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Abstract. We show that finetuning pretrained CNNs entirely on syn-
thetic images is an effective strategy to achieve transfer learning. We
apply this strategy for detecting packaged food products clustered in re-
frigerator scenes. A CNN pretrained on the COCO dataset and fine-tuned
with our 4000 synthetic images achieves mean average precision (mAP
@ 0.5-IOU) of 52.59 on a test set of real images (150 distinct products as
objects of interest and 25 distractor objects) in comparison to a value of
24.15 achieved without such finetuning. The synthetic images were ren-
dered with freely available 3D models with variations in parameters like
color, texture and viewpoint without a high emphasis on photorealism.
We analyze factors like training data set size, cue variances, 3D model
dictionary size and network architecture for their influence on the trans-
fer learning performance. Additionally, training strategies like fine-tuning
with selected layers and early stopping which affect transfer learning from
synthetic scenes to real scenes were explored. This approach is promising
in scenarios where limited training data is available.

1 Introduction

Deep Convolutional Neural Networks (CNNs) have fulfilled the demand for a
robust feature extractor and have achieved state-of-the-art performance on image
classification, object detection, and segmentation [1,2] tasks. The availability of
large sets of training images has been a prerequisite for successfully training
CNNs [1]. Manual annotation of images for object detection is a time-consuming
and mechanical task; what is more, in some applications the cost of capturing
images with sufficient variety is prohibitive. In fact the largest image datasets
are built upon only a few categories for which images can be feasibly curated
(20 categories in PASCAL VOC [3], 80 in COCO [4], and 200 in ImageNet [5]).

There have been solutions proposed to reduce annotation efforts by employing
transfer learning or simulating scenes to generate large image sets. The research
community has proposed multiple approaches for the problem of adapting vision-
based models trained in one domain to a different domain [6–10]. Examples in-
clude: re-training a model in the target domain [11]; adapting the weights of a
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Fig. 1. Overview of our approach to train object detectors for real images based on
rendered images.

pre-trained model with adaptive batch normalization [12]; overlaying synthetic
text on real background images [13]; and, learning common features by maxi-
mizing domain confusion between source and target domains [14]. Donahue et
al. [15] introduced the concept of learning linear classifiers for target dataset over
DeCAF (features) extracted from CNN trained on large public datasets. Though
Tommasi et al. [16] report that DeCAF not only does not solve the dataset bias
problem in general, but in some cases (both class- and dataset-dependent) they
capture specific information that induce worse performance than what can be
obtained with less powerful features. Oquab et al. [17] used mid-level representa-
tion and finetuned them for target datasets which has been considered standard
practice given annotated dataset is available for target domain.

Attempts to use synthetic data for training CNNs to adapt in real scenar-
ios have been made in the past. Peng et. al. used available 3D CAD models to
render images (after varying the projections and orientations of the objects) for
evaluation on 20 categories in the PASCAL VOC 2007 data set [18]. They aimed
to study the effects of texture and background by training the classifier. Su and
coworkers [19] used the rendered 2D images from 3D on varying backgrounds for
pose estimation. Their work also uses an object proposal stage and limits the
objects of interest to a few specific categories from the PASCAL VOC data set.
Georgakis and coworkers [20] propose to learn object detection with synthetic
data generated by object instances being superimposed into real scenes at differ-
ent positions, scales, and illumination. They propose the use of existing object
recognition data sets such as BigBird [21] rather than using 3D CAD models.
They limit their synthesized scenes to low-occlusion scenarios with 11 products
in GMU-Kitchens data set. Gupta et. al. generate a synthetic training set by
taking advantage of scene segmentation to create synthetic training examples,
however the goal is text localization instead of object detection [13]. Tobin et.
al. perform domain randomization with low-fidelity rendered images from 3D
meshes, however their objective is to locate simpler polygon-shaped objects re-
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stricted to a table top in world coordinates [22]. In [23, 24], the Unity game
engine is used to generate RGB-D rendered images and semantic labels for out-
door and indoor scenes. They show that by using photo-realistic rendered images
the effort for annotation can be significantly reduced. They combine synthetic
and real data to train models for semantic segmentation, however the network
requires depth map for semantic segmentation.

In this paper, we report performance of transfer learning by finetuning a
pretrained network (with standard public datasets) to identify objects in refrig-
erator with reasonably small sized dataset of synthetic images rendered from
available 3D models. We automate the process of rendering 3D models with
variations in viewpoints, cues etc. and annotating the 2D images to use it for
object detection in real scenes. We report the study of cues or hyper-parameters
involved to efficiently achieve transfer learning from synthetic to real images.
Our experiments explore the effects of data set size, 3D model repository sizes.
While lesser attention has been given to understanding selective layer fine-tuning
for transfer learning, we explore it and report significant improvements. Further-
more, training strategy like early stopping [25] is also used for transfer learning
from simulation to reality. Hence, this approach is particularly relevant in the
detection of object candidates in scenes with large intra-class variance as op-
posed to one with only a few specific categories using synthetic datasets which
do not require extensive effort towards achieving photorealism. The rest of this
paper is organized as follows: our methodology is described in section 2, followed
by the results we obtain reported in section 3, finally concluding the paper in
section 4.

2 Method

To study transfer learning from synthetic to real images we choose the object
detection task where given an RGB image captured inside a refrigerator, our
goal is to predict a bound-box for each object of interest. In addition, there are
few objects in the scene that need to be neglected. Our approach is to train a
deep CNN with synthetic rendered images from available 3D models. Overview
of the approach is shown in Figure 1. Our work can be divided into two major
parts namely synthetic image rendering from 3D models and transfer learning
by fine-tuning the deep neural network with synthetic images.

2.1 Synthetic Generation of Images from 3D Models

We use Blender and its Python APIs to load 3D models and automate the
scene rendering. We use Cycles Render Engine with Blender since it supports
ray-tracing to render synthetic images. Since all the required annotation data is
available, we use the KITTI [26] format with bound-box co-ordinates, truncation
state and occlusion state for each object in the image.

Considering the information embedded about the environment, illumination,
surface materials, shapes etc. in real world scenes, we include following aspects
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like a) Number of objects, b) Shape, Texture, and Materials of the objects, c)
Texture and Materials of the refrigerator, d) Packing pattern of the objects,
e) Position, Orientation of camera and f) Illumination via light sources while
rendering each scene.

To simulate the real world scenario, we need 3D models, their texture infor-
mation and metadata. Thousands of 3D CAD models are available online. We
choose ShapeNet [27] database and Archive3D [28]. Among various categories
from ShapeNet like bottles, tins, cans and food items, we selectively add 616
various object models including objects of interest and distractor objects to the
repository (R0) for generating scenes. The variety helps randomize the aspect
of shape, texture and materials of the objects. For the refrigerator, we choose a
model from Archive3D [28] suitable for the application. The design of refrigerator
remains same for all the scenarios though the textures and material properties
are dynamically chosen.

For generating training set, the refrigerator model with 5-25 randomly se-
lected objects from R0 are imported in each scene. To simulate object packing
in refrigerator, we use three patterns namely grid, random and bin packing for
3D models. The grid places the objects at predefined distances on the refriger-
ator tray. Random placements drop the objects at random locations while bin
packing tries to optimize the usage of tray top area placing objects very close
and clustered in the scene to replicate real world scenarios in refrigerator. To
replicate the packing in 3D, we also stack few objects vertically. The light sources
are placed such that illumination is varied in every scene and the images are not
biased to a well lit environment since refrigerators generally tend to have dim
lighting. Multiple cameras are placed at random location and orientation to ren-
der images from each scene. The refrigerator texture and material properties are
dynamically chosen for every rendered image.

2.2 Transfer Learning by Fine-tuning CNN and Evaluation

For neural network training we use NVIDIA-DIGITSTM -DetectNet [29] along
with GoogleNet weights pretrained on ImageNet using Caffe [30] library in back-
end. For a comparison among various architectures we also use Faster-RCNN [31]
(with ResNet-101 [32] as feature mapping network) and SSD [33] using Tensor-
flow and weights pretrained on COCO [4] dataset. During training, the labelled
RGB images with resolution (in pixels) 512 x 512 are used. We neglect objects
truncated or highly occluded in the images in the ground truth label.

We evaluate our object detector using manually annotated crowd-sourced re-
frigerator images. Figure 3 illustrates the variety in object textures, shapes, scene
illumination and environment cues present in the test set. The real scenarios also
include other objects like vegetables, fruits, etc. which need to be neglected by
the detector. We address them as distractor objects. For performance evaluation,
we compute Intersection over Union (IoU) score. With a threshold parameter,
predicted bound boxes are classified as True Positives (TP), False Positives (FP)
and False Negatives (FN). Precision (PR) and Recall (RE) are calculated using
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these metrics and a simplified mAP score is defined by the product of PR and
RE [34].

All the experiments were carried on workstation with IntelR CoreTM i7-
5960X processor accelerated by NVIDIAR GEFORCETM GTX 1070. Hyper-
parameters search on learning rate, learning rate policy, training epochs, batch-
size were performed for training all neural network models.

3 Results and Discussion

The purpose of our experiments was to evaluate the efficacy of transfer learning
from rendered 3D models on real refrigerator scenarios. Hence we divide this
section into two parts:

– Factors affecting Transfer Learning: We study following factors using the
DetectNet architecture:
a) Training Dataset Size
b) Selected Layer Fine-tuning: Features learned at each layer in CNNs have
been distinct and found to be general across domains and modalities. Fine-
tuning of the final fully-connected linear classification layers has been used in
practice for transfer learning across applications. Hence, we fine-tune selected
layers of the network and report the performance.
c) Object Dictionary Size: Variance in objects used for rendering has been
observed to increase detection performance significantly [19]. Hence, we
report performance for various object repository size used while finetuning.

– Detection Accuracy: Here, we represent the analysis of the performance on
real dataset achieved with three different architectures and three training
datasets with varying cues and complexity6.

3.1 Factors affecting transfer learning

Considering other parameters like object dictionary size and fine-tuned network
layers, we vary the training data size from 500-6000. We observe an increase in
mAP up to 4000 images followed by a slight decline in performance as shown in
Figure 2 a). Note that the smaller dataset is a subset of the larger dataset size.
After an extent, we observe decline in accuracy as we increase the dataset size.

We use GoogleNet FCN architecture with 13 hierarchical levels including
inception modules as single level. mAP vs. number of epochs chart is presented in
Figure 2 b) for models with different layers selected for fine-tuning. Starting from
training just the final coverage and bounding-box regressor layers we sequentially
open deeper layers for fine-tuning. We observe that fine-tuning all the inception
modules helps transfer learning from synthetic images to real images in our
application. The results show that selection of the layers to fine-tune proves to
be important for detection performance.
6 Trained network weights and synthetic dataset are available at https://github.
com/paramrajpura/Syn2Real

https://github.com/paramrajpura/Syn2Real
https://github.com/paramrajpura/Syn2Real
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Fig. 2. a) Detection results on the validation image-set varying train dataset size. b)
Neurons in layers of CNN learn distinct features. Network weights were fine-tuned
by freezing layers sequentially. The figure represents the performance with weights
fine-tuned till mentioned layers. c) Variety in training data affects the capability of
generalizing object detection in real scenarios.
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Fig. 3. Scenes representing variance in scale, background, textures, illumination, pack-
ing patterns and material properties wherein a) Object detector correctly predicts the
bound boxes for all objects of interest. b) Object detector misses objects of interest. c)
Object detector falsely predicts the presence of an object.
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To study the relationship of variance in 3D models with performance, we
incrementally add distinct 3D models to the dictionary starting from 10 to 400.
We observe an increase in mAP up to 200 models and slight decline later on as
represented in Figure 2 c).

We report in Figure 2 mAP vs. epochs trained plots over mAP vs. variance
in factor to also represent the relevance of early stopping [25]. The networks
trained by varying factors, show their peak performances for 25-50 epochs of
training while the performance declines contrary to saturating which suggests
over-fitting to synthetic images.

Fig. 4. Figure illustrates the improvement in object detection by finetuning CNN with
synthetic rendered dataset. First row highlights the prediction from baseline model
trained on COCO dataset with white bound-boxes. Second row marks predictions (with
green bound-boxes) from fine-tuned CNN with synthetic dataset.

3.2 Detection Accuracy

We build 3 training datasets with increasing variance and cues. Dataset A con-
sists only the objects of interest (positives) packed inside the refrigerator with
grid, random and bin packing. The refrigerator wall is assigned a random solid
color for every scene. Dataset B consists of a subset of Dataset A and images with
distractor objects and refrigerator wall with glossy or glass material properties.
While, Dataset C with few images from Dataset A and B also contains scenes
where objects were vertically stacked on each other bringing the scenario more
closer to the real world in terms of object arrangement. We evaluate three archi-
tectures namely DetectNet, Faster-RCNN and SSD on a set of 170 crowd-sourced
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refrigerator scenes with variation in cues, scale, illumination and blur, covering
150 distinct objects of interest considered as positives and 25 distractor objects
as negatives. Figure 3 shows the variety in test set. The best model achieves mAP
@ 0.5 IOU of 52.59 on this dataset which is a promising result considering that
no real images were used while fine-tuning. In order to compare our performance
with benchmark results, we consider Faster-RCNN (with ResNet-101 as feature
mapping network) pretrained on COCO dataset as baseline model. Considering
objects classes like bottle, cup and bowl from COCO object detection dataset
as objects of interest, 24.15% mAP @ 0.5 IoU and 20.27% mAP @ 0.7 IoU is
achieved on our test set. Figure 4 shows few images where our model outper-
forms the predictions from baseline model. It is observed that objects missed by
baseline model were detected by model trained with synthetic images.

We observe that detector handles scale, shape and texture variance. Though
packing patterns like vertical stacking or highly oblique camera angles lead to
false predictions. Few vegetables among the distractor objects are falsely pre-
dicted as objects of interest suggesting the influence of pre-training on real
dataset and lack of variety in distractor objects models available in object repos-
itory.

Dataset A Size : 3576

Architecture mAP@0.5IOU mAP@0.7IOU

FRCNN 49.24 39.61

SSD 23.97 10.92

DetectNet 32.53 11.83

Dataset B Size : 2750

Architecture mAP@0.5IOU mAP@0.7IOU

FRCNN 49.35 24.13

SSD 17.83 5.17

DetectNet 35.31 9.38

Dataset C Size : 3696

Architecture mAP@0.5IOU mAP@0.7IOU

FRCNN 52.59 37.28

SSD 30.86 17.79

DetectNet 30.32 7.83
Table 1. Performance on datasets with various architectures.

4 Conclusion

The study with selected layer fine-tuning and freezing gives an insight of the
important cues for efficient transfer learning from synthetic to real while com-
parison in architectures shows the significance of region proposal networks in
detecting class-agnostic objects of interest.
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We further observe scope in understanding the factors affecting transfer learn-
ing from synthetic to real images. The reported experiments hinted that few
deeper layers were required to be fine-tuned with domain specific dataset (images
rendered from 3D models) to achieve better performance compared to using pre-
trained CNN as feature extractor. Study related to the visualization of features
transferred from synthetic dataset by controlling the visual cues like texture,
background, color, shape, illumination shall be useful. Further improvement in
the performance can be achieved by training CNNs for semantic segmentation
using synthetic images and adding depth information to the training sets to help
in cases with high degree of occlusion. The results also inspire to use similar ap-
proach to build object detector using rendered images for larger set of object
classes within varying environments.
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