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Reorem 2. I Let X be a non-negative random variable with 
pdff( * ), characteristic function 4(  e )  and mean p. Let Y be 
the random variable with pdf h ( e ) as defined in (1.1). If Y can 
be written as Y gX+Z/X where X>O and Z is a chi square 
random variable, s-independent of X with, 

i. a single degree of freedom then X has an inverse gaus- 
sian distribution with shape parameter Ap2 and mean 
p respectively. 

ii. two degrees of freedom then X has a gamma distribu- 
tion with shape and scale parameters CY = hp/2 and 
/3=2/X. 

Abstract - Let Y be a length-biased random variable corre- 
sponding to a random variable X having inveEe-Gaussian or 
Gamma distribution. It is shown that Y can be written BS a linear 
combination of X and a chi-square random variable and conversely 
X can be characterized through this relationship. Finally the Wald 
distribution is characterized. 

pro05 Let rc/ ( t )  be the characteristic function of Y g 
x+z/X, A >  0. To Prove i, we observe that under the assump- 
tions stated in the theorem and using (1. I), 

$ ( t )  = & ) - I  f#) ' ( t )  = 4 ( t )  (2.1) 

1. INTRODUCTION 

Let X be a non-negative random variable having an ab- 
solutely continuous pdf f( - ). Let X have a finite first moment, 
say p;  one can define another pdf h( e )  as: 

h ( x )  = - xf(x)  , x>o  
CL 

The random variable Y with pdf h( e )  is known as the 
length-biased random variable associated with X. The random 
variable Y occurs in the studies of lifetime models [ 1, 21. Cox 
[3, page 651 provides the following interpretation of pdf h ( ) : 
Consider a sample of failure times with pdf f ( x )  and let the 
probability of selecting any individual unit in the population be 
proportional to its size or length x .  Then the failure time selected 
has the pdf h ( x )  . Also, length-biased distributions arise in 
various probability-proportional-to-size @ps) sampling pro- 
cedures [7]. In fact h ( . ) is simply a special weighted distribu- 
tion with weight x [5,  61. 

This note presents a result characterizing the inverse Gaus- 
sian and Gamma distributions. These are common probability 
distributions in reliability and lifetime models. Finally a 
characterization of Wald distribution, which is a special case 
of inverse Gaussian, is given. 

a 
at 

+ ' ( t )  = - + ( t ) .  

Solve (2.1) and use the fact that 4 (0) = 1 : 

Eq (2.2) after appropriate parameterization, is easily seen to 
be the characteristic function of an inverse Gaussian r.v. When 
CL = 1, eq (2.2) reduces to the characterization of a Wald distribu- 
tion [l]. 

The proof of ii is similar and thus we skip it. As a corol- 
lary, the length-biased distribution of a x i  is x i + 2 .  Q.E.D. 

3. A CHARACTERIZATION OF WALD DISTRIBUTION 

In [l], a characterization of the Wald distribution was 
given. Motivated by [4, lemma 6.1.31, another characteriza- 
tion is given in theorem 3.1. 

Theorem 3.1 Let F(  ) be the Cdf of a non-negative ran- 
dom variable Y. Let E(Y-') exist, and let the relation 

y-I exp(ity)dF(y) = ( 1 - - ,,)1'2 5 exp(ify)dF(y) 

2. THE MAIN RESULT be valid for some X > 0 and for all I t I < 6 for some 6, then Y 
has the length-biased distribution associated with a Wald ran- 
dom variable, with parameter h (or equivalently Y-' has a 
Wald distribution). 

The theorem consists of two characterizations of similar 
nature and we state these in the following: 
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for Some constant c and thus using the fact that 9 (0) = 1, we 
have 

+ ( t )  = ( 1 - - y )  -’/’ exp ( X [ 1 -  ( l - -  y )  ”’]). 
(3*2) 

The r.h.s. of (3.2) is the characteristic function of the length- 
biased distribution associated with a Wald distribution. That 
Y-’ has a Wald distribution follows from [l]. 
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