

North Asian International Research Journal of Pharmaceutical & Medical Sciences

ISSN: 2456-8287

Vol. 4, Issue-8

August-2020

Index Copernicus Value: 55.07

Fulfill MCI Criteria

Thomson Reuters ID: S-8304-2016

A Peer Reviewed Refereed Journal

"BIO-ANALYTICAL METHOD DEVELOPEMENT AND VALIDATION OF OLMESARTAN IN HUMAN EDTA PLASMA USING LC-MS/MS DETECTION METHOD"

R. SWADESH REDDY^{*1}, ISKA RAJASEKHARA REDDY², DR. K. JAGANNATH³, MR. M. NAGESH⁴ AND RAVI MANNE⁵

ABSTRACT

A simple rapid, sensitive, accurate, precise and reproducible high performance liquid chromatographic tandem Mass spectrometer method has been developed to assay Olmesartan medoxomil in tablet dosage form. The LC-MS/MS analysis used a reversed phase X-terra, RP 8,4.6*50mm,5µ column and a mobile phase constituted of methanol, acetonitrile and buffer (60:30:10). The buffer is composed of 20mM ammonium acetate. The Parent ion and daughter ion for Olmesartan are 447.35 and 207.30 respectively. The Parent ion and daughter ion for Candesartan acid which is used as internal standard to estimate Olmesartan are 441.17 and 263.33 respectively. The validation data showed that the method is sensitive, specific and reproducible for the determination of Olmesartan in the dosage form. The method is linear from 5.000 ng/mL to 1500.590 ng/mL. The intraday precision for LLOQ QC ranged from 2.80 to 6.10% and LQC, MQC and HQC ranged from 1.86 to 6.98%. The inter day precision for LLOQ QC ranged from 103.85% to 110.46% and LQC, MQC and HQC ranged from 90.90 to 108.61%. The inter day accuracy for LLOQ QC is 107.57% and LQC, MQC and HQC ranged from 95.28 to 102.66%. The proposed method provided an accurate and precise analysis of olmesartan in its pharmaceutical dosage form.

INTRODUCTION:

Chromatography is usually introduced as a technique for separating and/or identifying the components in a mixture. The basic principle is that components in a mixture have different tendencies to adsorb onto a surface or dissolve in

a solvent. It is a powerful method in industry, where it is used on a large scale to separate and purify the intermediates and products in various syntheses.

There are several different types of chromatography currently in use – i.e. paper chromatography; thin layer chromatography (TLC); gas chromatography (GC); liquid chromatography (LC); high performance liquid chromatography (HPLC); ion exchange chromatography; and gel permeation or gel filtration chromatography.

Mass spectrometry is a very powerful method to analyze the structure of organic compounds, but suffers from three major limitations:

- Compounds cannot be characterized without clean samples
- This technique has not the ability to provide sensitive and selective analysis of complex mixture
- For big molecules like peptides spectra are very complex and very difficult to interpret

The development of MS/MS allowed solving these problems .

Selective and sensitive analytical methods for the quantitative evaluation of drugs and their metabolites (analytes) are critical for the successful conduct of preclinical and/or biopharmaceutics and clinical pharmacology studies. Bioanalytical method validation includes all of the procedures that demonstrate that a particular method used for quantitative measurement of analytes in a given biological matrix, suchas blood, plasma, serum, or urine, is reliable and reproducible for the intended use. The fundamental parameters for this validation include (1) accuracy, (2) precision, (3) selectivity, (4) sensitivity, (5) reproducibility, and (6) stability. Validation involves documenting, through the use of specific laboratory investigations, that the performance characteristics of the method are suitable and reliable for the intended analytical applications. The acceptability of analytical data corresponds directly to the criteria used to validate the method.

AIM AND OBJECTIVE

Bioanalytical methods are widely used to quantitative drugs and their metabolites in physiological matrices, and the methods could be applied to studies in areas of human clinical pharmacology and nonhuman pharmacology/toxicology. Bioanalytical method employed for the quantitative determination of drugs and their metabolites in biological fluids plays a significant role in the evaluation and interpretation of bioequivalence, pharmacokinetic (PK), and toxic kinetic studies. The major bioanalytical services are method development, method validation and sample analysis (method application).

The aim will be to achieve more selectivity, sensitivity and more rapid assay methods than have been previously described. The developed method could then be applied to clinical trials to obtain accurate pharmacokinetic parameters in human plasma.

The main objective of this work is to develop rapid, selective and sensitive LC-MS / MS method that have short and simple extraction procedures, consume small amounts of solvent and biological fluid for extraction and a short turn-around time

Drug Profile of Olmesartan Medoxomil

Chemical Structure:

IUPAC Name: (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl 5-(2-hydroxypropan-2-yl)-2-propyl-3-[[4-[2-(2H-tetrazol-5-yl) phenyl] phenyl]methyl]imidazole-4-carboxylate

Molecular weight: 558.59Molecular Formula: $C_{29}H_{30}N_6O_6$ Pharmacologic class: Angiotensin II type 1-receptor antagonist Therapeutic class: Antihypertensive

PHYSICAL AND CHEMICAL PROPERTIES

Physical State: white to off-white crystalline powder Melting Point: 175 - 180 C Solubility: Water Insoluble (sparingly soluble in strong acid, soluble in strong base, pH 3 to 9). pKa Value: 4.96 logP value: 2.98 Decomposition: at180 ° C CAS Registry Number:144689-63-4 Trade Names: 1)Benicar in the USA

METHODOLOGY

Development for Chromatographic conditions:

Trail-1:

Column	:Inertsil ODS, C18, 4.6*50mm, 5µ
Mobile Phase	:70:30(Methanol: 2 mM Ammonium formate buffer)

Results:

- a) The Observed Peak Shape was not good and it has tailing (asymmetric position)
- b) Retention time of Analyte and Internal Standard not constant from injection to injection.
- c) Observed response was low.
- d) When replicate injections were given it was observed that there was no reproducibility.

Trail-2:

Column	:Thermo, C18, 4.6*50mm, 5 μ , Thermo, C8, 4.6*50mm, 5 μ and Ace C18,
	4.6*50mm, 5µ
Mobile Phase	:70:30(Methanol: 2 mM Ammonium formate buffer)

Results:

- a) The Observed Peak Shape was not good and it has tailing (asymmetric position)
- b) Retention time of Analyte and Internal Standard not constant from injection to injection.
- c) Observed response was low.
- d) When replicate injections were given it was observed that there was no reproducibility.

Conclusion: It was observed that above mentioned results may be not due to the column and need to change the mobile phase.

Trail-3:

Column	:X-terra, RP 8, 4.6*50mm,5µ
Mobile Phase	:90:10(Methanol: 2 mM Ammonium acetate buffer)

Results:

- a) The Observed Peak Shape was not good and it has tailing (asymmetric position)
- b) Retention time of Analyte and Internal Standard not constant from injection to injection.
- c) Observed response was good.

d) When replicate injections were given it was observed that there was no reproducibility.

Conclusion: It was observed that the response of analyte and internal standard was high. This is may be due to the changing the mobile phase composition and column.

Trail-4:

Column	:X-terra, RP 8, 4.6*50mm,5µ	
Mobile Phase	:60:30:10 (Methanol: Acetonitrile: 2 mM Ammonium	acetate buffer)

Results:

- a) The Observed Peak Shape wasgood and it has no tailing (symmetric peak)
- b) Retention time of Analyte and Internal Standard not constant from injection to injection.
- c) Observed response was good.
- d) When replicate injections were given good reproducibility was observed.

Conclusion: It was observed that the response of analyte and internal standard was high and reproducible. This is may be due to the changing the mobile phase composition.

Trail-5:

Column	:X-terra, RP 8, 4.6*50mm,5µ	
Mobile Phase	:60:30:10 (Methanol: Acetonitrile: 20 mM Ammonium	acetate buffer)

Results:

- a) The Observed Peak Shape was good and it has no tailing (symmetric peak)
- b) Retention time of Analyte and Internal Standard was constant from injection to injection.
- c) Observed response was good.
- d) When replicate injections were given good reproducibility was observed.

Conclusion:

- 1) It was observed that retention time was constant may be due to the increasing the buffer strength.
- 2) By using above mentioned chromatographic conditions (Trail-5) Aqueous linearity was injected and the results were linear and reproducible.

Extraction method trials:

Trail-7: (Liquid-Liquid extraction trail)

Extraction buffer:2mM Ammonium formate P^H 3.0 Extraction Solvent:Methyl tertiary butyl ether (MTBE)

Results

- a) It was observed that recovery of Analyte and Internal Standard was low.
- b) When replicate injections were given reproducibility was not observed.
- c) Extracted sample has more turbidity
- d) Poor chromatography was observed.

Conclusion: This may be due to extraction solvent, extraction buffer and matrix effect.

Trail-8: (Liquid-Liquid extraction trail)

Extraction buffer:1% Ammonia in water Extraction Solvent:Methyl tertiary butyl ether (MTBE)

Results

- a) It was observed that recovery of Analyte and Internal Standard was good.
- b) When replicate injections were given reproducibility was not observed.
- c) Extracted sample has more turbidity
- d) Poor chromatography was observed.

Conclusion: This may be due to extraction solvent, extraction buffer and matrix effect.

Trail-9: (Solid-Phase extraction)

Extraction buffer:1% Ammonia in water SPE Cartridge: HLB 1cc (30mg)

Results

- a) It was observed that recovery of Analyte and Internal Standard was comparatively good.
- b) When replicate injections were given reproducibility was observed.
- c) Extracted sample has no turbidity
- d) Good chromatography was observed.

Conclusion: This may be due to HLB1cc (30mg) cartridge, extraction buffer and no matrix effect was observed.

Trail-10: (Solid-Phase extraction)

Extraction buffer:1% Ammonia in water & SPE Cartridge: HLB 3cc (60mg)

Results

- a) It was observed that recovery of Analyte and Internal Standard was very good.
- b) When replicate injections were given reproducibility was observed.
- c) Extracted sample has no turbidity& Good chromatography was observed.

Conclusion: This may be due to HLB3cc (60mg), extraction buffer and no matrix effect was observed.

1) Chromatographic conditions:

The following parameters for the analysis of Olmesartan in human plasma.

Column	:X-terra, RP 8,4.6*50mm,5µ
Mobile Phase	:60:30:10 (Methanol: Acetonitrile: 20mM Ammonium
	Acetate buffer)
Flow Rate	:0.400 mL/min
Column Temperature	$: 35.0 \pm 2.0$ ° C
Auto sampler Temperature	$:10\pm2.0^{\circ}\mathrm{C}$
Injection volume	: 20µL
Run time	: 2.5 Minutes
Retention time	: Olmesartan acid: 1.05±0.32 min
	Candesartan acid: 1.07±0.32 min

2) Mass spectrometer conditions for multiple Reaction Monitoring:

Scan type	: MRM	[
	Acquisition duration	:	2.50min.
	Ionization Mode	:	ESI
	Polarity	:	Positive
	Inter Channel delay (sec)	:	0.050
	Inter Scan delay/time (sec)	:	0.050

Channel	Parent (Da)	Daughter (Da)	Dwell (s)	Cone (V)	Collision (eV)
Olmesartan Acid	447.35	207.30	0.500	23.00	25.00
Candesartan Acid	441.17	263.33	0.500	21.00	11.00

3) MS tune Parameters:

Source (ES ⁺)					
Parameter	Setting				
Capillary (kV)	3.50				
Cone (V)	23.00				
Extractor (V)	1.00				
RF Lens (V)	0.4				
Source Temperature (⁰ C)	100				
Desolvation Temperature (⁰ C)	400				
Cone Gas Flow (L/Hr)	80				
Desolvation Gas Flow (L/Hr)	800				
Analyser	•				
LM 1 Resolution	15.0				
HM 1 Resolution	15.0				
Ion Energy 1	0.5				
Entrance	-1				
Collision	25				
Exit	1				
LM 2 Resolution	15.0				
HM 2 Resolution	15.0				
Ion Energy 2	1.5				
Multiplier (V)	650				

4) Preparations of solutions:

4.1)20mM Ammonium acetate buffer (w/v):

Weigh accurately about 1.5416 gm of Ammonium acetate and transfer it into a 1000mL beaker, dissolve in 900mL of Milli-Q Water and make up to 1000mL with the same. Sonicate for 5 minutes.

4.2) Mobile phase (v/v):

Prepare Mobile phase by mixing 60 parts of Methanol, 30 parts of Acetonitrile and 10 parts of 20mM Ammonium acetate buffer solution and Sonicate for 5 minutes.

4.3) 80% Methanol solution (v/v):

Mix 800mL of methanol and 200mL of Milli-Q water. Sonicate for 5 minutes.

4.4) 1% Ammonia in Water (v/v):

Mix one parts of Ammonia solution and 99 Parts of Water. Sonicate for 5 Minutes.

4.5)Standard-8 spiking solution: (75.000µg/mL)

Transfer 75µL of Drug stock and make up to 1.000mL with 80% methanol solution and mix.

4.6) Internal standard (ISTD) Dilution :(20.000µg/mL)

Transfer 500μ L of Candesartan Acid stock solution (1mg/mL) into a 25mL volumetric flask and make up to volume with Methanol and mix. Provide a batch number. Prepare as and when required.

4.7) Reference Solution:

Mix 20μ L of Standard-8 Spiking solution and 100μ L of internal standard dilution and make upto 2.000mL with Mobile Phase.

4.8) Standard-1 spiking solution :(0.250µg/mL)

Transfer 34.00µL of Standard-8 Spiking solution and make up to 10.000mL with 80% methanol solution and mix.

4.10) LLOQ Reference solution:

Mix 20μ L of aqueous Standard-1 spiking solution and 100μ L of internal standard dilution and make up to 2.000mL with Mobile Phase. Provide a batch number. Prepare as and when required.

4.11) Preparation of drug stock solution:

Olmesartan Acid stock solution (w/v):

Weigh accurately about 10.000mg Olmesartan Acid Working standard and transfer it into 10.000mL volumetric flask, dissolve in about 5.000mL of methanol and make up to 10.000mL with the same to get 1.000mg/mL. Correct the final concentration of Olmesartan Acid accounting for its potency and the actual amount weighed. Store the stock solution in refrigerator below 10°C.

Candesartan Acid stock solution (w/v): (As Internal standard)

Weigh Candesartan Acid working standard equivalent to 10.000mg of Candesartan Acid and transfer it into a 10.000mL volumetric flask, dissolve in about 5.000mL of Methanol and make up to 10.000mL with the same to get 1.000mg/mL. Correct the final concentration of Candesartan Acid accounting for its potency and the actual amount weighed. Store the stock solution in the refrigerator at below 10^{0} C

5) Preparation of Calibration Curve Standards

5.1) Preparation of spiking solutions:

Prepare spiking solutions from Olmesartan Acid stock solution (CC), as per the table given below in the concentration ranging from 0.250 to 75.000µg/mL. Use 80% Methanol solution as diluent.

SS Conc.		Vo	lume (mL	Final Conc.	SS ID	
ID	(µg/mL)	SS	Diluent	Final	(µg/mL)	55 ID
DS	1000.000	0.750	9.250	10.000	75.000	SS8
SS8	75.000	8.000	2.000	10.000	60.000	SS7
SS7	60.000	6.670	3.330	10.000	40.020	SS6
SS6	40.020	5.000	5.000	10.000	20.010	SS5
SS5	20.010	4.998	5.002	10.000	10.001	SS4
SS4	10.001	1.250	8.750	10.000	1.250	SS3

SS3	1.250	4.000	6.000	10.000	0.500	SS2
SS2	0.500	5.000	5.000	10.000	0.250	SS1

5.2) Preparation of Spiked Plasma CC Standards:

Spike the screened blank human plasma (K_2 EDTA as anticoagulant) with the above-prepared spiking solutions to prepare the plasma standards ranging from 5.000 to 1500.000 ng/mL as per the table given below.

ID	SS Conc.	V	olume (m	L)	Plasma	CC Stondard
ID ID	(µg/mL)	SS	Plasma	Final	(ng/mL)	ID Standard
SS8	75.000	0.200	9.800	10.000	1500.000	STD8
SS7	60.000	0.200	9.800	10.000	1200.000	STD7
SS6	40.020	0.200	9.800	10.000	800.400	STD6
SS5	20.010	0.200	9.800	10.000	400.200	STD5
SS4	10.001	0.200	9.800	10.000	200.020	STD4
SS3	1.250	0.200	9.800	10.000	25.002	STD3
SS2	0.500	0.200	9.800	10.000	10.001	STD2
SS1	0.250	0.200	9.800	10.000	5.000	STD1

6) Preparation of QC Sample

6.1) **Preparation of QC spiking solutions:**

Prepare spiking solutions from Olmesartan Acid stock solution (QC) as per the given table below in the concentration ranging from 0.250 to 57.100μ g/mL. Use 80% Methanol as diluent.

ID	SS Conc.	V	olume (ml	L)	Final Conc.	SS ID	
ID	(µg/mL)	SS	Diluent	Final	(µg/mL)		
DS-XX	1000.000	0.5710	9.4290	10.0000	57.100	HQCSS	
HQCSS	57.100	5.5190	4.4810	10.0000	31.513	MQCSS	
MQCSS	31.513	0.2380	9.7620	10.0000	0.750	LQCSS	
LQCSS	0.750	3.330	6.670	10.000	0.250	LLOQ QC SS	

6.2) Preparation of Spiked Plasma QC samples:

Spike the screened blank human plasma with the above-prepared QC spiking solutions to prepare the plasma quality control samples ranging from 5.000 to 1142.000ng/mL as per the table given below.

m	SS Conc.	V	olume (m	L)	Plasma Cono	QC ID
ID	(µg/mL)	SS	Plasma	Final	(ng/mL)	
HQCSS	57.100	0.200	9.800	10.000	1142.000	HQC
MQCSS	31.513	0.200	9.800	10.000	630.270	MQC
LQCSS	0.750	0.200	9.800	10.000	15.000	LQC
LLOQ QC SS	0.250	0.200	9.800	10.000	5.000	LLOQ QC

7) Spiked sample storage:

Aliquot 0.550mL of each spiked plasma into pre-labeled polypropylene vials, cap them tight, Store in deep freezer below -70° C and record them in the respective deep freezer.

8) Sample Processing:

- Step-1: Aliquot 0.500mL sample into pre labelled ria vials and add 50.0µL of internal standard (ISTD) dilution (20.000µg/mL) to all except standard blank & vortex. Then add 0.500mL of 1% Ammoniated Water to all & vortex.
- Step- 2: Condition HLB 3cc (60mg) Cartridges with 2mL of methanol, 2mL of Milli-Q Water.
- Step-3: Load the Prepared Sample in to Cartridges.
- Step-4: Elute the Sample slowly and completely.
- Step-5: Wash the Cartridges with 2mL of Milli-QWater, followed by 2 mL ofn- Hexane and allowed to dry for two minutes

North Asian International Research Journal of Pharmaceutical & Medical Science ISSN: 2456-8287 Vol. 4, Issue 8, Aug. 2020

Step- 6: Elute the Samples with 1.000mL of Methanol in to Pre Labelled ria vials

- **Step- 7:** Evaporate the eluent under dry nitrogen gas at about 50°C & 15 psi for about 25 min or till the samples are dried.
- Step- 8: Reconstitute the evaporated tubes with 1.000mL of Mobile phase and vortex.
- Step- 9: Transfer the Reconstituted samples into pre labelled auto sampler vials.

FLOW CHART FOR SAMPLE PREPARATION OF OLMESARTAN ACID

Aliquot 0.500mL of plasma Add 50.000µL of internal standard (ISTD) dilution (20.000 µg/mL) & vortex. (Do not add ISTD dilution to the blank samples). Add 0.500mL of 1% Ammonia in Water Solution to all &Vortex. Condition HLB 3cc (60mg) Cartridges with 2mL of methanol, 2mL of Milli-Q Water Load the Prepared Sample in to Cartridges. Elute the Samples slowly and completely. Wash the Cartridges with 2 mL of Milli-Q Water followed by 2 mL of n-Hexane and allowed to dry for two minutes. Elute the Samples with 1.000mL of Methanol in to Pre labelled ria vials Evaporate the eluent at 50°C and 15 psi of dry N2 gas pressure, For 25 minutes or till the tubes is dried. Reconstitute the dried samples with 1.000 mL of Mobile Phase and vortex. Transfer the Reconstituted samples into pre-labeled auto sampler vials.

VALIDATION RESULTS & DISCUSSION

1) System Suitability:

Procedure: The System suitability was measured by injecting six replicates of reference solution (equalant to ULOQ Standard) and evaluated the RT and area ratio.

Acceptance criteria: The obtained %CV of retention time should not be more than 5%, the %CV of area or area ratio should not be more than 2% in case of HPLC and 4% in case of LC-MS/MS.

Result: The obtained %CV is 0.00% for RT of Olmesartan and 0.80% for RT of Candesartan (ISTD). The obtained %CV of area ratio is 0.69%. Results are presented in table -1(A).

2) Auto sampler carryover test:

Procedure: The Auto sampler carry over test was measured by injecting one reference solution, two mobile phase solution and one extracted ULOQ standard, two extracted blank matrix in sequential order and evaluated the area.

Acceptance criteria: The obtained % carryover is not exceeded more than 0.5 % of the areas of blank samples when comparing with high standard sample at Retention time of analyte or ISTD.

Result: The obtained % carryover is 0.00 % at RT of Olmesartan and 0.00% at RT of Candesartan (ISTD). Results are presented in table -1(B).

3) Selectivity:

Procedure: The selectivity of the present method was evaluated by checking the blank K_2EDTA (Ethylene Diamine Tetra acetate) plasma (without spiking Olmesartan and Candesartan (ISTD)) obtained from different blood donors. Eight different batches of K_2EDTA plasma samples were screened and all the batches were found to have no significant endogenous interferences at the retention times of analyte and internal standard (ISTD).6 LOQ samples are prepared in interference free blank for evaluation. Candesartan is used as internal standard.

Acceptance criteria: Response of interfering peaks at the retention time of Analyte (s) must be $\leq 20\%$ of the mean response of extracted LOQ standard. Response of interfering peaks at the retention time of IS must be $\leq 5\%$ of the mean response of Internal standard. At least 80% of 6 different volunteer matrix lots should meet above criteria.

Result: All the batches found to have no significant endogenous interferences at the retention time of analyte and internal standard. Human K_2EDTA plasma batches, free of significant interferences, were used to prepare calibration standards and QC samples for the validation. Results are presented in table – 2.

4) Linearity:

Procedure: The linearity of the calibration curve was determined by injecting the samples of standard-1 to standard-8 in the range of 5.000 ng/mLto 1500.590 ng/mL.

Acceptance criteria: A minimum 6 of 8 standards, including ULOQ should fall within $\pm 15\%$ except LLOQ for which it should be within $\pm 20\%$ when back calculated. Regression should be simple using appropriate weighting factor for goodness of fit.

Result: The linearity of the method was determined by a weighted $(1/x^2)$ least square regression analysis of standard plots associated with eight-point standard curve for Olmesartan. The calibration line was linear for the standards ranging from 5.000 ng/mLto 1500.590 ng/mL for Olmesartan as shown in figure 2.

A straight-line fit is made through the data points by least square regression analysis and a constant proportionality is observed with minimal data scattering. The correlation coefficients (r^2) ranged from 0.9932 to 0.9974 for Olmesartan during the course of validation. Results are presented in the Table 3.

5) Chromatography (Figures No. 3 -17):

Representative chromatograms of aqueous standards (Olmesartan andCandesartan), blank plasma, and blank plasma spiked with ISTD, Calibration curve standards (STD-1 to STD-8), LLOQ QC, low, middle and high QC samples are shown in figures 3 to 17 respectively.

6) Precision and Accuracy:

Procedure: The precision and accuracy was measured by injecting one mobile phase sample, one reference solution, one calibration curve (includes one blank sample, one blank+ISTD and STD-1 to STD-8) and quality control samples six at each level of LLOQ QC, LQC, MQC and HQC.

Calculation: The precision of the assay was measured by the percent coefficient of variation for QC samples of Olmesartan and the accuracy of the assay was measured by calculating the ratio of the calculated mean values of the QC samples to their respective nominal values, expressed as percentage. Results are presented in the Table 4(A) & 4(B).

Acceptance criteria: A minimum of 4 P & A batches should be evaluated. The precision should not exceed 15% of coefficient of variation for all the QC samples except for the LLOQ QC where it should not exceed 20% of CV.

Result:

Within-batch Precision for Olmesartan Within-batch precision for LLOQ QC was ranged from 2.80 to 6.10%. Within-batch precision for LQC, MQC and HQC ranged from 1.86 to 6.98%.

Within-batch Accuracy for Olmesartan Within-batch accuracy for LLOQ QC was ranged from 103.85 to 110.46%. Within-batch accuracy for LQC, MQC and HQC ranged from 90.90 to 108.61%.

Between-batch Precision for Olmesartan Between-batch precision for LLOQ QC was 5.03%. Between-batch precision for LQC, MQC and HQC ranged from 4.91 to 7.32%. Between-batch Accuracy for Olmesartan The between batch accuracy for LLOQ QC was 107.57%. The between batch accuracy for LQC, MQC and HQC ranged from 95.28 to 102.66%.

6) Stability: Stability of Drugs in Stock solution

6.1) Short-term stability of drugs in Stock solution:

Procedure: Stock solutions of about 1 mg/mL Olmesartan and Candesartan (Internal standard) were prepared freshly and aliquots of freshly prepared stock solutions were left at room temperature of \leq 25°C for 6.25 hours for Olmesartan and Candesartan. The freshly prepared stock solutions stored in refrigerator below 10°C, were used as comparison samples. The short-term stock solution stability of Olmesartan in Methanol and Candesartan (Internal standard) in Methanol was successfully assessed by comparing mean responses of six replicates of stability samples Vs six replicates of comparison samples. The mean responses of both stability and comparison solutions were subsequently compared.

Acceptance criteria: Comparable stability against comparative samples for analyte and internal standard should be within the range of 90-110%.

Result: After storage for 6.25 hours at room temperature of $\leq 25^{\circ}$ C, the percent stabilities were 97.53% and 99.01% for Olmesartan and Candesartan respectively. Results are presented in the Table-5.

6.2) Long-term stability of drugs in Stock solution:

Procedure: Stock solutions of about 1 mg/mL Olmesartan and Candesartan (Internal standard) were prepared and aliquots of these stock solutions were stored in refrigerator below 10°C (Stability samples) for 7.14 days for Olmesartan and Candesartan (ISTD). On the day of analysis, freshly prepared stock solutions stored in refrigerator $\leq 10^{\circ}$ C, were used as comparison samples. The long-term stock solution stability of Olmesartan in Methanol and Candesartan (Internal standard) in Methanol was successfully assessed by comparing mean responses of six replicates of stability samples Vs six replicates of comparison samples. The responses of both stability and comparison solutions were subsequently compared.

Acceptance criteria: Comparable stability against comparative samples for analyte and internal standard should be within the range of 90-110%.

Result: After storage for 7.14 days for Olmesartan and Candesartan (ISTD) in refrigerator below 10°C, the percent stabilities were 100.37% and 95.51% for Olmesartan and Candesartan respectively. Results are presented in the Table 6.

6.3) Stability of analyte in Biological Matrix:

Zero day Long-term stability of analyte in human K₂EDTA plasma (First day of LT Stabilitytesting)

Procedure: The Zero day long-term stability of Olmesartan in human K_2EDTA plasma was successfully assessed by analyzing fresh QC samples at low and high concentrations. The concentrations of QC samples were determined with the freshly prepared calibration curve standards. These back calculated concentrations will be used as nominal concentrations for calculating long term stability in matrix.

The mean back calculated concentrations of fresh QC samples (before storage for stability evaluation at-70°C & -20°C) are observed to be 14.407 ng/mL (LQC level) and 1166.259 ng/mL (HQC level).

Acceptance criteria: The mean concentration obtained for LQC & HQC samples should be within $\pm 15\%$ of nominal concentration. %CV should not exceed 15%.

Result:The %CV and %nominal values for LQC are 2.35% and 96.09% where as for HQC are 1.78% and 101.29%. Results are presented in the Table 7.

7) Freeze-thaw stability:

Procedure: The freeze-thaw (FT) stability of Olmesartan in human plasma was successfully assessed by analyzing six replicates of quality control samples at low and high levels, previously frozen and thawed (at room temperature of ~ 25° C) over 5 cycles along with freshly prepared calibration curve standards and by calculating the percent nominal of mean concentrations of stability samples at low and high QC levels.

Acceptance criteria: The mean concentration obtained for LQC & HQC samples should be within $\pm 15\%$ of nominal concentration. %CV should not exceed 15%.

Result: The freeze-thaw stability of Olmesartan after five FT cycles was 97.79% and 102.38% at low and high concentrations respectively. Results are presented in the Table 8.

8) Bench top stability:

Date and retrieval time of samples from deep freezer: 09-04-12 at 11:05 AM Date and time of processing: 09-04-12 at 04:22 PM

Procedure: The Bench top stability of Olmesartan in human plasma was successfully assessed by unprocessed six replicates of stability samples, maintained at a temperature of ~ 25° C for 5.28 hours, at low and high QC concentrations and analyzing the stability samples along with freshly prepared calibration curve standards. The percentage stability was determined by calculating the percent nominal of mean concentrations of stability QC samples at high and low QC levels.

Acceptance criteria: The mean concentration obtained for LQC & HQC samples should be within \pm 15% of nominal concentration. %CV should not exceed 15%.

Result: The bench top stability of Olmesartan in human plasma at a temperature of ~25°C for 5.28 hours was 98.80% and 99.92% at low and high concentrations respectively. Results are presented in the Table 9.

9) In-injector stability:

Date and time of loading of samples into auto injector 07-04-12 at 03:20 PM Date and time of injection: 09-04-12 at 05:07 PM

Procedure: In-Injector stability of analyte was successfully assessed by analyzing processed QC samples at high and low concentrations after storage for 49.78 hours at 10°C in auto sampler and the concentrations of QC samples were determined with the freshly prepared calibration curve standards. The percentage stability was determined by calculating the percentage nominal of mean concentrations of QC samples stored at 10°C for 49.78 hours in auto sampler.

Acceptance criteria: The mean concentration obtained for LQC & HQC samples should be within \pm 15% of nominal concentration. %CV should not exceed 15%.

Result: The In-Injector stability of Olmesartan for 49.78 hours at 10°C was 101.50% for LQC and 97.61% for HQC. Results are presented in the Table 10.

10) Wet Extract stability:

Date and storage time of processed samples: 07-04-12 at 03:28 PM Date and retrieval time of stored samples: 09-04-12 at 12:50 PM

Procedure: The stability of Olmesartan in Wet extract form, was successfully assessed by analyzing six replicates of Wet Extract stability samples stored at a temperature below 10°C for 45.37 hours at low and high concentrations and the concentrations of stability QC samples were determined with the freshly prepared calibration curve standards. The percentage stability was determined by calculating the percentage nominal of mean concentrations of QC samples stored below 10°C for 45.37 hours.

Acceptance criteria: The mean concentration obtained for LQC & HQC samples should be within $\pm 15\%$ of nominal concentration. %CV should not exceed 15%.

Result: The Wet extract stability of Olmesartan at a temperature of below 10°C for 45.37 hours was 96.62% and 101.97% at low and high concentrations respectively. Results are presented in Table 11.

11) Dry Extract stability:

Date and storage time of processed samples: 07-04-12 at 03:28 PM Date and retrieval time of stored samples: 09-04-12 at 12:50 PM

Procedure: The stability of Olmesartan in Dry extract form was successfully assessed by analyzing six replicates of Dry Extract stability samples stored at a temperature below 10°C for 45.37 hours at low and high concentrations. And the concentrations of stability QC samples were determined with the freshly prepared calibration curve standards. The percentage stability was determined by calculating the percentage nominal of mean concentrations of QC samples stored below 10°C for 45.37 hours.

Acceptance criteria: The mean concentration obtained for LQC & HQC samples should be within $\pm 15\%$ of nominal concentration. %CV should not exceed 15%.

Result: The Dry Extract stability of Olmesartan at a temperature of below 10°C for 45.37 hours was 96.93% and 99.54% at low and high concentrations respectively. Results are presented in Table 12.

12) Long-term stability of analyte in biological matrix:

Date and storage time of fresh QC samples for Stability (at -70°C): 04-04-12 at 03:15 PM Date and retrieval time of stored stability samples for analysis (from -70°C) 13-04-12 at 10:30 AM

Procedure: The long-term stability of Olmesartan in human plasma was successfully assessed by analyzing QC samples at low and high concentrations after storage for 8.80 days at -70°C. The concentrations of stability QC samples were determined with the freshly prepared calibration curve standards prepared in human K_2 EDTA plasma. The percentage stability was determined by comparing the mean concentrations of stability QC samples at low and high QC levels with mean back calculated concentrations of fresh QC samples analysed on day zero (i.e. First day of LT Stability Testing).

Acceptance criteria: The mean concentration obtained for stability LQC & HQC samples should be within \pm 15% of zero day mean back calculated concentrations of fresh QC samples. The %CV of stability samples should not exceed 15%.

Result: The long-term stability of Olmesartan in human plasma after storage for 8.80 days at -70° C was 114.05% and 99.13% at low and high concentrations respectively. Results are presented in the Table 13.

13) Dilution Integrity:

Procedure: A dilution QC pool (3001.180 ng/mL) was prepared in human K_2EDTA plasma (containing K_2EDTA as anticoagulant) at a concentration approximately twice the high CC standard (ULOQ-upper limit of quantitation) for Olmesartan to assess dilution integrity. Blank human K_2EDTA plasma was used to dilute the dilution quality control (DQC) samples (prepared in human K_2EDTA plasma). The precision and accuracy for

dilution integrity after $\frac{1}{2}^{nd}$ dilution and $\frac{1}{4}^{th}$ dilution were determined against processed calibration curve standards.

Acceptance criteria: The accuracy of the dilution integrity QC samples should be within $\pm 15\%$. %CV should not exceed 15%

Result: The precision for dilution quality control sample of Olmesartan in human K₂EDTA plasma was 2.95% at $\frac{1}{2}^{nd}$ dilution and 6.98% at $\frac{1}{4}^{th}$ dilution. The accuracy for dilution quality control sample of Olmesartan in human K₂EDTA plasma was 104.02% for $\frac{1}{2}^{nd}$ dilution and 92.27% for $\frac{1}{4}^{th}$ dilution.

Dilution integrity for Olmesartan in human K₂EDTA plasma was observed after $\frac{1}{2}^{nd}$ and $\frac{1}{4}^{th}$ dilution. Results are presented in the Table 14.

14) Ruggedness (P&A-5)

Ruggedness was evaluated using a single precision and accuracy batch performed by a same instrument, different column lot, and different sample processing analyst.

Result: The % CV and nominal values for LLOQ QC was 5.35% and 110.66% and for LQC, MQC & HQC ranged from 4.42 to 6.77% and 100.27 to 104.05% respectively. Results are presented in the Table 15.

15) Simultaneous evaluation of Matrix effect, Recovery and Process efficiency:

Matrix effect, Recovery and Process efficiency for Olmesartan are evaluated with Aqueous (neat) samples, Post-extracted and extracted samples from 6 different K₂EDTA blank plasma lots. The results are calculated using peak area responses.

Matrix Effect:

Procedure: Matrix Effect was performed by analyzing six replicates of post extracted samples at five different CC standard i.e. STD-1,STD-3,STD-5,STD-6 and STD-8 concentrations (prepared by spiking aqueous solutions into extracted blank plasma samples from 6 different blank K₂EDTA plasma lots) along with 6 replicates of equivalent, similarly prepared aqueous (neat) samples. The percentage matrix effect was determined by comparing the mean peak area responses of post-extracted samples with mean peak area responses of aqueous (neat) samples at five different CC standard i.e. STD-1,STD-3,STD-5,STD-6 and STD-8 concentration levels.

Acceptance criteria: The mean response obtained for post extracted samples should be within $\pm 15\%$ of the mean response of aqueous (neat) samples at five different CC standard levels.%CV should not exceed 15% except std1 where it is 20%.

Result: The %CV and % matrix effect on Olmesartan in K_2 EDTA plasma ranged from 1.54 to 3.22% and 97.93 to 101.96 respectively. Results are presented in the Table 16.

The %CV and % matrix effect on Candesartan in K_2 EDTA plasma ranged from 1.50 to 2.64% and 98.64 to 101.51% respectively. Results are presented in the Table 16.

Recovery:

Procedure: Recovery was performed by analyzing six replicates of extracted CC standard samples (spiked in 6 different blank K₂EDTA plasma lots) along with post extracted CC standard samples (prepared by spiking aqueous solutions into extracted blank plasma samples from 6 different blank K₂EDTA plasma lots) at five different CC standard concentration levels i.e. STD-1,STD-3,STD-5,STD-6 and STD-8. The percentage recovery is determined by comparing the areas of the extracted QC samples against equivalent post-extracted QC samples at five different CC standards i.e. STD-1, STD-3, STD-5, STD-6 and STD-8 concentration levels.

Acceptance criteria: Percent recovery for analyte and internal standard should be $\leq 115\%$. The %CV of the mean recoveries at five different CC standard levels for analyte is $\leq 15\%$ except STD-1 where it is 20%.

Result: Recovery of Olmesartanranged from 84.76 to 92.29%. Results are presented in Table 16.

Recovery of Candesartan ranged from 66.39 to 72.92%. Results are presented in Table 16.

Process Efficiency

Procedure: Process efficiency was performed by analyzing six replicates of extracted CC standard samples (spiked in 6 different blank K_2EDTA plasma lots) along with 6 replicates of equivalent, similarly prepared aqueous (neat) samples. The percentage process efficiency is determined by comparing the mean peak areas of the extracted samples against equivalent aqueous samples (neat samples) at five different CC standard i.e. STD-1, STD-3, STD-5, STD-6 and STD-8 concentration levels.

Acceptance criteria: The mean response obtained for extracted samples should be less than 115% of the mean response of aqueous (neat) samples at five different CC standard levels. %CV should not exceed 15% except std1 where it is 20%.

Result: Process efficiency for Olmesartan ranged from 83.01 to 93.25%. Results are presented in Table 16.

Process efficiency for Candesartan ranged from 65.49 to 73.55%. Results are presented in Table 16.

TABLE 1(A)System Suitability

	Name of th	Instrumen	t Name :LC-MS/MS			
Sr.No	Name of the	Mean Retention Time	% CV of Retention Time	% CV of Area Area-ratio (Analyte/IS)		System suitable
	Analyte					Yes/No
1	Olmesartan	1.02	1.02 0.00		69	Ves
1	Candesartan(ISTD)	1.05	0.80	-		105

TABLE 1(B)

Auto Sampler Carry over Test

Name of the experiment : Auto Sampler Carry Over Test				Instrument Name :LC-MS/MS						
Sr No	Analyte ID	Area of Reference Solution	Area of R.S-1*	Area of R.S-1*Area of R.S-2*Area of Ext High Std		Area of STD Blank-1	Area of STD Blank-2*	%Carry- Over of extracted High STD		
1	Olmesartan	177772	0	0	201636	0	0	0.00		
2	Candesartan (ISTD)	94032	2	3	98660	1	0	0.00		

RS - Reconstitution solution/Mobile Phase

*-Qualitative evaluation only

TABLE 2

SELECTIVITY OF OLMESARTAN

Instrument Name: LC-MS/MS									
	Selectivity		Olmesarta	an	Candesartan (ISTD)				
C No	K EDTA Blasma Batah Na	LLOQ	Inter	ference	ISTD	Inter	ference		
5. N0	$K_2 ED TA Flasina Datch No.$	area	Area	%Area	Area	Area	%Area		
1	2705	975	3	0.41	109655	0	0.00		
2	2706	716	0	0.00	88137	2	0.00		
3	2707	707	0	0.00	89575	4	0.00		
4	2708	692	0	0.00	87386	3	0.00		
5	2709	654	0	0.00	78956	1	0.00		
6	2710	677	0	0.00	85274	2	0.00		
7	2711	-	0	0.00	-	0	0.00		
8	2712	-	0	0.00	-	3	0.00		
Mean 737 89831									

CC ID	STD-1	STD-2	STD-3	STD-4	STD-5	STD-6	STD-7	STD-8	slope	intercept	r ²
Nominal Concentrations (ng/mL)											
Instrument 5.000 10.001 25.002 200.019 400.037 800.715 1200.472 1500.590											
	Calculated Concentrations (ng/mL)										
	5.214	9.080	25.402	194.300	421.123	800.107	1237.047	1469.726	0.0012	-0.0005	0.9972
	5.148	9.260	25.837	200.081	428.630	797.626	1186.120	1433.141	0.0014	-0.0005	0.9974
LC-1015/1015	5.246	8.910	25.658	194.919	420.690	804.049	1220.329	1480.733	0.0014	-0.0004	0.9967
	5.174	9.605	23.408	173.866	408.640	836.212	1326.912	1542.915	0.0011	-0.0001	0.9932
Mean	5.196	9.214	25.076	190.792	419.771	809.499	1242.602	1481.629			
±SD	0.0432	0.2974	1.1264	11.5775	8.2675	18.0043	60.0703	45.6419			
%CV	0.83	3.23	4.49	6.07	1.97	2.22	4.83	3.08			
%Nominal	103.91	92.13	100.30	95.39	104.93	101.10	103.51	98.74			

TABLE 3

Back Calculated Standard Concentrations (ng/mL)of Olmesartan and Calibration curve parameters

 r^2 – Regression coefficient

ſ

TABLE 4(A)

Back-Calculated Concentration of QC Samples (ng/mL) for Olmesartan (Within-Batch) (Contd...)

		L	LOQQ	QC	LQC			MQC			HQC		
Batc	Instrumen					Non	ninal Conc	entrations ((ng/mL)				
h ID	t ID			%Nomina		14.99	%Nomina		635.32	%Nomina		1151.37	%Nomina
		QC ID	5.000	l	QC ID	4	l	QC ID	6	l	QC ID	0	l
						14.69			529.64			1164.21	
		QC-01	5.612	112.24	QC-01	1	97.98	QC-01	0	83.37	QC-01	1	101.12
						15.27			613.13			1200.96	
		QC-02	5.312	106.24	QC-02	0	101.84	QC-02	2	96.51	QC-02	2	104.31
						15.82			631.46			1190.86	
		QC-03	5.434	108.68	QC-03	2	105.52	QC-03	9	99.39	QC-03	4	103.43
						15.65			610.34			1221.93	
Р&		QC-04	5.624	112.48	QC-04	1	104.38	QC-04	1	96.07	QC-04	5	106.13
A-I	LC.					15.73			604.81			1212.10	
&	MS/MS	QC-05	5.432	108.64	QC-05	6	104.95	QC-05	5	95.20	QC-05	9	105.28
(-						15.82			614.07			1223.43	
70°C)		QC-06	5.725	114.50	QC-06	8	105.56	QC-06	8	96.66	QC-06	0	106.26
		Mean				15.50			600.57			1202.25	
		meun	5.523		Mean	0		Mean	9		Mean	2	
		+SD	0.154			0.446			35.887				
		_50	7		±SD	6		±SD	5		±SD	22.4123	
		%CV	2.80		%CV	2.88		%CV	5.98		%CV	1.86	
		%Nomina	110.4		%Nomina	103.3		%Nomina			%Nomina		
		1	6		1	7		1	94.53		l	104.42	

North Asian International research Journal consortiums www.nairjc.com

						14.18			545.13			1103.08	
		QC-07	5.743	114.86	QC-07	2	94.58	QC-07	7	85.80	QC-07	5	95.81
						14.15			568.69			1079.49	
		QC-08	5.342	106.84	QC-08	8	94.42	QC-08	8	89.51	QC-08	4	93.76
						13.79			574.85			1144.26	
		QC-09	4.835	96.70	QC-09	2	91.98	QC-09	2	90.48	QC-09	8	99.38
						15.47			603.34			1184.78	
P &		QC-10	5.541	110.82	QC-10	4	103.20	QC-10	0	94.97	QC-10	2	102.90
A – II	IC-					15.49			591.80			1169.36	
&	MS/MS	QC-11	5.405	108.10	QC-11	9	103.37	QC-11	3	93.15	QC-11	1	101.56
(-	1010/1010					15.24			633.05			1194.75	
70°C)		QC-12	5.706	114.12	QC-12	2	101.65	QC-12	5	99.64	QC-12	4	103.77
		Mean				14.72			586.14			1145.95	
			5.429		Mean	5		Mean	8		Mean	7	
		±SD	0.331			0.763			30.469				
			3		±SD	4		±SD	0		±SD	46.2482	
		%CV	6.10		%CV	5.18		%CV	5.20		%CV	4.04	
		%Nomina	108.5		%Nomina			%Nomina			%Nomina		
		1	7		1	98.20		1	92.26		1	99.53	
		0.0.10			0.0.10	13.82		0.0.10	583.22	04.00	0.0.10	1115.76	0 < 0 1
		QC-13	5.576	111.52	QC-13	8	92.22	QC-13	0	91.80	QC-13	5	96.91
		00.14	1.001	00.40	00.14	14.37	05.00	00.14	563.84	00 77	00.14	1122.74	07 51
		QC-14	4.924	98.48	QC-14	9	95.90	QC-14	2 572.44	88./5	QC-14	2 1000 17	97.51
		00.15	5 101	102 (2	00.15	14.53	06.06	00.15	5/3.44	00.20	00.15	1099.17 o	05 47
		QC-13	5.161	105.02	QC-13	0 14 14	90.90	QC-13	9 565 80	90.20	QC-13	0 1124 76	95.47
P &		OC-16	5 036	100 72	OC-16	6	94 34	OC-16	9	89.07	OC-16	1124.70 4	97 69
A –		QC 10	5.050	100.72	Q0 10	14 35	7464	QC 10	587.28	0,01	QC 10	1153 25	71.05
III	LC-	OC-17	5.064	101.28	OC-17	2	95.72	OC-17	8	92.44	OC-17	3	100.16
&	MS/MS					15.28			591.47			1159.52	
(- 700C)		QC-18	5.373	107.46	QC-18	0	101.91	QC-18	4	93.10	QC-18	8	100.71
/0°C)						14.42			577.52			1129.20	
		Mean	5.192		Mean	1		Mean	9		Mean	5	
		L CD	0.242			0.486			11.500				
		±3D	0		±SD	9		±SD	7		±SD	22.9849	
		%CV	4.66		%CV	3.38		%CV	1.99		%CV	2.04	
		%Nomina	103.8		%Nomina			%Nomina			%Nomina		
		1	5		1	96.18		1	90.90		1	98.07	

		L	LOQ()C		LQC			MQC			HQC	
Batch ID	Instrumont					Nom	inal Conce	entrations	(ng/mL	.)			
	insti unient		5 000	%Nomin		14.99	%Nomin		635.32	%Nomin		1151.37	%Nomin
		QC ID	5.000	al	QC ID	4	al	QC ID	6	al	QC ID	0	al
	LC-MS/MS	QC-19	5.226	104.52	QC-19	14.91 7	99.49	QC-19	717.90 6	113.00	QC-19	1296.01 5	112.56
		QC-20	5.250	105.00	QC-20	13.19 9	88.03	QC-20	695.86 3	109.53	QC-20	1245.63 5	108.19
		QC-21	5.627	112.54	QC-21	15.61 8	104.16	QC-21	642.88 8	101.19	QC-21	1244.87 2	108.12
		QC-22	5.797	115.94	QC-22	14.97 4	99.87	QC-22	586.46 3	92.31	QC-22	1256.48 2	109.13
IV		QC-23	5.132	102.64	QC-23	15.87 6	105.88	QC-23	649.09 2	102.17	QC-23	1187.57 3	103.14
(-70°C)		QC-24	5.185	103.70	QC-24	16.10 1	107.38	QC-24	648.86 5	102.13	QC-24	1272.10 5	110.49
		Mean	5.370		Mean	15.11 4		Mean	656.84 6		Mean	1250.44 7	
		±SD	0.273 6		±SD	1.052 1		±SD	4 <mark>5.876</mark> 1		±SD	36.3024	
		%CV	5.10		%CV	6.96		%CV	6.98		%CV	2.90]
		%Nomin	107.3		%Nomin	100.8		%Nomin	103.39		%Nomin	108.61	
		al	9		al	0		al	100.07		al	100.01	

 TABLE 4 (B)

 Back-Calculated Concentration of QC Samples (ng/mL) for Olmesartan (Between-Batch)

Back-Calculated Concentration of QC Samples for Olmesartan (Between-batch)

QC ID	LLOQ QC	LQC	MQC	HQC
Actual Conc. (ng/mL)	5.000	14.994	635.236	1151.370
Mean	5.378	14.940	605.275	1181.965
±SD	0.2707	0.7965	44.3160	58.0577
%CV	5.03	5.33	7.32	4.91
%Nominal	107.57	99.64	95.28	102.66

 TABLE 5

 SHORT TERM STOCK SOLUTION STABILITY FOR OLMESARTAN

 Short-term stability of Olmesartan and Candesartan (ISTD) in stock solution

Date of	Experiment: 03-04-12		Instrument :LC-MS/MS				
	Olmes	artan	Candesartan (ISTD)				
Sr. No.	Comparison	Stability (6.25 Hours)	Comparison	Stability (6.25 Hours)			
1	78465	74734	87456	87757			
2	78087	73820	85459	85590			
3	74180	72704	85656	85150			
4	72829	71413	84885	83318			
5	71737	71310	83263	81527			
б	69827	70156	82982	81300			
Mean	74188	72356	84950	84107			
±SD	3474.7 17		1659.0	2520.6			
%CV	%CV 4.68		1.95	3.00			
%Stability	97.	53	99.01				

TABLE 6 LONG TERM STOCK SOLUTION STABILITY FOR OLMESARTAN Long-term stability of Olmesartan & Candesartan (ISTD) in stock solution

Date of Expe	riment: 10-04-12		Instrument :LC-MS/MS				
	Olmesa	artan	Candesartan(ISTD)				
Sr. No.	Comparison	Stability (7.14 days)	Comparison	Stability (7.14 days)			
Conc. (ng/mL)	1000.593	1001.191	1001.742	1000.583			
Correction factor	N/AP	0.9994	N/AP	1.0012			
1	116956	116554	138503	134838			
2	111897	113998	134596	125956			
3	106393	107130	130341	123304			
4	101936	101986	127711	122859			
5	97868	100448	124562	119781			
6	94897	92512	123753	116891			
Mean	104991	105438	129911	123938			
± SD	8423.5	8984.4	5785.0	6186.9			
%CV	8.02 8.52		4.45	4.99			
Corrected Mean	-	105375	-	124082			
%Stability	100.	37	95.51				

North Asian International research Journal consortiums www.nairjc.com

TABLE 7Zero-day Long-term stability of analyte in human K2EDTA plasmaBack Calculated Concentrations for CC Standards of Olmesartan

CC ID	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8			
Actual Conc. (ng/mL)	5.000	10.001	25.002	200.019	400.037	800.715	1200.472	1500.590	slope	Intercept	r ²
LT Fresh CC Curve	5.114	9.153	27.769	174.351	416.030	824.351	1227.137	1482.581	0.0018	-0.0006	0.9930
% Nominal	102.28	91.52	111.07	87.17	104.00	102.95	102.22	98.80			

 r^2 = regression coefficient

Zero-day Long-term stability of Olmesartan in human K2EDTA plasma

Date of Experim	ent: 04-04-12	Instrument :LC-MS/MS				
	Long-Term stability	y in human K ₂ EDTA plasma for zero day				
Olmesartan in human K_2EDTA	LQC	HQC				
piasma	Nominal Concentration (ng/mL)					
QC ID	14.994	1151.370				
1 (LT)	14.548	1132.057				
2 (LT)	14.245	1156.096				
3 (LT)	14.060	1193.039				
4 (LT)	14.785	1172.541				
5 (LT)	14.039	1177.878				
6 (LT)	14.767	1165.942				
Mean	14.407	1166.259				
±SD	0.3390	20.8077				
%CV	2.35	1.78				
%Nominal	96.09	101.29				

I	Back Calculated Concentrations for CC Standards of Olmesartan											
CC ID	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8				
Actual Conc. (ng/mL)	5.001	10.001	25.004	200.029	400.057	800.115	1200.472	1500.590	slope	Intercept	r ²	
CC Curve	5.245	9.369	22.838	197.535	403.221	798.917	1232.643	1621.073				
% Nominal	104.88	93.68	91.34	98.75	100.79	99.85	102.68	108.03	0.0009	-0.0008	0.9962	

TABLE 8 FREEZE THAW STABILITY OF OLMESARTAN ck Calculated Concentrations for CC Standards of Olmesartan

Freeze thaw stability of Olmesartan

Date of Experime	nt: 09-04-12	Instrument :LC-MS/MS					
	Freeze	e thaw stability (5 Cycles)					
Olmesartan	LQC	HQC					
	Nominal Concentration (ng/mL)						
QC ID	14.994	1151.370					
QC-49	15.430	1216.475					
QC-50	14.271	1202.897					
QC-51	14.307	1208.741					
QC-52	14.646	1152.221					
QC-53	14.651	1145.581					
QC-54	14.673	1147.034					
Mean	14.663	1178.825					
±SD	0.4169	33.8099					
%CV	2.84	2.87					
%Nominal	97.79	102.38					

Details of Freeze-thaw Cycles:

	Freezing Time & Date (at-70°C)	Thawing Time & Date (at room temperature of ~ 25°C)	Time difference between Freezing
F ^T Cycle ID	Storage Location: Deep Freezer	Storage Location: Sample processing area	& Thawing
FT Cycle-1	03:15 PM & 04-04-2012	03:55 PM & 05-04-2012	24.67 hrs
FT Cycle-2	05:56 PM & 05-04-2012	09:30 AM &06-04-2012	15.57 hrs
FT Cycle-3	11:15 AM & 06-04-2012	09:32 AM & 07-04-2012	22.28 hrs
FT Cycle-4	11:31 AM & 07-04-2012	10:53AM & 08-04-2012	23.37 hrs
FT Cycle-5	11:59AM & 08-04-2012	01:35PM & 09-04-2012	25.60 hrs

Note: The storage time of samples in deep freezer is considered as freezing time & retrieval time of samples from Deep freezer is considered as thawing time.

	Back Calculated Concentrations for CC Standards of Olmesartan											
CC ID	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8				
Actual Conc. (ng/mL)	5.001	10.001	25.004	200.029	400.057	800.115	1200.472	1500.590	slope	Intercept	r ²	
CC Curve	5.264	9.291	23.004	182.346	415.574	831.343	1233.357	1623.053		-0.0006	0.9943	
% Nominal	105.26	92.90	92.00	91.16	103.88	103.90	102.74	108.16	0.0009			

TABLE 9 BENCH TOP STABILITY OF OLMESARTAN Back Calculated Concentrations for CC Standards of Olmesartan

 r^2 = regression coefficient

Date of Experiment:	09-04-12	Instr	ument :LC-MS/MS			
	Bench top stability (5.28 hrs)					
Olmesartan	LQC	1	HQC			
	Nomi	nal Conce	entration (ng/mL)			
QC ID	14.99	4	1151.370			
QC-61	16.15	1	1133.205			
QC-62	14.61	4	1168.817			
QC-63	14.83	2	1126.146			
QC-64	14.66	1	1166.108			
QC-65	13.20	8	1143.448			
QC-66	15.41	4	1165.271			
Mean	14.81	3	1150.499			
±SD	0.978	8	18.6508			
%CV	6.61		1.62			
%Nominal	98.80)	99.92			

Bench Top stability of Olmesartan

TABLE 10 IN-INJECTOR STABILITY OF OLMESARTAN Back Calculated Concentrations for CC Standards of Olmesartan

CC ID	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8			
Actual Conc. (ng/mL)	5.001	10.001	25.004	200.029	400.057	800.115	1200.472	1500.590	slope	Intercept	r ²
FT-IIJ FCC	5.245	9.369	22.838	197.535	403.221	798.917	1232.643	1621.073			
% Nominal	104.88	93.68	91.34	98.75	100.79	99.85	102.68	108.03	0.0009	-0.0008	0.9962

In-Injector stability of Olmesartan

Date of Experimen	nt: 09-04-12	Instrument ID: LC-MS/MS					
	In-Injector stability at 10°C (49.78 hr)						
Olmesartan	LQC	l ,	HQC				
	Nominal Concentration (ng/mL)						
QC ID	14.994	4	1151.370				
QC-43	15.04	1	1195.365				
QC-44	14.55	1	1182.548				
QC-45	15.074	4	1187.689				
QC-46	14.619	9	1099.108				
QC-47	16.03	6	1041.903				
QC-48	15.99	1	1036.181				
Mean	15.21	9	1123.799				
±SD	0.651	5	74.3621				
%CV	4.28		6.62				
%Nominal	101.5	0	97.61				

	Back Calculated Concentrations for CC Standards of Olmesartan											
CC ID	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8				
Actual Conc. (ng/mL)	5.001	10.001	25.004	200.029	400.057	800.115	1200.472	1500.590	slope	Intercept	r ²	
CC Curve	5.284	9.238	22.786	187.911	405.980	819.700	1261.261	1619.215				
% Nominal	105.66	92.37	91.13	93.94	101.48	102.45	105.06	107.91	0.0009	-0.0008	0.9947	

Table 11WET EXTRACT STABILITY OF OLMESARTANBack Calculated Concentrations for CC Standards of Olmesartan

 r^2 = regression coefficient

Date of Experiment	: 09-04-12	Instrument :LC-MS/	MS					
	Wet ex	tract stability below 10°C (45.37 hr)						
Olmesartan	LQC	HQC						
-	Nominal Concentration (ng/mL)							
QC ID	14.994	1151.37	0					
QC-37	14.363	1153.31	8					
QC-38	14.576	1178.59	8					
QC-39	14.454	1148.52	1					
QC-40	14.482	1172.00	6					
QC-41	14.350	1204.02	5					
QC-42	14.699	1188.12	5					
Mean	14.487	1174.09	9					
±SD	0.1328	20.9905	5					
%CV	0.92	1.79						
%Nominal	96.62	101.97						

Wet extract stability of Olmesartan

 Table 12

 DRY EXTRACT STABILITY OF OLMESARTAN

 Back Calculated Concentrations for CC Standards of Olmesartan

CC ID	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8			
Actual Conc. (ng/mL)	5.001	10.001	25.004	200.029	400.057	800.115	1200.472	1500.590	slope	Intercept	r ²
CC Curve	5.284	9.238	22.786	187.911	405.980	819.700	1261.261	1619.215	0.0009	-0.0008	0.9947
% Nominal	105.66	92.37	91.13	93.94	101.48	102.45	105.06	107.91			

 r^2 = regression coefficient

Date of Experiment:	: 09-04-12	Instrument :LC-MS/MS						
	Dry Extract stability below 10°C (45.37 hr)							
Olmesartan	LQC	HQC						
	Nominal Concentration (ng/mL)							
QC ID	14.994	1151.370						
QC-31	14.515	1152.244						
QC-32	14.400	1158.221						
QC-33	14.519	1126.134						
QC-34	14.704	1156.765						
QC-35	14.398	1139.143						
QC-36	14.666	1144.008						
Mean	14.534	1146.086						
±SD	0.1291	12.2460						
%CV	0.89	1.07						
%Nominal	96.93	99.54						

Dry Extract stability of Olmesartan

TABLE 13

Long-term stability of Analyte in human K₂EDTA plasma (after storage for 8.80 days at-70°C) Back Calculated Concentrations for CC Standards of Olmesartan

CC ID	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8			
Actual Conc. (ng/mL)	5.001	10.003	25.007	200.059	400.118	800.236	1199.754*	1499.692	slope	Intercept	\mathbf{r}^2
CC Curve	5.238	9.300	23.527	193.163	392.770	883.205	1446.703	1546.639	. .		0.9949
% Nominal	104.74	92.97	94.08	96.55	98.16	110.37	120.58	103.13	0.0050	0.0035	

 r^2 = regression coefficient

* - Out of acceptance limits, not included in CC curve

Zero day stability Data of Olmesartan Long-Term Stability data of Olmesartan in human K₂EDTA plasma in human K₂EDTAplasmaafter storage of 8.80 days (-70°C)

Back calculated concentrations of Fresh B	Back calculated concentrations of Stability
OC complex	OC Samples

	QC S	ampies	QC Samples				
Date of Experin 04-04-12	nent:	Instrument ID: LC-MS/MS	Date of Experiment: 13-04-12	Instru LC-N	nent ID: /IS/MS		
Nominal Co	ncentrations (ng	g/mL)	Nominal conce	ntrations (ng/mL	rations (ng/mL)		
0.0 m	LQC	HQC	0.0 ID	LQC	HQC		
QCID	14.994	1151.370	QCID	14.994	1151.370		
1 (LT)	14.548	1132.057	13 (LT)	16.139	1195.610		
2 (LT)	14.245	1156.096	14(LT)	16.645	1175.842		
3 (LT)	14.060	1193.039	15(LT)	16.183	1151.440		
4 (LT)	14.785	1172.541	16(LT)	16.732	1129.563		
5 (LT)	14.039	1177.878	17(LT)	16.911	1131.476		
6 (LT)	14.767	1165.942	18(LT)	15.978	1153.085		
Mean	14.407	1166.259	Mean	16.431	1156.169		
±SD	0.3390	20.8077	±SD	0.3791	25.6598		
%CV	2.35	1.78	%CV	2.31	2.22		
%Nominal	96.09	101.29	%Nominal	109.59	100.42		

LT Stability in Human K ₂ EDTA Plasma at -70°C	LQC	HQC
Zero day QC's Mean back Calculated Concentrations (ng/mL)	14.407	1166.259
Stability QC's Mean back Calculated Concentrations (ng/mL) after storage of 8.80 days (- 70° C)	16.431	1156.169
%Stability compare to zero day concentration (-70°C)	114.05	99.13

TABLE 14 DILUTION INTEGRITY OF OLMESARTAN Back Calculated Concentrations for CC Standards of Olmesartan

CC ID	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8			
Actual Conc. (ng/mL)	5.000	10.001	25.002	200.019	400.037	800.715	1200.472	1500.590	slope	Intercept	r ²
CC Curve	5.108	9.547	25.257	195.454	365.008	856.749	1235.234	1538.050	0.0010	0.000	
% Nominal	102.16	95.46	101.02	97.72	91.24	107.00	102.90	102.50	0.0019	9 0.0006	0.9970

 r^2 = regression coefficient

Date of Experimen	t: 07-04-12	Ins	strument :LC-MS/MS						
		Dilution Integrity							
Olmesartan in	1/2 Dilution	(50:50)	1/4 Dilution (25:75						
K ₂ EDTA plasma	No	minal Con	centration (ng/mL)						
DQC ID	3001.18	30	3001.180						
DQC-01	3096.35	50	2505.585						
DQC-02	3173.66	58	2589.020						
DQC-03	3262.83	35	2859.735						
DQC-04	3004.59	94	3036.626						
DQC-05	3051.80)2	2837.769						
DQC-06	3142.44	43	2785.827						
Mean	3121.94	19	2769.094						
±SD	91.969	4	193.2092						
%CV	2.95		6.98						
%Nominal	104.02	2	92.27						

Dilution Integrity for DQC in human K₂EDTA plasma

TABLE 15

RUGGEDNESS (P&A-5)

Back Calculated Concentrations for CC Standards of Olmesartan

	STD 1	STD 2	STD 3	STD 4	STD 5	STD 6	STD 7	STD 8	Slope	Intercont	\mathbf{r}^2
Actual conc. (ng/mL)	5.000	10.001	25.002	200.019	400.037	800.715	1200.472	1500.590	Slope	mercepi	
CC 05	5.211	9.338	23.997	186.092	409.867	824.629	1238.825	1572.025	0.0012	-0.0003	0.9969
% Nominal	104.22	93.37	95.98	93.04	102.46	102.99	103.19	104.76			

 r^2 = regression coefficient

Back Calculated Concentrations for QC samples of Olmesartan

Batc		LI	LOQ (QC	LQC			MQC			HQC		
h ID	Instrume					L)							
&	nt ID		5 000	%Nomin		14.99	%Nomin		635.32	%Nomin		1151.37	%Nomin
Date		ŲĊID	5.000	al	ŲĊID	4	al	ųсш	6	al	ŲĊID	0	al
		QC-25	5.158	103.16	QC-25	16.24 7	108.36	QC-25	645.78 4	101.65	QC-25	1167.86 7	101.43
Р& І	LC-	QC-26	5.635	112.70	QC-26	15.54 3	103.66	QC-26	636.81 9	100.23	QC-26	1261.70 0	109.58
A-5	MS/MS	QC-27	5.948	118.96	QC-27	15.15 8	101.09	QC-27	589.95 6	92.86	QC-27	1273.76 8	110.63
		QC-28	5.752	115.04	QC-28	13.23 7	88.28	QC-28	676.88 8	106.54	QC-28	1229.29 6	106.77

North Asian International research Journal consortiums www.nairjc.com

QC-29	5.369	107.38	QC-29	15.66 1	104.45	QC-29	630.00 2	99.16	QC-29	1110.06 1	96.41
QC-30	5.335	106.70	QC-30	15.15 3	101.06	QC-30	642.69 2	101.16	QC-30	1144.99 2	99.45
Mean	5.533		Mean	15.16 7		Mean	637.02 4		Mean	1197.94 7	
±SD	0.295 7		±SD	1.027 3		±SD	28.152 3		±SD	66.6769	
%CV	5.35		%CV	6.77		%CV	4.42		%CV	5.57	
%Nomin	110.6		%Nomin	101.1		%Nomin	100 27		%Nomin	104.05	
al	6		al	5		al	100.27		al	104.05	

Table18

Matrix effect, Recovery and Process efficiency for Olmesartan and Candesartan (IS) evaluated with Aqueous (neat) samples, Post-extracted and

	Analyta Conc				Analyte Peak	response	(Olmes	artan D	Data)		
Standard ID	(ng/mI)	Number of samples	Aque	eous san	nples (neat)	Post-exti	acted s	amples	Extrac	ted sar	nples
	(IIg/IIIL)		Mean	S.D	%CV	Mean	S.D	%CV	Mean	S.D	%CV
Standard-1	5.000	N=6	643	16.7	2.59	645	9.9	1.54	592	35.0	5.91
Standard-3	25.002	N=6	2660	68.5	2.57	2708	63.9	2.36	2379	55.5	2.33
Standard-5	400.037	N=6	44001	1611.0	3.66	43092	1338.6	3.11	36526	549.3	1.50
Standard-6	800.715	N=6	84765	2198.1	2.59	86423	1631.9	1.89	77638	2000.7	2.58
Standard-8	1500.590	N=6	155021	2480.7	1.60	156631	5046.4	3.22	144551	5363.5	3.71
	Analyte Conc				ISTD Peak r	response (Candesa	rtanDa	ata)		
Standard ID	(ng/mI)	Number of samples	Aque	eous san	nples (neat)	Post-extr	acted s	amples	Extrac	ted san	nples
	(IIg/IIIL)		Mean	S.D	%CV	Mean	S.D	%CV	Mean	S.D	%CV
Standard-1	5.000	N=6	99866	1569.9	1.57	101360	2254.6	2.22	68681	2672.1	3.89
Standard-3	25.002	N=6	101155	1874.4	1.85	99850	2365.0	2.37	68132	1904.8	2.80
Standard-5	400.037	N=6	101262	3771.1	3.72	99885	2100.3	2.10	66318	997.1	1.50
Standard-6	800.715	N=6	94951	1412.0	1.49	96382	1449.2	1.50	67781	1584.4	2.34
Standard-8	1500.590	N=6	93591	1676.9	1.79	94399	2496.4	2.64	68840	2412.6	3.50
Standard ID	Analyte Conc	Number of samples	%Matri	x effect		% Rec	overy		% Proc	ess effi	ciency
	(IIg/IIIL)		Analyte	ISTD		Analyte	ISTD		Analyte	ISTD	
Standard-1	5.000	N=6	100.34	101.50		91.75	67.76		92.06	68.77	
Standard-3	25.002	N=6	101.78	98.71		87.88	68.23		89.44	67.35	
Standard-5	400.037	N=6	97.93	98.64		84.76	66.39		83.01	65.49	
Standard-6	800.715	N=6	101.96	101.51		89.83	70.33		91.59	71.38	
Standard-8	1500.590	N=6	101.04	100.86		92.29	72.92		93.25	73.55	
		Mean	100.61	100.24	Mean	89.30	69.13	Mean	89.87	69.31	
		S.D	1.627	1.455	S.D	3.075	2.549	S.D	4.074	3.202	
		%CV	1.62	1.45	%CV	3.44	3.69	%CV	4.53	4.62]

%Matrix effect: Post extracted mean response/Aqueous (neat) mean response x 100, **%Recovery:** Extracted mean response / Post extracted mean response x 100, % **Process efficiency:** Extracted mean response / Aqueous mean response x 100

FIGURE No.2 Representative Calibration Curve of Olmesartan

FIGURE No.3

North Asian International research Journal consortiums www.nairjc.com

Representative Chromatogram of Aqueous Standards (Olmesartan& Candesartan)

Drug Name	Retention time	Area
Olmesartan	1.15	167223
Candesartan (ISTD)	1.16	124838

FIGURE No. 4 Representative Chromatogram of Blank Plasma

North Asian International research Journal consortiums www.nairjc.com

Olmesartan	-	0
Candesartan (ISTD)	-	0

Representative Chromatogram of Blank Plasma with Internal Standard (Candesartan)

Drug Name	Retention time	Area
Olmesartan	1.15	68
Candesartan (ISTD)	1.16	82262

Representative Chromatogram of Calibration Curve Standard-1 Sample (Olmesartan)

Drug Name	Retention time	Area
Olmesartan	1.15	531
Candesartan (ISTD)	1.16	91173

Representative Chromatogram of Calibration Curve Standard-2 Sample (Olmesartan)

Drug Name	Retention time	Area
Olmesartan	1.15	967
Candesartan (ISTD)	1.16	91692

Representative Chromatogram of Calibration Curve Standard-3 Sample (Olmesartan)

Drug Name	Retention time	Area
Olmesartan	1.15	1893
Candesartan (ISTD)	1.16	62195

Representative Chromatogram of Calibration Curve Standard-4 Sample (Olmesartan)

Drug Name	Retention time	Area
Olmesartan	1.15	21882
Candesartan (ISTD)	1.16	92599

Representative Chromatogram of Calibration Curve Standard-5 Sample (Olmesartan)

Drug Name	Retention time	Area
Olmesartan	1.15	50063
Candesartan (ISTD)	1.16	97626

Representative Chromatogram of Calibration Curve Standard-6 Sample (Olmesartan)

Drug Name	Retention time	Area
Olmesartan	1.15	80151
Candesartan (ISTD)	1.16	82226

Representative Chromatogram of Calibration Curve Standard-7 Sample (Olmesartan)

Drug Name	Retention time	Area
Olmesartan	1.15	122496
Candesartan (ISTD)	1.16	81265

Representative Chromatogram of Calibration Curve Standard-8 Sample (Olmesartan)

Drug Name	Retention time	Area
Olmesartan	1.15	150243
Candesartan (ISTD)	1.16	83888

Drug Name	Retention time	Area
Olmesartan	1.15	610
Candesartan (ISTD)	1.16	96666

Drug Name	Retention time	Area
Olmesartan	1.15	1411
Candesartan (ISTD)	1.16	81204

Drug Name	Retention time	Area
Olmesartan	1.15	73722
Candesartan (ISTD)	1.16	114285

Drug Name	Retention time	Area
Olmesartan	1.15	110510
Candesartan (ISTD)	1.16	77902

CONCLUSION

Based on the data presented in this report, it can be concluded that the present method is validated for the estimation of Olmesartan in human K₂EDTA plasma over the concentration range of 5.000 to 1500.590 ng/mL. The method for determination of Olmesartan in human plasma using HPLC with tandem mass spectrometric detection has met the acceptance criteria with respect to selectivity, precision, accuracy, linearity, recovery, re-injection reproducibility, Process efficiency, extended P&A, dilution integrity and matrix effect over a theoretical concentration range of 5.000 to 1500.590 ng/mL for Olmesartan. Stability evaluations performed in human K₂EDTA plasma have met the acceptance criteria, demonstrating insignificant degradation of Olmesartan over the specified storage durations and conditions. Stability evaluations performed in stock solutions have met the acceptance criteria, demonstrating insignificant degradation of Olmesartan) over the specified storage durations and conditions.

This method can be used for quantitation of Olmesartan in human K₂EDTA plasma for Bioequivalence studies with tandem mass spectrometric detection.

SUMMARY

The contents of the Thesis have been divided in to Six Chapters. The Aim and Objective was placed after 1st Chapter and the conclusion was placed after 5th chapter

Chapter-I: Begins with the introduction giving a brief account of Pharmaceutical Analysis, Analytical method development, High Performance liquid Chromatography, MassSpectroscopy and Bioanalytical method and its validation Procedures. After that Aim and Objective of the present thesis was explained.

Chapter-II: It explains the brief information about Drug profile.

Chapter-III: Review of Literature that gives important details collected from previously published bioanalytical methods for Olmesartan.

Chapter-IV: It presents the detailed information about the developed method parameters.

Chapter-5: This chapter gives the Validation experiments details and its Acceptance criteria and the performed experiment results along the tables and chromatogram figures. After that conclusion was written for above results. **Chapter-VI:** The list of references were given

REFERENCES:

1.Dongyang L, Pei H, Nobuko M, Xiaoming L, Li L, Ji J. Quantitative determination of olmesartan in human plasma and urine by liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B. 2007; 856:190–7.

2. Tomonori M, Hidetoshi K, Naoto F, Michinobu O, Takao K, Fumiyo K. Identification of a degradation product in stressed tablets of olmesartanmedoxomil by HPLC hyphenated techniques. J Pharm Biomed Anal. 2008;47:553–9. [PubMed]

3. Shah NJ, Suhagia BN, Shah RR, Patel NM. Development and validation of a simultaneous HPTLC method for the estimation of olmesartanmedoxomil and hydrochlorothiazide. Indian J Pharm Sci.2007;69:834–6.

- **4.** Sagirli O, Nall AO, Toker SE, Sensoy D. Simultaneous HPLC analysis of olmesartan and hydrochlorothiazide in ombined tablets and *in vitro* dissolution studies. Chromatographia.2007;66:213–8.
- **5.** The United State Pharmacopoeia. 26th Revision. Rockville MD: US PharmacopoeialConvention Inc; 2003. p. 911.
- **6.** FDA, Draft Guidance for Industry: Stability Testing of Drug Substances and Drug Products, FDA, Rockville 1998.
- 7.International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite Guideline: Stability Testing of New Drug Substances and Products Q1A (R2), Step 5, ICH Geneva, Aug. 2003.
- **8.** H.R. Brunner, The new oral angiotensin II antagonist olmesartanmedoxomil: a concise overview, J. Hum. Hypertens. **16** (2002) S13-S16; DOI: 10.1038/sj/jhh/1001391. [CrossRef] [PubMed]
- 9. H. Koike, T. Konse, T. Sada, T. Ikeda, S. Hyogo, D. Hinman, H. Saito, and H. Yanagisawa, Olmesartan medoxomil, a novel potent angiotensin II blocker, Ann. Rep. SnakyoRes. Lab. 55 (2003) 1-91.

- 10.D.E. Mire, T.N. Silfani and M.K. Pugsley, A review of the structural and functional features of olmesartanmedoxomil, an angiotensin receptor blocker, J. Cardiovasc. Pharmacol. 46 (2005) 585-593; DOI: 10.1097/01.fjc.0000180902.78230.fd. [CrossRef] [PubMed]
- **11.**H. Koike, T. Sada and M. Mizuno, In vitro and in vivo pharmacology of olmesartanmedoxomil, an angiotensin II type AT1 receptor antagonist, J. Hypertens. **19** (Suppl) (2001) S3-S14.
- 12.G.T. Warner and B. Jarvis, Olmesartan medoxomil, Drugs 62 (2002) 1345-1353.[CrossRef] [PubMed]
- **13.** O. Sagirli, A. Önal, S.E. Toker and D. Sensoy, Simultaneous HPLC analysis of olmesartanand hydrochlorothiazide in combined tablets and in vitro dissolutionstudies, Chromatographia 66 (2007) 213-218; DOI: 10.1365/s10337-007-0304-9.[CrossRef]
- **14.**K. Yoshihara, Y. Gao, H. Shiga, D.R. Wada and M. Hisaoka, Population pharmacokinetics of olmesartan following oral administration of its prodrug, olmesartanmedoxomil: in healthy volunteers and hypertensive patients, Clin. Pharmacokin., 44 (2005) 1329-1342.[CrossRef]
- **15.**H. Nakamura, T. Inoue, N. Arakawa, Y. Shimizu, Y. Yoshigae, I. Fujimori, E.H. Nakamura, T. Inoue, N. Arakawa, Y. Shimizu, Y. Yoshigae, I. Fujimori, E. Shimakawa, T. Toyoshi and T. Yokoyama, Pharmacological and pharmacokinetic study of olmesartanmedoxomil in animal diabetic retinopathy models, Eur. J. Pharmacol. **512** (2005) 239-246; DOI: 10.1016/j.ejphar.2005.02.047.[CrossRef] [PubMed]
- 16.V.V. Vaidya, S.M. Roy, S.M. Yetal, S.S. Joshi and S.A. Parekh, LC-MS-MS determination of olmesartan in human plasma, Chromatographia 67 (2008) 147-150; DOI: 10.1365/s10337-007-0453-x.[CrossRef]
- 17.L. Dongyang, H. Pei, M. Nobuka, L. Xiaoming, L. Li and J. Ji, Quantitative determination of olmesartan in human plasma and urine by liquid chromatography coupled to tandem mass spectrometry, J. Chromatogr. B 856 (2007) 190-197; DOI: 10.1016/j.jchromb.2007.05.049.[CrossRef]
- 18.N.J. Shah, B.N. Suhagia, R.R. Shah and N.M. Patel, Development and validation of a simultaneous HPTLC method for the estimation of olmesartanmedoxomil and hydrochlorothiazide in tablet dosage form, Indian J. Pharm. Sci. 69 (2007) 834-836; DOI: 10.4103/0250-474X.39447. [CrossRef]
- **19.**<u>C. Mustafa and A. Sacide, Development of a CZE method for the determination of olmesartanmedoxomil in tablets, Chromatographia 66 (2007) 929-933; DOI: 10.1365/s10337-007-0424-2. [CrossRef]</u>
- 20.T. Murakami, H. Konno, N. Fukutsu, M. Onodera, T. Kawasaki and F. Kusu, Identification of a degradation product in stressed tablets of olmesartanmedoxomil by the complementary use of HPLC hyphenated techniques, J. Pharm. Biomed. Anal. 47 (2008) 553-559; DOI: 10.1016/j.jpba.2008.02.021.[CrossRef] [PubMed]
- **21.**International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonized Tripartite Guidelines, Validation of Analytical Procedure: Text and Methodology Q2 (R1), Current Step 4 version, ICH Geneva, Nov. 2005.
- **22.**G.W. Ewing, Instrumental Methods of Chemical Analysis, 5th ed., Lippincott-Raven, Philadelphia 1995, pp. 484-486.
- Z. Zhao, Q. Wang, E.W. Tsai, X.Z. Qin and D. Ip, Identification of losartan degradates in stressed tablets by LC-MS and LC-MS/MS, J. Pharm. Biomed. Anal. 20 (1999) 129-36; DOI: 10.1016/S0731-7085(99)00004-7. [CrossRef] [PubMed]
- **24.**Sweetmann S. C. Eds., Martindale, The extrapharmacopoeia, The complete drug reference. 36thEd., The Pharmaceutical Press, London, 2009, 1361,1307.
- **25.**Budhwari S., The Merck Index, 13thEd., Merck Research Laboratories, Whitehouse Station, New Jersey, 2001, 6909, 1223, 4802, 854.

26.Indian Pharmacopoeia, Vol. I., The Controller of Publication, New Delhi, 2007, 151, 318, 1194-1195.

- 27. British Pharmacopoeia, 4thEd., Vol. I, Her Majesty'sStationary Office, London, 2004, 979.
- **28.** The United State Pharmacopoeia, 26thEd., Vol. I, United States Pharmacopoeial Convention Inc.Washington DC, 2004, 2334.
- **29.**Celebier M. and Altinoz S., Determination of olmesartan medoxomil in tablets by UV-Visiblespectrophotometry, Pharmazie. 2007, 62(6),419-422.
- **30.**Jain P., Jain A., Maliwal D. and Jain V., Developmentand validation of spectrophotometric and RP-HPLCmethod for estimation of olmesartanmedoxomil in tablet dosage form, International J Pharm Bio Sci. 2010, 1(2), 158-160.
- **31.**Sultana N., Arayne M.S., Shahid A.S. and Sajid S.,Simultaneous determination of olmesartanmedoxomil, irbesartan and hydrochlorothiazide inpharmaceutical formulations and human serumusing high performance liquid chromatography, ChinJ Chromatogr. 2008, 26, 544-549.
- **32.** Patel C.V., Khandhar A.P., Captain A.D. and PatelK.T., Validated absorption factor spectrophotometricand reversed-phase high performance liquidchromatographic methods for the determination oframipril and olmesartanmedoxomil inpharmaceutical formulations. Eurasian J AnalyticalChemistry. 2007, 2, 159-171.
- **33.**Carlucci G., Palumbo G., Mazzeo P., Quaglia M. G.,Simultaneous determination of losartan andhydrochlorothiazide in tablets by high performanceliquid chromatography. J. Pharm Biomed Anal. 2008,23,185-189.
- **34.** Belal F., Al-Zaagi I.A., Gadkariem E.A. and AbounassifM.A., Stability-indicating LC method for thesimultaneous determination of ramipril andhydrochlorothiazide in dosage forms, J PharmBiomed Anal. 2001, 24, 335-342.
- **35.**Chan C. C., Analytical Method Validation andInstrument Performance Verification, Wiley Interscience, 2004, 16-22.
- **36.** Validation of analytical procedure: methodologyQ2B, ICH Harmonized Tripartite Guidelines, 1996, 1-8.
- 37.Koga K, Yamagishi S, Takeuchi M, Inagaki Y, Amano S. Mol Med, 2002; 8: 591-598.
- **38.**Schwocho LR, MasonsonHN.Pharmacokinetics of CS-866 a, newangiotensin II receptor blocker in healthysubjects. J. Clin. Pharmacol. 2001; 41: 515-520.
- **39.**Beckett AH, Stenlake GH. Practicalpharmaceutical chemistry, 4th ed. CBS publisher and distributors, New Delhi; 1997. p.157.
- **40.**Willard HH, Merit LL, Dean JA, Settle FA.Instrumental methods of analysis, 7th ed. CBSublisher and distributors, New Delhi; 1986. p.159-164.
- **41.**Kamat K, Chaturvedi SC. Determination of Telmisartan by UV-Spectrophotometery. Indain J. Pharm. Sci. 2005; 66(2): 236-239.
- **42.**Erwing GW. Instrumental methods of chemical analysis, 2nd ed. McGraw HillPublication Company Ins., New York; 1960. p3.
- **43.**Beckett AH, Stenlake JB. Practicalpharmaceutical chemistry. 4th ed. Part II, CBSpublisher and distributors, New Delhi; 2005. p.275-82.
- 44. Connor KA. Text book of pharmaceuticalanalysis. 2nd ed. Mac Publishing Co., Pennsylvania; 1980. p. 173.
- 45. International conference on Harmonization, Draft Guidelines on validation of analytical procedures. Definitions and terminology, Federal Register; 2000. p. 1-8.
- **46.**Sethi PD. HPTLC-Quantitative analysis of pharmaceutical formulations. CBS publisher and distributors, New Delhi; 1996. p. 1-29.

*Corresponding author:

R. Swadesh Reddy *¹ Mother Teresa College of Pharmacy NFCNagar, Ghatkesar, R.R dist. -501301 Email: reddy.ravula002@gmail.com