instances both. Obtained

2.8 T T T T T T T T
N —-%-—FQP

241 O .

22+ e |

Average RG

5 10 15 20 25 30 35 40 45 50
Number of Applications

Fig. 6 Resource gain vs. applications

@ Springer

1830 Mobile Netw Appl (2020) 25:1816—1832
4.4 T T T T T T T T 2.7 T T T T T T
—-#-— FQP p————Jﬁ
42% — e —TQP| 261 L
\ 7 ¥
4 E'_\\ | 251 . BT ="
N 3 - -0 R
N 24} T |
% 38t LN i % *
e | P J
E \\’\ﬁ 2 23 4
o 36 S~ 7 5 v
g S P22y 7 1
S 34p S 1 g ---°
z Sxen Z21p o 1
&y /
32¢ \’\\ R P /]
Bl /
3r TR 1of 7 1
28 s . . . ! . . ! 1817 |
510 15 20 25 30 35 40 45 50 / —o-Top
Number of Applications 1.7¢ ; ; ; ; ; ; :
10 15 20 25 30 35 40 45 50
Fig. 7 PTTR vs. applications Number of FCNs

results are shown in Fig. 11 which depicts that as the size of
the problem instance (number of application and number of
computing instance) increases, application placement time al-
so increases. However, with FQP increase in placement time
is quite rapid while in case of TQP it is very small

7.3 Discussion on results

In most of the works related to application placement in fog
computing, IoT users submit their requirement to a broker
located on a fog node. This broker also receives the offering
of the connected fog nodes that are ready to provide the com-
putational resources. In the proposed work, FGN is the broker
and FCN is the resource providing fog node. Broker runs the
application placement algorithm to place the applications on
suitable fog nodes. Application placement algorithm in itself
is a computational activity and may incur high placement
time, if computational complexity of the application place-
ment algorithm is high. Many works, related to application
placement, involves complex computation e.g. placement al-
gorithm in [2] is formulated as Integer Linear Problem (ILP)

2.2 T T T T T T T
L%
’_/*’"' -
211 Pt
_e* o
*- -7
2F LR 1
Prd
o
L % i
g 19 P2
Z ;/-’/’
& L.8f Y]
=3 Y
3 /
>
< 171 / 4
V4
/‘/
/
1.6 g i
P
y
/
1517 - %-FQP| |
- e -TQP
14 !
10 15 20 25 30 35 40 45 50
Number of FCNs

Fig. 8 NRR vs. FCNs

@ Springer

Fig. 9 Resource gain vs. FCNs

using fuzzy logic concept. In [15, 20, 21], placement algo-
rithm is formulated as ILP problem that involves complex
computation; however they did not consider QoE during
placement of applications. Fog computing is introduced to
handle mainly delay sensitive applications effectively. If ap-
plication placement time is high, it may hamper the efficient
execution of delay sensitive applications losing the relevance
of fog computing. Also, since primary service of the fog nodes
is not solely to run application placement algorithm or to ex-
ecute the offloaded applications, failure of fog nodes is inev-
itable. In case a FGN fails, some other FGN can overtake the
load in limited time only if computational complexity of ap-
plication placement i.e. application placement time is much
lesser.

From the above simulation experiments it can be observed
that with the proposed model, the values corresponding to all
performance metrics i.e. NRR, RG and PTRR is greater than
one as desired. It is also approximately equal to the values as
obtained in the state of art work. The remarkable gain, of the
proposed policy, is in the application placement time which is

4 T T T T T T T
o7 %
P
o
3.8 e ¥ b
o -
LK ¥
L z,ﬁ-/'/]
g“ 3.6 /;.5'*
/./'
E &
© 34+ - E
) -~
g ¥
i
z ‘/'//
32+ o 4
G
7
71
/1
3%/]
—-%—FQP
—e-TQP
28 | | |
10 15 20 25 30 35 40 45 50
Number of FCNs

Fig. 10 PTTR vs. FCNs

Mobile Netw Appl (2020) 25:1816-1832

1831

&~
W
=1

N

f=3

f=}
T

w
W
S
T
k
\
!

—_ — [] w
w O W o wn o
(=1 (=1 [} =1 (=} (=}
T T T T T r
L L L 1 L

Application Placement Time (in ms)

0 V- -5 i) . — - v -y — — —
-
S S © S O O O §

I N T S A S
NN S A O AU 2

9

8
&
(Number of Applications, Number of Computing Instance)

Fig. 11 Application placement time

very less as compared to the state of art. This gain also con-
forms to the polynomial time complexity of the proposed ap-
plication placement policy given in Section 5. This makes the
proposed policy most suitable in the fog computing environ-
ment which houses the fog nodes with limited computational
power.

8 Conclusion

IoT devices may execute jobs/applications on the computing
infrastructure of fog computing for the performance gain of
the application such as in-time service delivery, reduced net-
work load etc. An appropriate application placement policy to
maximize the Quality of Experience (QoE) gain of application
users is needed. Further, application placement policy in itself
is a computational activity which runs on a mediator fog node
and therefore should not be much complex. In this work, a
QoE aware placement policy is proposed using modified
TOPSIS to calculate the rating of applications and fog com-
puting instances on the basis of the dependent metrics. The
proposed policy places the applications on the basis of the
calculated rating. Computational complexity of the proposed
placement policy is very less in comparison to the state of the
art policies. Four performance metrics i.e. Network relaxation
ratio, Resource gain, Processing time reduction ratio and
Application Placement Time are considered for the perfor-
mance study of the proposed work in a simulated environ-
ment. It is expected that for any placement policy, the values
of the first three performance metrics should be greater than
one. Experiment shows that the proposed work is not only
able to achieve this expectation but also is closer to the state
of art work. Features that give an edge to the proposed work,
are different ratings to the applications and to fog computing
instances even when they have nearly same expectations and
nearly same status respectively. This was not so in the state of
the art work i.e. if fog nodes have values of status metrics in a

small range or applications have value of expectation metrics
in a small range, it assigns same rank to them. The other
feature, of the proposed policy, is its reduced computational
complexity as compared to the state of art work. Because of
the reduced computational complexity, a significant reduction
in application placement time is observed in the proposed
policy in comparison to the state of art work. This makes the
proposed work most suitable in fog computing environment
with limited computing capacity fog resources.

As the fog owners would not share their resources without
any price, an exchange based policy and price based policy
may be adopted for the same. Our future work will consider
developing placement policies incorporating these aspects.

Authors would like to accord their sincere thanks to the
editor and the anonymous reviewers for their useful sugges-
tions resulting in the quality improvement of this work.

References

1. Elazhary H (2019) Internet of Things (IoT), mobile cloud, cloudlet,
mobile 10T, IoT cloud, fog, mobile edge, and edge emerging com-
puting paradigms: Disambiguation and research directions. J Netw
Comput Appl 128:105-140

2. Mahmud R, Srirama SN, Ramamohanarao K, Buyya R (2019)
Quality of Experience (QoE)-aware placement of applications in
Fog computing environments. Journal of Parallel Distributed
Computing 132:190-203

3. Wang N, Varghese B, Matthaiou M, Nikolopoulos DS (2017)
ENORM: A framework for edge node resource management.
IEEE transactions on services computing

4. Brunnstrom K, Beker SA, De Moor K, Dooms A, Egger S, Garcia
MN, Hossfeld T, Jumisko-Pyykkd S, Keimel C, Larabi MC,
Lawlor B (2013) Qualinet white paper on definitions of quality of
experience hal-00977812 f

5. Aazam M, St-Hilaire M, Lung CH, Lambadaris I (2016) MeFoRE:
QoE based resource estimation at Fog to enhance QoS in IoT. In
2016 23rd IEEE International Conference on Telecommunications
ACT), pp 1-5

6. Hoffeld T, Schatz R, Egger S (2011) SOS: The MOS is not
enough!. In Third IEEE international workshop on quality of mul-
timedia experience, pp 131-136

7. LiL, Rong M, Zhang G (2015) An internet of things QoE evalua-
tion method based on multiple linear regression analysis. In 10th
IEEE International Conference on Computer Science & Education
(ICCSE), pp 925-928

8. Fiedler M, Hossfeld T, Tran-Gia P (2010) A generic quantitative
relationship between quality of experience and quality of service.
IEEE Netw 24(2):36-41

9. Senouci MA, Mushtaq MS, Hoceini S, Mellouk A (2016) TOPSIS-
based dynamic approach for mobile network interface selection.
Comput Netw 107:304-314

10. Venticinque S, Amato A (2019) A methodology for deployment of
10T application in fog. J] Ambient Intell Humaniz Comput 10(5):
1955-1976

11. Casadei R, Fortino G, Pianini D, Russo W, Savaglio C, Viroli M
(2019) A development approach for collective opportunistic Edge-
of-Things services. Inf Sci 498:154-169

@ Springer

1832

Mobile Netw Appl (2020) 25:1816-1832

12.

13.

17.

Yousefpour A, Ishigaki G, Gour R, Jue JP (2018) On reducing IoT
service delay via fog offloading. IEEE Internet Things J 5(2):998—
1010

Dong Y, Han C, Guo S (2018) Joint optimization of energy and
QoE with fairness in Cooperative Fog Computing System. In IEEE
International Conference on Networking, Architecture and Storage
(NAS), pp 1-4

Soundarabai PB, Chellaiah PR (2018) Mechanisms Towards
Enhanced Quality of Experience (QoE) in Fog Computing
Environments. Springer, Fog Computing, pp 131-151

Skarlat O, Nardelli M, Schulte S, Dustdar S (2017) Towards qos-
aware fog service placement. In 1st IEEE International conference
on Fog and Edge Computing (ICFEC), pp 89-96

Lin Y, Shen H (2015) Cloud fog: Towards high quality of experi-
ence in cloud gaming. In 44th IEEE International Conference on
Parallel Processing, pp 500-509

Brogi A, Forti S (2017) QoS-aware deployment of IoT applications
through the fog. IEEE Internet Things J 4(5):1185-1192

@ Springer

18.

19.

20.

21.

Mahmud R, Kotagiri R, Buyya R (2018) Fog computing: A taxon-
omy, survey and future directions. Internet of everything. Springer,
Berlin, pp 103-130

Behzadian M, Otaghsara SK, Yazdani M, Ignatius J (2012) A state-
of the-art survey of TOPSIS applications. Expert Syst Appl 39(17):
13051-13069

Guerrero C, Lera I, Juiz C (2019) Evaluation and efficiency com-
parison of evolutionary algorithms for service placement optimiza-
tion in fog architectures. Futur Gener Comput Syst 97:131-144
Naas MI, Parvedy PR, Boukhobza J, Lemarchand L (2017)
iFogStor: an loT data placement strategy for fog infrastructure. In
1st IEEE International Conference on Fog and Edge Computing
(ICFEC), pp. 97-104

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

	QoE Aware IoT Application Placement in Fog Computing Using Modified-TOPSIS
	Abstract
	Introduction
	Related work and motivation
	The motivation

	The system architecture
	The proposed model
	Rating of application (RoA)
	Modified TOPSIS to calculate RoA

	Rating of Fog nodes (RoF)
	Modified TOPSIS to calculate RoF

	Mapping of Applications to fog nodes

	The computational complexity of the proposed policy
	The case study
	The performance study
	Performance metrics
	Simulation experiments
	Experiment 1: Performance analysis
	Experiment 2: Effect of number of applications on NRR
	Experiment 3: Effect of number of applications on RG
	Experiment 4: Effect of number of applications on PTRR
	Experiment 5: Effect of number of FCNs on NRR
	Experiment 6: Effect of number of FCNs on RG
	Experiment 7: Effect of number of FCNs on PTRR
	Experiment 8: Application placement time

	Discussion on results

	Conclusion
	References

