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Abstract. In this paper, we prove the density of regular functions in weighted
Sobolev spaces associated with a family of Lipschitz vector fields. Moreover, com-

pact imbedding theorems for these function spaces are proved, together with some

regularity results for degenerate elliptic equations in divergence form.

Introduction

In the previous paper [FSSC] the authors considered the so-called Lavrentiev
phenomenon for a class of variational functionals associated with a family of vector
fields X1 . . . , Xm in an open set Ω ⊆ Rn. Roughly speaking, we say that Lavrentiev
phenomenon occurs for a functional of the Calculus of Variations if its infimum in
a natural class of functions (e.g. Sobolev type spaces) does not coincide with its
infimum on regular functions. The functionals we considered can be exemplified by
the energy of the generalized p-Laplace operator

(1)
∫
Ω

(
m∑

j=1

|Xju|2)p/2dx (p > 1)

and by the generalized area functional

(2)
∫
Ω

(1 +
m∑

j=1

|Xju|2)1/2dx.

A crucial step in order to prove the absence of Lavrentiev phenomenon for this
kind of functionals is a Meyers-Serrin type density theorem. In other words, we
have to prove that a function u ∈ Lp(Ω) such that Xju ∈ Lp(Ω) for j = 1, . . . ,m
can be approximated in the natural norm ‖u‖W1,p

X
(Ω) = ‖u‖Lp(Ω) +

∑
j

‖Xju‖Lp(Ω)
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by a sequence of smooth functions. The problem is not trivial because standard
convolution regularizations do not fit the geometry of the problem, mainly since
the vector fields are not translation-invariant like ordinary partial derivatives in
Rn. Nevertheless, it is possible to show following Friedrichs idea in [Fr] that these
approximations still converge. The interest in functionals of type (1) and (2) is
originated by the fact that, under suitable geometric assumptions on X1, . . . , Xm,
the differential operators

∑
j

X∗
jXj share many properties of elliptic operators, like

hypoellipticity, Harnack’s inequality and Hölder continuity of weak solutions. On
the other hand, a larger class of degenerate elliptic operators enjoy the same prop-
erties, namely the class of weighted operators of the form L :=

∑n
i,j=1 ∂i (aij(x)∂j),

where
n∑

i,j=1

aij(x)ξiξj ∼ w(x)
m∑

l=1

〈Xl(x), ξ〉2

for any ξ ∈ Rn, w being a weight function (i.e. a nonnegative locally summable
function) belonging to suitable classes (such as, for instance, Ap classes of Muck-
enhoupt).

In this paper, we prove Meyers-Serrin theorems for function spaces associated
with a family of vector fields in the presence of a weight function. Typically, our
results can be applied to the study of the Lavrentev phenomenon for functionals of
the form ∫

Ω

f(x,X1(x), . . . , Xm(x))w(x)dx+ {appropriate conditions}

where
f = f(x, η) : Ω×Rm −→ [0,+∞)

is a Carathéodory function (measurable in x, continuous and convex in η) such that

c1|η|p ≤ f(x, η) ≤ c2(1 + |η|)p

for some suitable p > 1, for a.e. x ∈ Ω and for any η ∈ Rm, and the weight w
satisfies suitable condition we will list below.

In Section 1, we consider the general situation of an arbitrary family of Lipschitz
continuous vector fields X = (X1, . . . , Xm) and we prove a density theorem for
weighted Sobolev spaces associated with X when the weight function belongs to
the standard Ap class (see below for precise definitions). This proof follows basically
the scheme of the proof of the corresponding result in [Fr] and in [FSSC]. We are
indebted with N. Garofalo who raised our attention on Friedrichs paper during a
meeting in Ischia in June 1995.

In Section 2, we consider the case when it is possible to associate with the
vector fields X1, . . . , Xm a natural metric ρ by mean of sub-unit curves as in [FP]
or [NSW]. In this case we are still able to prove a density theorem if the weight
function belongs to an Ap class with respect to the metric ρ as in [C]. However, in
this case the proof is completely different from the one in the preceeding section;
basically, problems arise since the mollifiers in [FSSC] are shaped on Euclidean
balls, so that they cannot be bounded by the maximal function associated with
the metric, which in turn is a natural tool to deal with Ap classes. We get rid
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of this difficulty following a different approach, as given in [SC], which relies on
the Poincaré inequality or, more precisely, on a suitable representation formula for
regular functions with zero average on a ball.

Finally in the last section, these results are applied to prove some ‘abstract’
regularity results for degenerate elliptic equations. In the same spirit, we prove a
Rellich’s type compact imbedding theorem for weighted spaces associated with a
family of vector fields.

The results of sections 2 and 3 extend previous density results proved in [CPSC],
both for the presence of the vector fields and for the limit case p = 1 is allowed in
some cases. Related results can be found in [BH], [FS], [D], [CDG1], [CDG2], [GN],
[H1], [H2], [H3], [L1], [L2].

1. Approximation through convolutions

1.1 Notations and Definitions.
Through this paper Ω ⊂ Rn is a fixed open set. If v, w ∈ Rn, we denote by |v|

and 〈v, w〉 the Euclidean norm and the scalar product, respectively. If x ∈ Rn and
E,F ⊂ Rn then dist(x,E) = inf{|x − y| : y ∈ E} and dist(E,F ) = inf{|x − y| :
y ∈ E, x ∈ F}. If Ω and Ω′ are subsets of Rn then Ω′ ⊂⊂ Ω means that Ω′ is
compactly contained in Ω. Moreover, B(x, r) is the open Euclidean ball of radius
r centered at x. If A ⊂ Rn then χA is the characteristic function of A, |A| is its
n-dimensional Lebesgue measure. More generally, if w is a weight function (i.e. a
nonnegative locally integrable function), we denote by Lp(Ω, w) the Lp-space with
respect to the measure dw = w(x)dx (we denote by Lp(Ω) the Lp-space with respect
to the Lebesgue measure) and we will put w(A) =

∫
A

w(x)dx. Thus, if f ∈ L1(A,w)

(respectively if f ∈ L1(A)) we denote its w-average by∫
A

f(x) dw =
1

w(A)

∫
A

f(x) dw

and ∫
A

f(x)dx =
1
|A|

∫
A

f(x)dx

the average of f on A with respect to Lebesgue measure.
Ck(Ω;Rm) is the space of Rm-valued functions k times continuously differen-

tiable: Lip(Ω;Rm) is the space of Rm-valued Lipschitz continuous functions and
we set Ck

0 (Ω;Rm) = {f ∈ Ck(Ω;Rm) : supp f ⊂⊂ Ω} and Lip0(Ω;Rm) = {f ∈
Lip(Ω;Rm) : supp f ⊂⊂ Ω}. Moreover, for sake of brevity, we write Ck(Ω) and
Ck
0 (Ω) if m = 1. Finally we use the letters c, C, c1, c2, . . . for constants not neces-

sarily the same at each occurrence.
Let X1, . . . , Xm be a family of Lipschitz continuous vector fields in Ω, where

Xj = (cj1, . . . , cjn) for j = 1, . . . ,m. We identify each vector field Xj with the
first order differential operator (still denoted by Xj)

∑
i

cji(x)∂i. Moreover, we put

X = (X1, . . . , Xm) and |Xf |2 = |X1f |2 + . . . + |Xmf |2 for any f ∈ L1
loc(Ω) such

that Xjf ∈ L1
loc(Ω) for j = 1, . . . ,m.

If w is a weight function, that is if w ≥ 0 and w ∈ L1
loc(R

n) we say that
w ∈ Ap = Ap(Rn, Euclidean metric, Lebesgue measure) if there is a constant c > 0

3



such that for all Euclidean balls B = B(x, r) = {y ∈ Rn : |y − x| < r}∫
B

w dx (
∫
B

w−1/(p−1)dx)p−1 ≤ c when 1 < p <∞(i)

∫
B

w dx ≤ c ess inf
B

w when p = 1.(ii)

The smallest constant for which (i) or (ii) holds is the Ap bound of w. Note that if
w ∈ Ap then Lp(Ω, w) ⊆ L1

loc(Ω).

Definition 1.1. If p ∈ [1,∞) and if w is a weight function, we define

W 1,p
X (Ω, w) := {f ∈ Lp(Ω, w) : Xjf ∈ Lp(Ω, w) for j = 1, . . . ,m}

H1,p
X (Ω, w) = closure of C∞(Ω) ∩W 1,p

X (Ω, w) in W 1,p
X (Ω, w).

where for any f ∈ L1
loc(Ω)

Xjf :=
n∑

i=1

∂i(cjif)−

(
n∑

i=1

∂icji

)
f.

Endowed with the norm

‖f‖W 1,p
X

(Ω,w) := ‖f‖Lp(Ω,w) +
∑

j

‖Xjf‖Lp(Ω,w),

W 1,p
X (Ω, w) is a Banach space, reflexive if p > 1.
Obviously, H1,p

X (Ω, w) is a closed subspace of W 1,p
X (Ω, w). The main result of

the next section is the proof that these two spaces actually coincide.

1.2 The approximation theorem.

Theorem 1.2. Let Ω ⊆ Rn and p ∈ [1,+∞). Assume that X = (X1, . . . , Xm) is
a family of Lipschitz continuous vector fields defined in Ω and that w ∈ Ap. Then

H1,p
X (Ω, w) = W 1,p

X (Ω, w).

All this section is devoted to the proof of Theorem 1.2. The first step is given
by the following technical lemma.

Lemma 1.3. For 0 < ε < ε1 let Kε : Rn −→ R be a family of measurable
functions supported in B(0, ε) such that

|Kε(z)| ≤ Cε−n and
∫

B(0,ε)

Kε(z)dz = 0.

If 1 ≤ p <∞, w ∈ Ap and f ∈ Lp(Ω, w), then

lim
ε→0

‖Kε ∗ f ‖Lp(Ω,w) = 0.
4



Here, without loss of generality, we think of f as defined on all of Rn being equal
to zero outside of Ω.

Proof. First we assume p > 1. Observe that (Kε ∗ f)(x) −→ 0 as ε −→ 0+ for a.e.
x ∈ Ω. Indeed

(Kε ∗ f) (x) =
∫

Rn

Kε(x− y) f(y) dy =
∫

B(x,ε)

Kε(x− y) {f(y)− f(x)}dy,

so that

|(Kε ∗ f)(x)| ≤ c
1

|B(x, ε)|

∫
B(x,ε)

|f(y)− f(x)| dy −→ 0

as ε→ 0 at any Lebesgue point x of f . Then the assertion follows from dominated
convergence theorem, since

|Kε ∗ f |(x) ≤ c Mf(x),

where Mf , the Hardy-Littlewood maximal function of f , belongs to Lp(Rn, w) as
proved in [M].
If p = 1, from the very definition of A1 Mw ≤ cw a.e. in Ω, so that we can argue
as follows: given η > 0, choose fη continuous and compactly supported in Ω such
that ‖f − fη‖L1(Ω,w) < η.
Since ∫

Rn

|Kε ∗ f |w dx ≤
∫

Rn

|Kε ∗ (f − fη) |w dx+
∫

Rn

|Kε ∗ fη|w dx

the theorem follows because the first term is small for all ε > 0, whereas the second
one is small for ε small because of the uniform continuity of fη. More precisely∫

Rn

|Kε ∗ (f − fη) |w dx ≤
∫

Rn

|f − fη | (|Kε| ∗ w) dx

≤ c

∫
Rn

|f − fη|Mwdx ≤ c

∫
Rn

|f − fη|w dx < c η,

and ∫
Rn

|Kε ∗ fη|w dx =
∫

Rn

|
∫

B(x,ε)

Kε(x− y) (fη(y)− fη(x)) dy | w(x) dx

≤ c h(ε)
∫

Ω

w(x) dx

where ε is less than the distance of the support of fη from ∂Ω and h is the modulus
of continuity of f . Thus the assertion is completely proved. �
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Proposition 1.4. Let 1 ≤ p < ∞ and let w ∈ Ap be given. If f ∈ W 1,p
X (Ω, w)

and if Ω′ ⊂⊂ Ω, then

lim
ε→0

‖f ∗ Jε − f‖W 1,p
X

(Ω′,w) = 0,

where Jε(x) = ε−nJ
(
ε−1|x|

)
is a spherically symmetric mollifier supported in

B(0, ε) such that
∫

Rn

J(|ξ|)dξ = 1.

Proof. If p > 1, arguing as in [CPSC], it is easy to see that

lim
ε→0

‖f ∗ Jε − f‖Lp(Ω′,w) = 0

because |f ∗ Jε|(x) ≤Mf(x) and using once more that the Hardy-Littlewood max-
imal function Mf is in Lp(Ω, w) if w ∈ Ap.

If p = 1, for any η > 0 we can choose a continuous function fη, such that
‖f − fη‖L1(Ω,w) < η. By the definition of A1-weight, Mw ≤ cw, so that, if ε <
dist(Ω′, ∂Ω),

‖Jε ∗ (f − fη) ‖L1
w(Ω′) ≤

∫
Ω′

∫
Rn

ε−n J(ε−1|x− y|) |f(y)− fη(y)| dy w(x)dx

≤
∫
Ω

|f(y)− fη(y)|
∫

Rn

ε−n J(ε−1|x− y|) w(x)dx dy

≤
∫
Ω

|f(y)− fη(y) | Mw(y) dy

≤ c

∫
Ω

|f(y)− fη(y) | w(y)dy

= c ‖f − fη‖L1(Ω,w).

Let us fix now η such that both ‖f−fη‖L1(Ω,w) and ‖Jε ∗(f−fη)‖L1(Ω,w) are small.
Our assertion follows because

‖Jε ∗ fη − fη‖L1(Ω,w) ≤ c h(ε)
∫
Ω

w(x) dx = C h(ε),

where h(ε) = sup
|x−y|<ε

| fη(x)− fη(y) |.

Then, it will be enough to prove that

lim
ε→0+

‖Xj (f ∗ Jε)−Xjf‖Lp(Ω′,w) = 0

for j = 1, . . . ,m. Let Y = (b1, . . . , bn) be one of these vector fields. Because

‖ Y (f ∗ Jε)− Y f ‖Lp(Ω′,w) ≤ ‖Y f − (Y f) ∗ Jε‖Lp(Ω′,w)

+ ‖(Y f) ∗ Jε − Y (f ∗ Jε)‖Lp(Ω′,w),
6



and Y f ∈ Lp(Ω′, w) we need only to prove that the last term has limit zero as
ε → 0+. Thus, if ε < dist(Ω′, ∂Ω), arguing as in Proposition 1.2.2 of [FSSC], we
have:∫

Ω′

|Y (f ∗ fε)− (Y f) ∗ Jε |pw(x)dx

≤
n∑

i=1

∫
Ω′

∣∣∣∣ ∫
B(x,ε)

(bi(x)− bi(y)) f(y)∂iJε(x− y) + ∂ibi(y)f(y)Jε(x− y) dy
∣∣∣∣pw(x)dx.

Now, by Rademacher’s theorem, for a.e. y ∈ Ω

bi(x)− bi(y) =
n∑

h=1

∂hbi(y) (x− y)h +Ri(x, y),

where for i = 1, . . . , n

lim
x→y

Ri(x, y)
|x− y|

= 0 for a.e. y ∈ Ω(1.1)

|Ri(x, y)|
|x− y|

≤ C for all x, y ∈ Ω.(1.2)

Eventually we obtain

‖Y (f ∗ Jε)− (Y f) ∗ Jε‖Lp(Ω′,w)

≤
∑
h6=i

∫
Ω′

∣∣∣∣ ∫
B(x,ε)

f(y)∂hbi(y)
[
(x− y)h

∂ Jε(x− y)
∂xi

]
dy

∣∣∣∣p w(x)dx


1/p

+
n∑

i=1

∫
Ω′

∣∣∣∣ ∫
B(x,ε)

f(y)∂ibi(y)
[
(x− y)i

∂ Jε(x− y)
∂xi

+ Jε(x− y)
]
dy

∣∣∣∣pw(x)dx


1/p

+
n∑

i=1

∫
Ω′

∣∣∣∣ ∫
B(x,ε)

f(y)Ri(x, y)
∂ Jε(x− y)

∂xi
dy

∣∣∣∣p w(x)dx


1/p

.

By Lemma 2.4, each term of the first two lines has limit zero as ε → 0+. Indeed
both f∂hbi and f∂ibi belong to Lp(Ω, w) and the kernels in the square parentheses
satisfy all the assumptions of the lemma because they can be written as

− ∂

∂yi
((y − x)h Jε (x− y)) for i 6= h

and
∂

∂yi
((y − x)i Jε (x− y))
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respectively. Thus, we can restrict ourselves to consider the terms containing
Ri(x, y). Now, because∣∣∣∣ ∂

∂xi
Jε (x− y)

∣∣∣∣ = ∣∣∣∣ 1
εn+1

xi − yi

|x− y|
J ′(ε−1|x− y|)

∣∣∣∣
≤ 1

εn

1
|x− y|

sup
t≥0

|J ′(t)| = C
1
εn

1
|x− y|

,

each one of these terms is bounded by

Ii = C

∫
Ω′

∣∣∣∣ ∫
B(x,ε)

|f(y)| |Ri(x, y)|
|x− y|

1
εn
dy

∣∣∣∣pw(x)dx


1/p

.

If p = 1 this integral is equal to

Ii =
∫
Ω

|f(y) | 1
εn

(∫
B(y,ε)

|Ri(x, y)|
|x− y|

w(x) dx

)
dy.

and, by dominated convergence theorem, it has limit zero as ε→ 0. Indeed

1
εn

∫
B(y,ε)

|Ri(x, y)|
|x− y|

w(x)dx

≤ 1
εn

∫
B(y,ε)

|Ri(x, y)|
|x− y|

|w(x)− w(y)| dx+ w(y)
1
εn

∫
B(y,ε)

|Ri(x, y)|
|x− y|

dx

≤ C

{
1
εn

∫
B(y,ε)

|w(x)− w(y)| dx+ w(y)
∫

B(0,1)

|Ri(y + εξ, y)|
ε|ξ|

dξ

}
;

here the first term of the last line has limit zero at each Lebesgue point y of w,
while the second one tends to zero for a.e. y ∈ Ω because of (1.1) and (1.2) and the
dominated convergence theorem. Hence

lim
ε→0

|f(y)| 1
εn

∫
B(y,ε)

|Ri(x, y)|
|x− y|

w(x)dx = 0 as ε→ 0+, for a.e. y ∈ Ω.

Moreover, because w ∈ A1,

|f(y)| 1
εn

∫
B(y,ε)

|Ri(x, y)|
|x− y|

w(x)dx ≤ C |f(y)|Mw(y) ≤ C |f(y)|w(y).

This concludes the proof in the p = 1 case.
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If p > 1, define fm = min {|f |,m}. Then(∫
Ω′

∣∣∣∣∣
∫

B(x,ε)

|f(y)| |Ri(x, y)|
|x− y|

1
εn

dy

∣∣∣∣∣
p

w(x)dx

)1/p

≤

( ∫
Ω′

∣∣∣∣∣
∫

B(x,ε)

(|f(y)| − fm(y))
|Ri(x, y)|
|x− y|

1
εn
dy

∣∣∣∣∣
p

w(x)dx

)1/p

+

( ∫
Ω′

∣∣∣∣∣
∫

B(x,ε)

fm(y)
|Ri(x, y)|
|x− y|

1
εn
dy

∣∣∣∣∣
p

w(x)dx

)1/p

= I1 + I2.

Without loss of generality assume that supp f, supp fm ⊆ Ω. Then

I1 ≤ C

(∫
Ω′

(
ε−n

∫
B(x,ε)

(|f(y)| − fm(y)) dy

)p

w(x)dx

)1/p

≤ C

(∫
Ω′

(M(|f | − fm))p w(x)dx
)1/p

≤ C

( ∫
Ω

(|f | − fm)p w(x) dx
)1/p

because w ∈ Ap. Hence for any θ > 0 it is possible to choose m = mθ > 0 such
that I1 < θ for all ε > 0. Let now this m be fixed. With y = x+ εη we have

I2 =

(∫
Ω′

( ∫
B(0,1)

fm (x+ εη)
|Ri(x, x+ εη)|

ε|η|
dη

)p

w(x)dx

)1/p

≤
∫

B(0,1)

(∫
Ω′
fp

m(x+ εη)
(
|Ri(x, x+ εη)|

ε|η|

)p

w(x)dx
)1/p

dη

by Minkowski integral inequality. Hence

I2 ≤
∫

B(0,1)

∫
Ω′

fp
m(x+ εη)

(
|Ri(x, x+ εη)|

ε|η|

)p

|w(x)− w(x+ εη)|dx

1/p

dη

+
∫

B(0,1)

∫
Ω′

fp
m(x+ εη)

(
|Ri(x, x+ εη)|

ε|η|

)p

w(x+ εη)dx

1/p

dη

= J1 + J2.

Now

J1 ≤ Cm

∫
B(0,1)

(∫
Ω

|w(x)− w(x+ εη)| dx
)1/p

dη < θ

if ε is sufficiently small.
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Let now x+ εη = χ for any η ∈ B(0, 1). If ε < dist (Ω′, ∂Ω), we get

J2 =
∫

B(0,1)

∫
Ω′

fp
m(χ)

(
|Ri(χ− εη, χ)|

ε|η|

)p

w(χ)dx

1/p

dη.

On the other hand, as ε→ 0 and for a.e. χ ∈ Ω

fp
m(χ)

(
Ri(χ− εη, χ)

ε|η|

)p

w(χ) −→ 0

and

fp
m(χ)

∣∣∣∣R(χ− εη, χ)
ε|η|

∣∣∣∣pw(χ) ≤ C fp
m(χ)w(χ),

which belongs to L1, so that, using twice the dominated convergence theorem, we
get that J2 −→ 0 as ε −→ 0. Thus the assertion is completely proved. �

Proof of Theorem 1.2. Given Proposition 1.4, the full proof of Theorem 1.2 can be
achieved following the same arguments of Meyers and Serrin in their original paper
[MS]. �

2 Poincaré inequality and approximation theorems

Throughout this section we assume that Ω is bounded and that the family of
vector fields X = (X1, . . . , Xm) is defined and Lipschitz continuous in a neighbor-
hood Ω0 of Ω. Let us recall the following standard definition (see, e.g., [FP], [FL],
[NSW]).

Definition 2.1. We say that an absolutely continuous curve γ : [0, T ] −→ Ω0 is a
sub-unit curve with respect to X if for any ξ ∈ Rn

〈γ̇(t), ξ〉2 ≤
m∑

j=1

〈Xj(γ(t)), ξ〉2

for a.e. t ∈ [0, T ]. If x1, x2 ∈ Ω0, we define

ρ(x1, x2) = inf {T > 0 : there exists a sub-unit curve γ

γ : [0, T ] −→ Ω0, γ(0) = x1, γ(T ) = x2}.

If the above set of curves is empty, we put ρ(x1, x2) = ∞.

In all the theorems of this Section we will assume the following hypotheses (H1)
and (H2) hold

(H1) ρ(x, y) <∞ for any x, y ∈ Ω0, so that ρ is a distance in Ω0. Moreover, the
distance ρ is continuous with respect to the usual topology of Rn.
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If x ∈ Ω0 and r > 0 we will denote by Bρ(x, r) = {y ∈ Ω0 : ρ(x, y) < r} the metric
balls with respect to ρ. The following is known as doubling property of ρ.

(H2) For any compact K ⊂ Ω0 and for any r < rK there exists a positive constant
CK such that

|Bρ(x, 2r)| ≤ CK |Bρ(x, r)|

for any x ∈ K and r < rK .

¿From now on we will call geometric constant any constant depending only on
the dimension n, on CΩ, on the distance from Ω to Ω0, and on the C1,1 norm of the
vector fields.

Moreover, for the sake of simplicity, we will omit the index ρ in Bρ when there
is no way of misunderstanding, and we will denote by the same letter C different
geometric constants.

Remark 2.2. Assumptions (H1) and (H2) are satisfied by several important fam-
ilies of vector fields. For instance:

(i) If the vector fields are smooth and the rank of the Lie algebra generated by
X1 . . . , Xm equals n at any point of Ω0 (Hörmander condition), then (H1)
and (H2) hold ([NSW]).

(ii) If the vector fields are as in [FL], [F1] and [F2], then (H1) and (H2) hold.
These assumptions still hold if the vector fields are as in [FGuW], with the
strong A∞ weight identically one.

The following properties of the metric balls follow straightforwardly from (H2).

Proposition 2.3. Let (H1) and (H2) hold. Then there exist geometric constants
α ≥ n, r0 > 0, c1 > 0, c2 > 0, c3 > 0, c4 > 0 such that

(i) |B(x, s)| ≥ c1
(

s
r

)α |B(x, r)| ∀x ∈ Ω, ∀r, s 0 < s < r ≤ r0;

(ii) |B(x, s)| ≤ c2 s
n ∀x ∈ Ω, ∀s 0 < s ≤ r0;

(iii) c3|B(x, ρ(x, y))| ≤ |B(y, ρ(x, y))| ≤ c4|B(x, ρ(x, y))|
for any x, y ∈ Ω, ρ(x, y) ≤ r0.

Because of (H1), (H2) and following [C] we can define Ap classes with respect
to the metric ρ and to the Lebesgue measure dx.

Definition 2.4. If w is a weight function, we will say that w ∈ Ap = Ap (Ω0, ρ, dx)
if for all metric balls B = Bρ(x, r) ⊆ Ω0

∫
B

w dx

 ∫
B

w−1/(p−1)dx

p−1

≤ c when 1 < p <∞(i)

∫
B

w dx ≤ c ess inf
B

w when p = 1.(ii)

The smallest constant for which (i) or (ii) hold is the Ap bound of w.

In the following proposition we collect some properties of Ap weights that will
be used later. A proof can be found in [C].
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Proposition 2.5. Let 1 ≤ p < +∞ and w ∈ Ap(Ω0, ρ, dx). Then there are con-
stants c5, c6 > 1 and ε0 > 0, depending only on the geometric constants of Propo-
sition 2.3 and on the Ap bound of w, such that ∀B = Bρ(x, r) with x ∈ Ω and
r < r0

w(Bρ(x, 2r)) ≤ c5 w(Bρ(x, r))(i) ∫
B

w1+ε(x) dx ≤ c6

 ∫
B

w(x) dx

1+ε

.(ii)

As usual (i) is called the doubling property of w and (ii) is the reverse Holder
inequality. Again, if w ∈ Ap(Ω0, ρ, dx), then Lp(Ω0, w) ⊆ L1

loc(Ω0).

Remark 2.6. We stress here that Ap classes with respect to the metric ρ are not
trivial (i.e. they contain other functions than constants) and that they differ from
Ap classes with respect to the Euclidean metric.

To prove the first assertion, let us prove that, if β > 0 is such that

|B(x̄, θr)| ≤ cθβ |B(x̄, r)|

for some fixed x̄ ∈ Ω̄ and for θ ∈ (0, 1), r ∈ (0, r0), then ρ(x̄, ·)γ belongs to
Ap(Ω̄, ρ, dx) for −β < γ < β(p − 1). Note that such β exists and β ≥ n, by
Proposition 2.3. Let us prove the assertion when p > 1; the case p = 1 can be
handled in the same way. If σ > −β and r ∈ (0, r0), we have∫

B(x̄,r)

ρσ(x̄, x) dx =
∑
k≤0

∫
2k−1r≤ρ(x̄,x)<2kr

ρσ(x̄, x) dx

∼
∑
k≤0

2kσrσ|B(x̄, 2kr) \B(x̄, 2k−1r)|

≤ |B(x̄, r)|rσ
∑
k≤0

2k(σ+β),

so that, by choosing successively σ = γ and σ = −γ/(p− 1), we get

A(x̄, r) =
∫

B(x̄,r)

ρσ(x̄, x)dx ·

( ∫
B(x̄,r)

ρ−γ/(p−1)(x̄, x)dx

)
≤ const.

If now ρ(x̄, r) < 2r, then B(x, r) ⊂ B(x̄, 3r), and |B(x, r)| ∼ |B(x̄, 3r)| (by Propo-
sition 2.2), so that A(x, r) ≤ const. Finally, if ρ(x̄, x) > 2r, then, if y ∈ B(x, r), we
have 1

2ρ(x̄, x) < ρ(x̄, y) < 3
2ρ(x̄, x), so that A(x, r) is bounded and then ργ(x̄, x) is

an Ap weight with respect to the metric ρ.
If we consider now the vector fields ∂ξ+2η∂τ and ∂η−2ξ∂τ in R3

(ξ,η,τ) (Heisenberg
group), then it is well known that |B(x, r)| ∼ r4 for any x = (ξ, η, τ) ∈ R3 and for
r > 0. In addition, ρ(x, 0) ∼ (ξ2 +η2 + |τ |)1/2, so that ω(ξ, η, τ) = (ξ2 +η2 + |τ |)γ/2

is a A2 weight for −4 < γ < 4. Choose now γ ∈ (2, 4); we will show that ω
is not an A2 weight with respect to Euclidean balls. First of all, denoting by
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S = {(ξ, η, τ); ξ2 + η2 + τ2 ≤ 2r2} the Euclidean ball centered at the origin, we
have: ∫

S

(ξ2 + η2 + |τ |)γ/2 dξ dη dτ ∼
∫

ρ2+τ2≤2r2

ρ>0,τ>0

ρ(ρ+ τ)γ/2dρ dτ

≥ cγ

∫ r

0

ρ dρ

∫ r

0

τγ/2dτ ∼ r3+γ/2.

On the other hand∫
S

(ξ2 + η2 + |τ |)−γ/2 dξ dη dτ ≥ c

∫ r

0

dτ

∫ r

0

dρ ρ(ρ2 + τ)−γ/2

= cγ

∫ r

0

{τ1−γ/2 − (r2 + τ)1−γ/2} dτ = cγ{r2−γ/2 − (r2 + r)2−γ/2 + r4−γ}

= cγr
2−γ/2{r(γ

2
− 2 + o(1)) + r2−γ/2} = cγr

4−γ{1 + o(1)},

so that, if r is small enough,∫
S

ωdξ dη dτ

∫
S

ω−1dξ dη dτ ≥ cr1−γ/2 →∞

as r → 0+, since γ > 2.

The main result of this section is the following

Theorem 2.7. Let Ω ⊂⊂ Ω0 be a bounded open set, 1 < p < +∞ and X =
(X1, . . . , Xm) be a family of Lipschitz continuous vector fields defined in Ω0. Sup-
pose that X satisfy (H1), (H2) and that the following representation formula holds

(2.1)

there exist geometric constants c, C > 0 such that ∀B = Bρ(x̄, r)

with cB := Bρ(x̄, cr) ⊆ Ω0,∀f ∈ Lip(cB) and ∀x ∈ B̄

|f(x)−
∫
B

f(y)dy| ≤ C

∫
cB

|Xf(y)| ρ(x, y)
|B(x, ρ(x, y))|

dy := TcB(|Xf |) (x).

Suppose that w ∈ Ap(Ω0, ρ, dx). Then

W 1,p
X (Ω, w) = H1,p

X (Ω, w).

Remark 2.8. If X = (X1, . . . , Xm) satisfy Hörmander condition (see Remark
2.2(i)), then (2.1) is proved in [FLW], Proposition 2.12. Moreover, if X1, . . . , Xm

satisfy the assumptions of Remark 2.2(ii), the representation formula (2.1) can be
deduced respectively from the results of [F1,2] and from Corollary 3.2 of [FGuW]
(keeping in mind the arguments of Corollary 3.3 therein).

Proof of Theorem 2.7. The proof will consist of many steps, some of them having
independent interest. The first one states that the distance ρ(x̄, ·) from a fixed point
x̄ ∈ Ω belongs to H1,p

X (Ω) (no weights!) for any p ≥ 1 and that |Xρ(x̄, ·)| ∈ L∞(Ω).
This fact will enable us to construct suitable cut-off functions associated with the
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metric balls B; it can also be used to construct test functions of the same type
when dealing with degenerate elliptic equations as

m∑
i,j=1

X∗
i (aijXjf) = 0,

(aij)i,j=1,... ,m being an elliptic matrix. However, we note explicitly that, when
X1, . . . , Xm are as in Remark 2.2 (i) or (ii), cut-off functions associated with the
metric balls have already been constructed (see e.g. [CGL], [L1], [L2], [FL], [F1],
[FGuW]).

Step 1.

Proposition 2.9. Let Ω ⊂⊂ Ω0 be a bounded open set, and let x̄ ∈ Ω be fixed.
Then the function ρ(x) = ρ(x̄, x) belongs to H1,p

X (Ω) for any p ≥ 1. In addition,
|Xρ| ∈ L∞(Ω). Note that this result does not depend on assumption (2.1).

Proof. Let j ∈ {1, . . . ,m} be fixed. For the sake of simplicity, we write Y =
(c1, . . . , cn) instead of Xj . We will show later that the function x −→ expx(tY ) is
Lipschitz continuous for any fixed t ∈ R, |t| ≤ T , T depending on the distance from
Ω to Ω0 and on the Lipshitz constant L of Y . Moreover its Jacobian determinant
J(x, t) satisfies J(x, t) = 1 + J1(x, t), with

(2.2) |J1(x, t)| ≤ c|t|

for a.e. x ∈ Ω̄1 (Ω ⊂⊂ Ω1 ⊂⊂ Ω0), for |t| < T and with a constant c not depending
on x and on t. Let us assume these facts and let us complete the proof. By
definition, if ϕ ∈ D(Ω), we have

〈Y ρ, ϕ〉 = −
∫
ρ(x) (Y ϕ) (x)dx−

∫
ρ(x)ϕ(x) divY (x) dx.

The absolute value of the second integral is bounded by cdiamρ(Ω) ‖ϕ‖L1(Ω) where
c depends only on the Lipschitz constant L of Y .
The first term is equal to the limit as t −→ 0+ of∫

Ω

ρ(x)
1
t
{ϕ(x)− ϕ (expx(tY ))}dx

=
1
t

{ ∫
Ω

ρ(x)ϕ(x)dx−
∫
Ω

ρ(x)ϕ(expx(tY ))dx
}
.

Note now that the map x −→ expx(tY ) is 1-1 for any fixed t, |t| < T by the
uniqueness of the Cauchy problem, and that its inverse map is given by x′ −→
expx′(−tY ). Let x′ = expx(tY ). Then the difference quotient above can be written
as

1
t

{ ∫
Ω

ρ(x)ϕ(x)dx−
∫
Ω

ρ(expx′(−tY ))ϕ(x′)dx′
}

−1
t

∫
Ω

ρ(expx′(−tY ))ϕ(x′)J1(x′ − t)dx′.
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Observe that∣∣∣∣1t
∫
Ω

ρ(expx′(−tY ))ϕ(x′) J1(x′ − t)dx′
∣∣∣∣ ≤ c diamρ(Ω) ‖ϕ‖L1(Ω),

and that, by the triangle inequality, |ρ(x)−ρ(expx(−tY ))| ≤ ρ(x, expx(−tY )) ≤ |t|,
because t −→ expx(−tY ) is a sub-unit curve. Hence∣∣∣∣ ∫

Ω

ρ(x)Y ϕ(x)dx
∣∣∣∣ ≤ lim sup

t→0+

∫
Ω

∣∣∣∣ρ(x)− ρ(expx(−tY ))
t

∣∣∣∣ |ϕ(x)|dx

+ cdiamρ(Ω) ‖ϕ‖L1(Ω)

≤ cΩ ‖ϕ‖L1(Ω).

Thus the functional ϕ −→ 〈Y ρ, ϕ〉 is a continuous linear functional on L1(Ω),
hence Y ρ can be identified with a L∞(Ω)-function. This way, we have proved that ρ
belongs to W 1,p

X (Ω) for any p, 1 ≤ p ≤ +∞; hence, given Theorem 1.2, ρ ∈ H1,p
X (Ω)

for 1 ≤ p < +∞.

We prove now our assertion about the map x −→ expx(tY ). Without loss of
generality, we may assume t > 0. For the sake of simplicity, let us write expx(tY ) =
ux(t). By definition, if x, y ∈ Ω, we have

ux(t)− uy(t) = x− y +
∫ t

0

[
Y (ux(σ))− Y (uy(σ))

]
dσ,

so that

|ux(t)− uy(t) | ≤ |x− y|+ L

∫ t

0

|ux(σ)− uy(σ)|dσ.

Then, by Gronwall’s lemma, if t ≤ T we have

|ux(t)− uy(t) | ≤ CT |x− y|.

Let now t ∈]0, T ] be fixed. By Rademacher’s theorem, the map x −→ ux(t) is
differentiable for a.e. x ∈ Ω; let x be one of these points and let us consider (ux)j

the j-th component of ux. If k ∈ {1, . . . , n} we have for s > 0

1
s

{
(ux+sek

(t))j − (ux(t))j

}
= δjk +

1
s

∫ t

0

[
cj (ux+sek

(σ))− cj(ux(σ))
]
dσ

= δjk + fj,k(x, t, s).

Since the left-hand side of the above identity converges as s −→ 0+ (by the dif-
ferentiability), we obtain that fjk(x, t, s) has a limit fj,k(x, t) as s −→ 0. On the
other hand

|fj,k(x, t, s)| ≤ L

s

∫ t

0

|ux+sek
(σ)− ux(σ) | dσ

≤ L

s
CT s t = c t
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so that also |fj,k(x, t) | ≤ c t and (2.2) follows trivially. �

Step 2.

We keep the notations of Theorem 2.7. Let U ⊆ Ω0 be an open neighborhood
of cB, and let g be a given function belonging to W 1,p

X (U,w). As we pointed out
above, Lp(U,w) ⊆ L1(U), so that g ∈ W 1,1

X (U) = H1,1
X (U), by [FSSC], Theorem

1.6 (or Theorem 1.2 above, with w ≡ 1). Following [FLW], if k ∈ Z we put

gk(x) =


2k−1 if |g − gB | ≤ 2k−1

|g − gB | if 2k−1 < |g − gB | ≤ 2k

2k if |g − gB | > 2k,

where
gB =

∫
B

g dx.

Arguing as in [GT], section 7.4, it is easy to see that gk still belongs to H1,1
X (U)

and, if we put

Sk = {x ∈ B : 2k < |g(x)− gB | ≤ 2k+1}
S∗k = {x ∈ cB : 2k < |g(x)− gB | ≤ 2k+1},

then |Xgk| = |Xg|χS∗
k−1

a.e. in cB.

Let now (ϕh)h∈N be a sequence of smooth functions converging to gk in H1,1
X (U).

Without loss of generality, we assume that

ϕh −→ gk and |Xϕh| −→ |Xgk|
as h −→∞, a.e. in U . Let us prove now that

TcB(|Xϕh|) −→ TcB(|Xgk|)
in L1(B) as h −→∞. In fact, we have∫

B

∣∣∣∣TcB(|Xϕh|)− TcB(|Xfk|)
∣∣∣∣ dx

≤
∫
B

∫
cB

∣∣∣∣|Xϕh|(y)− |Xfk|(y)
∣∣∣∣ ρ(x, y)
|B(x, ρ(x, y))|

dy dx

≤
∫
cB

|X(ϕh − fk)|(y)
∫
B

ρ(x, y)
|B(x, ρ(x, y))|

dx dy.

By triangle inequality, B ⊆ B(y, (1 + c)r) and, by Proposition 2.3 (iii), it follows∫
B

ρ(x, y)
|B(x, ρ(x, y))|

dx ≤ c

∫
B(y,(1+c)r)

ρ(x, y)
|B(y, ρ(x, y))|

dx

= c
∞∑

`=0

∫
(1+c)r

2`+1 ≤ρ(x,y)≤ (1+c)r

2`

ρ(x, y)
|B(y, ρ(x, y))|

dy

≤ c (1 + c)r
∞∑

`=0

2−` |B(y, 2−`(1 + c)r)|
|B(y, 2−`−1(1 + r)r)|

≤ c r by doubling condition (H2).
16



Thus
‖ TcB(|Xϕh|)− TcB(|Xgk|) ‖L1(B) ≤ c r ‖ϕh − gk‖H1,1

X
(U)

and the assertion follows. Again, without loss of generality, we may assume that

TcB(|Xϕh|) (x) −→ TcB(|Xgk|) (x)

as h −→∞ for a.e. x ∈ B. On the other hand, by (2.1),

|ϕh(x)−
∫
B

ϕh| ≤ c TcB(|Xϕh|) (x),

so that we can take the limit as h −→ ∞ and we obtain that gk still satisfies the
representation formula (2.1) in B.

We can now argue as in [FLW], Proposition 2.12, to prove the following technical
lemma:

Lemma 2.10. With the notations of Theorem 2.7, we have

(2.3) |g(x)− gB | ≤ c

{
TcB(|Xg|XS∗

k−1
) (x) +

r

|B|

∫
B

|Xg|dy
}

a.e. in Sk, for any g ∈W 1,p
X (Ω, w).

Proof. We have: 2k−1 ≤ gk(y) ≤ 2k−1 + |g(y) − gB |, so that for a.e. x ∈ Sk we
have:

2k = gk(x) ≤ |gk(x)− (gk)B |+ (gk)B

≤ C TcB (|Xgk|) (x) + 2k−1 +
∫
B

|g(y)− gB |dy,

so that, keeping in mind that for a.e. x ∈ Sk we have |g(x)− gB | ≤ 2k, we obtain

|g(x)− gB | ≤ 2c TcB(|Xg|XS∗
k−1

) (x) +
∫
B

|g(y)− gB |dy.

Then, to achieve the proof of the lemma is enough to apply the (unweighted)
Poincaré inequality ∫

B

|g − gB |dx ≤ c r

∫
B

|Xg|dx,

which can be deduced from (2.1) as follows. First of all, take an arbitrary metric
ball B̃ = B(x, θ) such that cB̃ ⊂ Ω. The representation formula (2.1) holds for g
in B̃; hence arguing as above∫

B̃

|f − f
B̃
|dy ≤ c

∫
cB̃

|Xf(y)|
∫
B̃

ρ(x, y)
|B(x, ρ(x, y))|

dx dy ≤ c θ

∫
cB̃

|Xf(y)|dy.

Finally we can work as in [FGuW] and[FLW] applying, for instance, Theorem
5.2 and Theorem 5.4 in [FGuW] to get rid of the “enlarging constant”c in the
integration domain of |Xf |. This completes the proof. �

Given (2.3) and repeating all the arguments of [FLW] the following Sobolev-
Poincaré inequality holds:
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Theorem 2.11. Let w1, w2 be weight functions and let 1 ≤ p < q < ∞ be such
that the following balance condition holds for all metric balls I, J with I ⊂ J ⊂ B
where B is a metric ball with center in Ω and radius r(B) < r0

(2.4)
r(I)
r(J)

(
w2(I)
w2(J)

)1/q

≤ c

(
w1(I)
w1(J)

)1/p

Moreover, let us assume that w1 ∈ Ap(Ω0, ρ, dx), that w2 is doubling and that (H1),
(H2) and (2.1) hold. Then for all f ∈ W 1,p

X (Ω, w1) there exists c(f,B) ∈ R such
that

(2.5)

 ∫
B

|f − c(f,B) |q dw2

1/q

≤ c r

 ∫
B

|Xf |p dw1

1/p

where the constant c is independent of f . In particular, under our assumptions,
W 1,p

X (Ω, w1) is continuously embedded in Lq(Ω, w2).

Remark 2.12. If p > 1, the above Sobolev-Poincaré inequality has mainly an
instrumental interest. Indeed, once our density theorem is proved, the above result
follows straightforwardly from the analogous result in [FLW] for regular functions
via a limit argument. Because of this, we will not go into more precise statements
about the constant c(B, f) that can be found in [FLW]. In the case of vector fields
to whom Remark 2.2 does not apply, Theorem 2.11 gives an abstract result which,
in turn, is quite obvious looking to the arguments of [FLW].

Remark 2.13. If 1 < p = q, we can argue as in [FLW], Remark 1.6. Then,
inequality (2.5) still holds in this case if there exists s > 1 such that ws

2 is a
doubling weight and the balance condition (2.4) is replaced by the condition

(2.4 bis)
(
r(I)
r(J)

)p As(I, w2)
w2(J)

≤ c
w1(I)
w1(J)

for all balls I, J with I ⊂ J ⊂ B, where

As(I, w2) = |I|

 1
|I|

∫
I

ws
2dx

 1
s

.

Moreover, if p = q = 1, (2.5) still holds if w2 is doubling and w1, w2 satisfy the
condition

(2.4 ter)
1

w2(I)

∫
I

ρ(x, y)
|B(y, ρ(x, y))|

w2(x)dx ≤ c
r(I)
w1(I)

w1(y) a.e. in I

for all balls I ⊂ B.
If w2 ∈ Ap, then (2.4 bis) and (2.4 ter) are equivalent to (2.4). In particular, if
w1 ≡ w2 ≡ w ∈ Ap, then (2.4.bis) and (2.4.ter) hold, so that

(2.6)

 ∫
B

|f(x)− c(f,B)|pw dx

1/p

≤ c r

∫
B

|Xf |pw dx

1/p
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for p ≥ 1.

Step 3.

To prove Theorem 2.7 we still need a few more technical results we will include
in this step.

Lemma 2.14. If p ≥ 1, we will say that u ∈ H1,p
X,loc(Ω, w) if ψu ∈ H1,p

X (Ω, w) for
any ψ ∈ C∞0 (Ω). Then we have

H1,p
X,loc(Ω, w) ∩W 1,p

X (Ω, w) = H1,p
X (Ω, w).

Proof. The proof is basically the last step of Meyer-Serrin’s proof. Let Ωj , j =
1, 2 . . . be open sets in Ω such that

Ωj ⊂⊂ Ωj+1 ⊂⊂ Ω and
⋃
j

Ωj = Ω.

Then let {ψj : j = 0, 1, . . . } be a partition of the unity subordinated to the covering
{Ωj+1\Ωj−1 : j = 0, 1, . . . }, where Ω0 = Ω−1 = ∅. Then, if u ∈ H1,p

X,loc(Ω, w) ∩
W 1,p

X (Ω, w), then for any j and for any εj > 0 there exists uj ∈ C∞(Ω)∩W 1,p
X (Ω, w)

such that
‖ uj − uψj ‖W 1,p

X
(Ω,w) < εj .

Let now ψ̃j be smooth functions supported in Ωj+1\Ωj−1 such that 0 ≤ ψ̃j ≤ 1
and ψ̃j ≡ 1 on Kj := suppψj . Moreover, let bj > 0 be such that |Xψ̃j | ≤ bj for
j = 1, . . . .

Consider now the function v =
∑
j

ψ̃juj , which is smooth since it is a locally

finite sum of smooth functions. We have

‖v − u‖W 1,p
X

(Ω,w) ≤
∑

j

‖ ψ̃j uj − uψj‖W 1,p
X

(Ω,w).

Note that ∫
Ω\Kj

|ψ̃juj |p wdx ≤
∫

Ω\Kj

|uj |pwdx ≤
∫
Ω

|uj − uψj |pw dx < εp
j ,

so that∫
|ψ̃j uj − uψj |pw dx =

∫
Kj

|uj − uψj |pw dx+
∫

Ω\Kj

|ψ̃j uj |pw dx < 2εp
j .

In addition, arguing as above,∫
Ω

|X (ψ̃juj − uψj)|pw dx ≤
∫

Kj

|X(uj − uψj)|pw dx

+
∫

Ω\Kj

|ψ̃j |p |Xuj |pw dx+
∫

Ω\Kj

|uj |p |Xψ̃j |p wdx ≤ (2 + bpj )ε
p
j ,

so that
‖ ψ̃juj − uψj ‖W 1,p

X
(Ω,w) ≤ c (1 + bj)εj .

Choosing now εj = 2−jε/(1 + bj), the assertion is proved. �

Arguing as in [SC], Lemma 3.3, by slight changes in the proof of Lemma 5.5 in
[FGuW], we obtain the following Whitney’s lemma:
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Lemma 2.15. Let δ ∈ (0, 1/10) be given; then there exists a countable family
{B̃δ

j = B(x̃δ
j , r̃jδ) : j = 1, 2, . . . } of metric balls contained in Ω and a geometric

constant c̃1 such that⋃
j

3B̃δ
j = Ω, B̃δ

j ∩ B̃δ
k = ∅ for j 6= k(2.7)

r̃jδ = δ distρ(B̃δ
j , ∂Ω)(2.8) ∑

j

χ
4B̃δ

j

≤ c̃1χΩ(2.9)

if 4B̃δ
i ∩ 4B̃δ

j = ∅, then
1
2
r (B̃δ

i ) ≤ r (B̃δ
j ) ≤ 2r (B̃δ

i ).(2.10)

Step 4.

Let ϕ be a smooth function from [0,∞) to R such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on
[0,3], ϕ ≡ 0 on [4,∞), |ϕ′| ≤ 2, and put ϕ̃δ

j(x) = ϕ
(
ρ(x̃δ

j , x)/r̃jδ

)
, so that

(i) ϕ̃δ
j ∈ H

1,p
X (Ω, w), for any p ≥ 1 by Proposition 2.9;

(ii) ϕ̃δ
j ≡ 1 on 3B̃δ

j , supp ϕ̃δ
j ⊆ 4B̃δ

j ;

(iii) |Xϕ̃δ
j | ≤ c/r̃jδ, again by Proposition 2.9.

Now, set Bδ
j = 4B̃δ

j and define

ϕδ
i =

ϕ̃δ
i∑

j

ϕ̃δ
j

for i ∈ N.

Note that by (2.7), the sum at the denominator is ≥ 1. Moreover only a finite
number of balls Bδ

j has non void intersection with Bδ
i , since, if Bδ

j ∩ Bδ
i 6= ∅,

then both their radii and their Lebesgue measures are comparable (by (2.10) and
doubling property), so that

c̃1|Ω| ≥
∑

Bδ
j
∩Bδ

i
6=∅

|Bδ
i | ≥ c ]{j : Bδ

j ∩Bδ
i 6= ∅} |B̃i|,

which implies that ]{· · · } := ]Si < ∞. Thus suppϕδ
i ⊂ Bδ

i , |ϕδ
i | ≤ 1 and hence

ϕδ
i ∈ Lq(Ω) for any q ≥ 1. Moreover

|Xϕδ
i | ≤

|Xϕ̃δ
i |∑

j

ϕ̃δ
j

+
ϕ̃δ

i

∑
j∈Si

|Xϕ̃δ
j |(∑

j

ϕ̃δ
j

)2 ≤ c/r̃δ
i ,

again by (2.10). Then ϕδ
i ∈ W

1,q
X (Ω) = H1,q

X (Ω) for any q ≥ 1. Let now p be fixed
and let ε be as in Step 3. We can choose (gh)h∈N such that gh ∈ C∞0 (5B̃δ

ϕj) for any

h ∈ N and gh
h→∞−→ ϕδ

i in W 1,q
X (Ω), with q = p(1+ ε)/ε. Then, by Hölder inequality,

‖ ϕδ
i − gh ‖W 1,p

X
(Ω,w) ≤ ‖ϕδ

i − gh‖W 1,q
X

(Ω) ·
( ∫
5B̃δ

j

w1+εdx
) 1

p(1+ε) ,
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so that gh −→ ϕδ
i in W 1,p

X (Ω, w). Thus we have proved that ϕδ
i ∈ H

1,p
X (Ω, w).

With the notations of Theorem 2.11, if f ∈W 1,p
X (Ω, w) put now

fδ =
∑

i

c(f,Bδ
i )ϕδ

i ,

Note now that, if K is a compact subset of Ω only a finite number of Bδ
j intersect

K, since, by (2.8), if Bδ
j ∩K 6= ∅, then r̃jδ ≥ rK > 0 and, in turn, this is possible

only for a finite number of balls, by Proposition 2.3. Thus it is easy to see that
fδ ∈ L1

loc(Ω) and |Xfδ| ∈ L1
loc(Ω). Moreover,

Xjfδ =
∑

i

c(f,Bδ
i ) (Xjϕ

δ
i ) for j = 1, . . . ,m.

and same argument shows that fδ ∈ H1,p
X,loc(Ω, w), since on any compact set fδ is a

finite linear combination of functions in H1,p
X (Ω, w).

First of all, let us prove that

(2.11)
∫
Ω

|fδ − f |pw dx −→ 0 as δ −→ 0 + .

In particular, this will imply that fδ ∈ Lp(Ω, w) for any δ > 0. Indeed by (2.6),
(2.7) and (2.8)∫

Ω

|fδ − f |pw dx ≤ c
∑

i

∫
Bδ

i

|c(f,Bδ
i )− f |pw dx

≤ c
∑

i

r̃p
iδ

∫
Bδ

i

|Xf |pw dx ≤ c δp

∫
Ω

|Xf |pw dx.

Let us prove now that

(2.12)
∫
Ω

|Xfδ|pw dx ≤ c

∫
Ω

|Xf |pw dx for all δ > 0.

Indeed for j = 1, . . . ,m we have

Xjfδ =
∑

i

c(f,Bδ
i )Xjϕ

δ
i =

∑
i

(
c(f,Bδ

i )− f
)
Xjϕ

δ
i ,

since ∑
i

f(Xjϕ
δ
i ) = f ·Xj

(∑
i

ϕδ
i

)
≡ 0,
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because {ϕδ
i : i ∈ N} is a partition of unit. Thus∫

Ω

|Xfδ|pw dx ≤ c
∑

i

∫
Ω

|f − c(f,Bδ
i )|p |Xϕδ

i |pw dx

≤ c
∑

i

1
r̃p
iδ

∫
Bδ

i

|f − c(f,Bδ
i )|pw dx

≤ c
∑

i

∫
Bδ

i

|Xf |pw dx by (2.6)

≤ c

∫
Ω

|Xf |pw dx (by (2.9)).

Now we can complete the proof of Theorem 2.7. First of all, combining (2.11)
and (2.12), we obtain that fδ ∈ W 1,p

X (Ω, w), and then that fδ ∈ H1,p
X (Ω, w), by

Lemma 2.14. Again by (2.11) and (2.12) it follows that the set {fδ, δ ≤ 1/10} is
bounded in H1,p

X (Ω, w) which is reflexive for p > 1. Thus there exists a sequence
(δn)n∈N converging to zero such that fn = fδn

converges weakly in H1,p
X (Ω, w) to

a function g. Because of (2.11), g ≡ f , so that f is the weak limit in W 1,p
X (Ω, w)

of a sequence of functions in H1,p
X (Ω, w). Finally (for instance applying Mazur’s

theorem) there is another sequence converging strongly in H1,p
X (Ω, w) to f . �

It is clear from the proof that we used assumption (2.1) only to obtain (2.5),
so that we might restrict ourselves to assume (2.5) only. Even if (2.5) in many
cases is obtained from (2.1) (as in [FLW], [FS], [F1] and [F2]), this remark has
some interest because of recent results by [SCos], [MSCos], [BM1] and [BM2], where
“abstract Sobolev-Poincaré inequality” are proved without using any representation
formula. Moreover, if we already assume that (2.5) holds, then we can weaken the
assumptions on w as in [SC].* Indeed we have

Theorem 2.16. Let Ω ⊂⊂ Ω0 be a bounded open set, 1 ≤ p < +∞ and X =
(X1, . . . , Xm) be a family of Lipschitz continuous vector fields defined in Ω0. Sup-
pose that X satisfy (H1), (H2) and (2.5). Suppose that w is a weight function such
that w,w1/(1−p) ∈ L1

loc(Ω). Then

W 1,p
X (Ω, w) = H1,p

X (Ω, w).

3 Applications: Degenerate elliptic
equations and Embedding theorems

Let us consider now the second order degenerate elliptic operator in divergence
form

Lu :=
n∑

i,j=1

∂i(aij(x)∂ju),

*Meanwhile, we stress again that formula (2.1) is supposed to hold only for regular functions,
which seems much easier to verify, since it does not require any knowledgence of the structure of

the functions belonging to W -spaces.
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where aij = aji ∈ L∞(Ω) and

ν w(x)
m∑

l=1

〈Xl(x), ξ〉2 ≤
n∑

i,j=1

aij(x)ξiξj ≤
1
ν
w(x)

m∑
l=1

〈Xl(x), ξ〉2

for ν ∈ (0, 1], for a.e. x ∈ Ω and for any ξ ∈ Rn. Let us assume that X1, . . . , Xm

satisfy (H1) and (H2) and that w ∈ A2(Ω, ρ, dx).

If u ∈ H1,2
X,loc(Ω, w) and Lu = 0 in the distribution sense, that is if

(3.1)
n∑

i,j=1

∫
Ω

aij(x) ∂ju ∂jϕ dx = 0 ∀ϕ ∈ C∞0 (Ω)

we say that u is local H-solution of Lu = 0 in Ω. Analogously, if u ∈W 1,2
X,loc(Ω, w)

and if (3.1) holds not only for all ϕ ∈ C∞0 (Ω) but for all ϕ ∈ W 1,2
X (Ω, w) and

compactly supported in Ω we say that u is a local W -solution. Note that even
if {X1, . . . , Xm} = {∂1, . . . , ∂n} but w 6∈ A2 it may happen that H1,2

X (Ω, w) 6=
W 1,2

X (Ω, w) and the two notions of solution are actually different. It is clear that
H1,2

X (Ω, w) ⊂W 1,2
X (Ω, w) does not imply that H-solutions are W -solutions.

The problem of the regularity of the H and W -solutions when H 6= W seems
to be a very difficult one (see e.g. [SC]). However, the following abstract result is
now easy to prove using Theorem 2.7, Proposition 2.9 and the standard approach
to Harnack’s inequality for these degenerate elliptic operators (see, e.g., [FS]).

Theorem 3.1. Let the hypotheses of Theorem 2.7 be satisfied with p = 2. Then

(i) u is a local H-solution of Lu = 0 if and only if u is a local W -solution;
(ii) if u is a local solution of Lu = 0 and u ≥ 0, then there is a geometric

constant c > 1, depending also on ν and on the A2 bound of w such that

sup
B(x,r)

u ≤ c inf
B(x,r)

u

for any metric ball B(x, r), with r < 1
2distρ(x, ∂Ω).

Proof. Assertion (i) follows from Theorem 2.7. To prove (ii) we can use Moser’s
iteration techniques as in [FS], since the existence of test functions follows from
Proposition 2.9 as shown in Step 5 above. We stress that a Sobolev inequality for
functions supported in B(x, r) follows from (2.5) applied to the ball B(x, 2r). �

Again in the spirit of Theorem 2.16, we can prove the following version of The-
orem 3.1.

Theorem 3.2. Suppose (H1), (H2) hold, and let w be a weight function in
A2(Ω, ρ, dx). Suppose that (2.6) holds with p = 2 for any f ∈ W 1,2

X (Ω, w). Then
the conclusions of Theorem 3.1 hold.

The proof is the same as that of the previous theorem, with the exception of the
Sobolev’s inequality which now does not follow straightforwardly from our Poincaré
inequality, since we do not have any gain of sumability in (2.6). However, we can
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still manage to obtain this gain by applying Theorem 1 in [BM2] (keeping in mind
Remark 1 therein).

Remark 3.3. We note explicitly that the results of Theorems 3.1 and 3.2 are more
or less known in the cases of Remark 2.2, except for the statement (i). (See also
[SCos]).

We conclude by pointing out that it follows from Theorem 2.11 that
◦
H

1,p
X (Ω, w1)

(the closure of C∞0 (Ω) in H1,p
X (Ω, w1)) is compactly embedded in Lq(Ω, w2) for some

q ≥ p. This result extends or partially overlaps with compact embedding theorems
proved in other papers. See [BKL], [CDG1], [CDG2], [D], [FS], [GN], [L] and the
references therein. More precisely, we have

Theorem 3.4. Let Ω ⊂⊂ Ω0 be a bounded open set, 1 ≤ p ≤ q < ∞ and
X = (X1, . . . , Xm) be a family of Lipshitz continuous vector fields defined in Ω0.
Let w1 and w2 be weight functions.
Assume that X satisfy (H1), (H2) and (2.1).
Assume that w1, w2 ∈ Ap(Ω0, ρ, dx) and that balance condition (2.4) holds uni-
formly on Ω, that is we assume that there is c1 > 0 such that ∀ metric balls I ⊆ J ,
centered in Ω with radii r(I), r(J), we have

(3.2)
r(I)
r(J)

(
w2(I)
w2(J)

)1/q

≤ c1

(
w1(I)
w1(J)

)1/p

.

Finally, suppose that ∀ε, ∃r(ε) > 0 such that ∀I = Bρ(x̄, r) with x̄ ∈ Ω and r < r(ε)

(3.3) r(I) w2(I)1/q w1(I)−1/p < ε.

Then
◦
H

1,p
X (Ω, w1) is compactly embedded in Lq(Ω, w2).

In particular, if q0 > q and (3.2) holds with q replaced by q0, then for all q ∈
(p, q0), (3.3) holds, so that

◦
H

1,p
X (Ω, w1) is compactly embedded in Lq(Ω, w2).

Proof. First, fix r̄ > 0 and cover Ω by a finite number of metric balls of radius r̄.
Then any ball of radius r̄ centered at a point of Ω meets one of these balls, and
hence, by doubling, both its w1-measure and its w2-measure, are equivalent to the
corresponding measures of the other ball. Thus, for any ball J with center in Ω
and radius r̄

r(J)w2(J)1/q0w1(J)−1/p ≤ c2.

Hence, if I is any ball of radius r(I) < r̄ and J is the ball with the same center and
radius r̄, we get from (3.2)

r(I)
w2(I)1/q

w1(I)1/p
= r(I)

w2(I)1/q0

w1(I)1/p
w2(I)1/q−1/q0 ≤ c1 c2 w2(I)1/q−1/q0 ,

which is small if r(I) is small, since 1/q − 1/q0 > 0. Then the assertion is proved.
Because of our assumptions, Theorem 2.11 and Remark 2.13 and arguing as in
[FLW], Theorem 2, we can choose in (2.5)

(3.4) c(f,B) =
1

w2(B)

∫
B

f(x)w2(x) dx.
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Let now (fh)h∈N be a sequence in the unit ball of
◦
H

1,p
X (Ω, w1); without loss of

generality, we can assume that fh ∈ C∞0 (Ω) for any h ∈ N . By Theorem 2.11,
(fh)h∈N is bounded in Lq(Ω, w2), which is reflexive, since q > p ≥ 1; then, we
can suppose that fh ⇀ f weakly in Lq(Ω, w2). We can argue now as in [FS],
Theorem 4.6. By a Vitali type argument, we can cover Ω by a finite (because of the
compactness) family of metric balls B(x1, r), . . . , B(xm(r), r) for r > 0 such that

(i) B(xk, r/5) ∩B(xh, r/5) = ∅ for k 6= h;
(ii) m(r) ≤ c r−α, where α is the constant of Proposition 2.3 (i);
(iii) for any i, ]{k : B(xk, r) ∩ B(xi, r) 6= ∅} ≤ M , where M is a geometric

constant.
Thus we have∫

Ω

|fn − fm|q w2(x) dx ≤
∑

j

∫
B(xj ,r)

|fn − fm|q w2(x) dx

≤ c

{∑
j

∫
B(xj ,r)

∣∣∣∣(fn − fm)− 1
w2(B(xj , r)

∫
B(xj ,r)

(fn − fm)w2dy

∣∣∣∣q w2(x) dx

+
∑

j

w2(B(xj , r))1−q

∣∣∣∣ ∫
B(xj ,r)

(fn − fm)w2(x) dx
∣∣∣∣q }

= c

{∑
j

Ij +
∑

j

Jj

}
.

Now, by (2.5),

∑
j

Ij ≤ c
∑

j

(
r
w2(B(xj , r))1/q

w1(B(xj , r))1/p

)q
( ∫

B(xj ,r)

|X(fn − fm) |pw1(x) dx

)q/p

,

so that, if r < r(ε), from (3.3) and (iii) above, we have

∑
j

Ij ≤ c εq

∑
j

∫
B(xj ,r)

|X(fn − fm)|pw1(x) dx


1/p

≤ c εq
{
‖fn‖q

H1,p
X

(Ω,w1)
+ ‖fm‖q

H1,p
X

(Ω,w1)

}
= c εq

Let now r < r(ε) be fixed. Since w2 is doubling there is γ > 0 such that
w2(Bρ(xj , r)) ≥ crγ , hence

∑
j

Jj ≤ c rγ(1−q)
∑

j

∣∣∣∣ ∫
B(xj ,r)

(fn − fm)w2(x) dx
∣∣∣∣ ≤ c rγ(1−q) m(r) ε

because fn ⇀ f . Hence (fh)h is a Cauchy sequence in Lq(Ω, w2) and the theorem
is proved. �
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Remark 3.5. We point out that condition w2 ∈ Ap(Ω0, ρ, dx) can be weakened
as in Theorem 2.11 and Remark 2.13.

Remark 3.6. It is easy to see that condition (3.2) is necessary in order for compact
immersion to hold (for condition (3.1), see for instance [CW]), at least if the open
set Ω satisfies the following geometric condition: if B = B(x, r) is a metric ball
with center x ∈ Ω and radius r < r(Ω), then there exists B̃ = B(y, r̃) such that
c(Ω)r ≤ r̃ ≤ C(Ω)r, B̃ ∩ B 6= ∅ and B̃ ⊂ Ω, where the constants r(Ω), c(Ω), C(Ω)
are geometric constants. This condition is trivially satisfied if, for instance, Ω is
a metric ball or, more generally, a John domain (see, e.g., [BKL]). Suppose now
by contradiction that the immersion is compact and that (3.3) fails to hold. Then
there exists a sequence of metric balls Bh = B(xh, rh) such that rh −→ 0 and
rhw2(Bh)1/qw1(Bh)−1/p ≥ ε0 > 0 for all h ∈ N . By our geometrical assumption
and by doubling, we can assume that Bh ⊂ Ω for any h ∈ N . Moreover, without
loss of generality, we can assume that xh −→ x̄ ∈ Ω. Let now ϕ be a smooth real
function, 0 ≤ ϕ ≤ 1 ϕ ≡ 1 on [0,1], supp ϕ ⊆ [0, 2], and let us put

fh(x) = ch ϕ

(
ρ(xh, x)
rh

)
, where ch = rhw1(Bh)−1/p.

Now it is easy to see that, by our choice of ch, (fh)h is bounded in H1,p
X (Ω, w1)

(note that fh ∈ H1,p
X (Ω, w1), by Proposition 2.9). Thus, without loss of generality,

we can assume by compactedness that (fh)h converges strongly in Lq(Ω, w2). On
the other hand, suppfh ⊆ B (xn, ρ(xn, x̄) + rn), so that fh −→ 0 a.e. in Ω, and
hence fh −→ 0 strongly in Lq(Ω, w2). But

‖fh‖q
Lq

w1 (Ω)
= cqh

∫
Ω

ϕq

(
ρ(xh, x)
rh

)
w2(x) dx ≥ cqh w2(Bh) = rq

h

w2(Bh)
w1(Bh)q/p

≥ εq
0

a contradiction.
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