Raul Tapia

Raul Tapia
Universidad de Sevilla | US · Systems Engineering and Automatics

Master of Science

About

8
Publications
1,576
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
14
Citations
Additional affiliations
November 2020 - present
Universidad de Sevilla
Position
  • PhD Student
March 2019 - November 2020
Universidad de Sevilla
Position
  • Research Assistant

Publications

Publications (8)
Article
The development of automatic perception systems and techniques for bio-inspired flapping-wing robots is severely hampered by the high technical complexity of these platforms and the installation of onboard sensors and electronics. Besides, flapping-wing robot perception suffers from high vibration levels and abrupt movements during flight, which ca...
Conference Paper
Aerial robot perception for surveillance and search and rescue in unstructured and complex environments poses challenging problems in which traditional sensors are severely constrained. This paper analyzes the use of event cameras onboard aerial robots for surveillance applications. Event cameras have high temporal resolution and dynamic range, whi...
Article
Autonomous flight of flapping-wing robots is a major challenge for robot perception. Most of the previous senseand-avoid works have studied the problem of obstacle avoidance for flapping-wing robots considering only static obstacles. This paper presents a fully onboard dynamic sense-and-avoid scheme for large-scale ornithopters using event cameras....
Conference Paper
Full-text available
Teleoperation is a crucial aspect for human-robot interaction with unmanned aerial vehicles (UAVs) applications. Fast perception processing is required to ensure robustness, precision, and safety. Event cameras are neuromorphic sensors that provide low latency response, high dynamic range and low power consumption. Although classical image-based me...
Conference Paper
Full-text available
The development of perception and control methods that allow bird-scale flapping-wing robots (a.k.a. ornithopters) to perform autonomously is an under-researched area. This paper presents a fully onboard event-based method for ornithopter robot visual guidance. The method uses event cameras to exploit their fast response and robustness against moti...
Preprint
Full-text available
The development of automatic perception systems and techniques for bio-inspired flapping-wing robots is severely hampered by the high technical complexity of these platforms and the installation of onboard sensors and electronics. Besides, flapping-wing robot perception suffers from high vibration levels and abrupt movements during flight, which ca...

Network

Cited By