About
24
Publications
2,950
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
130
Citations
Introduction
Skills and Expertise
Current institution
Additional affiliations
November 2020 - present
March 2019 - November 2020
Publications
Publications (24)
The development of automatic perception systems and techniques for bio-inspired flapping-wing robots is severely hampered by the high technical complexity of these platforms and the installation of onboard sensors and electronics. Besides, flapping-wing robot perception suffers from high vibration levels and abrupt movements during flight, which ca...
Aerial robot perception for surveillance and search and rescue in unstructured and complex environments poses challenging problems in which traditional sensors are severely constrained. This paper analyzes the use of event cameras onboard aerial robots for surveillance applications. Event cameras have high temporal resolution and dynamic range, whi...
Terminal sliding-mode control (TSMC) has been studied and applied extensively in the last few years. This technique gives rise to a robust control with tunable finite-time convergence, providing a fast and accurate response in the presence of parameter uncertainties. In that sense, we present a closed-loop robust controller for a class of nonlinear...
The design of localization systems for small-scale flapping-wing aerial robots faces relevant challenges caused by the limited payload and onboard computational resources. This paper presents an ultra-wideband localization system particularly designed for small-scale flapping-wing robots. The solution relies on custom 5 grams ultra-wideband sensors...
Este artículo presenta el proceso de reescalado de un robot aéreo de ala batiente. El objetivo es diseñar una plataforma que permita volar de forma autónoma en espacios interiores y exteriores limitados. Se ha redimensionado un modelo previo de gran escala, haciendo más ligeras las distintas partes del robot. El diseño aerodinámico incluyó un nuevo...
We introduce eFFT, an efficient method for the calculation of the exact Fourier transform of an asynchronous event stream. It is based on keeping the matrices involved in the Radix-2 FFT algorithm in a tree data structure and updating them with the new events, extensively reusing computations, and avoiding unnecessary calculations while preserving...
The sampling and monitoring of nature have become an important subject due to the rapid loss of green areas. This work proposes a possible solution for a sampling method of the leaves using an ornithopter robot equipped with an onboard 94.1 g dual-arm cooperative manipulator. One hand of the robot is a scissors-type arm and the other one is a gripp...
One of the motivations for exploring flapping-wing aerial robotic systems is to seek energy reduction, by maintaining manoeuvrability, compared to conventional unmanned aerial systems. A Flapping Wing Flying Robot (FWFR) can glide in favourable wind conditions, decreasing energy consumption significantly. In addition, it is also necessary to invest...
Online event-based perception techniques on board robots navigating in complex, unstructured, and dynamic environments can suffer unpredictable changes in the incoming event rates and their processing times, which can cause computational overflow or loss of responsiveness. This paper presents ASAP: a novel event handling framework that dynamically...
Event cameras can capture pixel-level illumination changes with very high temporal resolution and dynamic range. They have received increasing research interest due to their robustness to lighting conditions and motion blur. Two main approaches exist in the literature to feed the event-based processing algorithms: packaging the triggered events in...
Online event-based perception techniques on board robots navigating in complex, unstructured, and dynamic environments can suffer unpredictable changes in the incoming event rates and their processing times, which can cause computational overflow or loss of responsiveness. This paper presents ASAP: a novel event handling framework that dynamically...
Autonomous flight of flapping-wing robots is a major challenge for robot perception. Most of the previous
sense-and-avoid
works have studied the problem of obstacle avoidance for flapping-wing robots considering only static obstacles. This letter presents a fully onboard dynamic
sense-and-avoid
scheme for large-scale ornithopters using event ca...
Teleoperation is a crucial aspect for human-robot interaction with unmanned aerial vehicles (UAVs) applications. Fast perception processing is required to ensure robustness, precision, and safety. Event cameras are neuromorphic sensors that provide low latency response, high dynamic range and low power consumption. Although classical image-based me...
The development of perception and control methods that allow bird-scale flapping-wing robots (a.k.a. ornithopters) to perform autonomously is an under-researched area. This paper presents a fully onboard event-based method for ornithopter robot visual guidance. The method uses event cameras to exploit their fast response and robustness against moti...
The development of automatic perception systems and techniques for bio-inspired flapping-wing robots is severely hampered by the high technical complexity of these platforms and the installation of onboard sensors and electronics. Besides, flapping-wing robot perception suffers from high vibration levels and abrupt movements during flight, which ca...