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Abstract—Posit arithmetic is an alternative format to the stan-
dard IEEE 754 for floating-point numbers that claims to provide
compelling advantages over floats, including higher accuracy,
larger dynamic range, or bitwise compatibility across systems.
The interest in the design of arithmetic units for this novel format
has increased in the last few years. However, while multiple
designs for posit adder and multiplier have been developed
recently in the literature, fused units for posit arithmetic are still
in the early stages of research. Moreover, due to the large size of
accumulators needed in fused operations, the few fused posit units
proposed so far still require many hardware resources. In order
to contribute to the development of the posit number format,
and facilitate its use in applications such as deep learning, this
paper presents several designs of energy-efficient posit multiply-
accumulate (MAC) units with support for standard quire format.
Concretely, the proposed designs are capable of computing
fused dot products of large vectors without accuracy drop,
while consuming less energy than previous implementations.
Experiments show that, compared to previous implementations,
the proposed designs consume up to 75.49%, 88.45% and 83.43%
less energy and are 73.18%, 87.36% and 83.00% faster for 8, 16
and 32 bitwidths, with an additional area of only 4.97%, 7.44%
and 4.24%, respectively.

Index Terms—Posit arithmetic, Computer arithmetic, MAC,
Energy efficiency.

I. INTRODUCTION

The IEEE 754 standard for floating-point arithmetic [1]

has been for decades the de facto implementation for the

vast majority of scientific computing and real number-based

applications. However, over the years diverse problems have

been encountered with the standard floating-point format, such

as rounding and reproducibility issues, signed zero or excess

of NaN representations [2].

Recently, several computer arithmetic encodings and for-

mats, including high-precision anchored numbers from ARM,

half-precision arithmetic, bfloat16, etc. have been considered

as an alternative to IEEE 754-2008 compliant arithmetic

[3]. But probably, one of the most promising contributions

is the posit™ arithmetic [4]. Several research efforts have

investigated the application of posit arithmetic and its benefits

in a wide variety of areas. Its non-uniform representation

makes it suitable in deep learning applications [5]–[7], and the

higher accuracy of this format in certain regions can accelerate

simulations with negligible model degradation [8].

One of the most interesting properties of posit arithmetic

is that it includes support for fused arithmetic, i.e., the com-
putation of expressions with two or more operations that are

exactly evaluated before rounding to a representable value.

This kind of arithmetic provides high error reduction in com-

putations such as multiply–accumulate (MAC) or dot product

operations. In addition, the lack of intermediate rounding

in fused arithmetic can speed-up calculations with a large

number of operands [9]. For this reason, MAC units are widely

used in deep learning applications to perform and accelerate

convolutions and matrix multiplications [10], [11]. The IEEE

754 standard did not include support for fused multiply–add

(FMA) operations until it was revised in 2008 [1], specifying

that the operation a + (b × c) must be performed with one
single rounding. On the other hand, in the posit literature, some

designs of standard posit units such as adders, multipliers, or

even dividers have been proposed so far [12]–[15], but it is

hard to find fused posit functional units in literature. The posit

standard introduces a large size accumulator, so-called quire,
that allows to perform more fused expressions than FMA,

such as fused dot products. This does not only increase the

overall accuracy of the operations, but also makes them asso-

ciative, which enables better compiler optimizations. However,

fused operations usually require more hardware resources than

standard ones. The use of large-size accumulators for fused

arithmetic is a design challenge, especially in its adoption in

conjunction with the novel posit format.

This paper proposes the design of posit MAC units for fused

arithmetic. The functionality of the fused MAC operation is

compared to that of the standard addition and multiplication

operations for the case of matrix multiplication. In such

case, the use of fused operations is shown to dramatically

reduce the computation error. To improve the performance

and energy efficiency of the fused operators, several pipeline

schemes and large adder designs are compared. The different

implementations of the posit MAC units provide efficient

solutions for environments with different design goals, such

as limited area, or high throughput. The main contributions of

this paper are:

• A design of posit MAC unit for fused arithmetic is
proposed. The design includes support for quire accu-

mulation, and is compliant with the posit standard draft

[16].

• The use of fused posit arithmetic is experimentally shown
to reduce precision error when multiplying large matrices

by more than two orders of magnitude when comparing
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with standard operators.

• As a practical use case, the utilization of fused posit
arithmetic is evaluated for performing inference on deep

neural networks with low-precison formats, reducing the

model size by a factor of 4 with a minimal accuracy drop.

• The proposed algorithm is integrated in the open-source
FloPoCo framework, allowing to generate MAC units for

any possible posit and quire format configurations.

• Different pipeline and adder designs are analyzed when
implementing the proposed units, including Brent–Kung

and Kogge–Stone adders.

• When compared with cutting-edge posit implementations,
the proposed approaches reduce the average energy and

latency by up to 88.45% and 87.36%, respectively, with

an average area increment of just 7.44%.

The rest of the paper is organized as follows: Section II

reviews preliminary concepts about posit arithmetic as well

as fused operations in this numerical format. Previous imple-

mentations of fused posit units are summarized in Section III.

The foundations of the fused MAC operation, as well as the

conversions between posit and quire formats, are discussed

in Section IV. In Section V, several evaluations of the pro-

posed operator are presented, including accuracy in practical

applications, hardware resource of different implementations,

and comparison with the state-of-the-art. Finally, Section VI

concludes this paper.

II. BACKGROUND

A. Posit Arithmetic

Posit arithmetic was proposed in 2017 by John Gustafson as

a direct replacement for IEEE 754 floats [4]. A posit number

format is defined as a tuple 〈n, es〉, where n is the total
bitwidth and es is the maximum number of bits reserved for
the exponent field. The posit format just considers two special

cases, zero and Not-a-Real (NaR). These exceptions are en-

coded with all the bits equal to 0 except the leftmost, which

is 1 for NaR exception and 0 for zero posit value. Note that
this simplifies hardware design with respect to the IEEE 754

standard, which includes signed representations of zero and

infinity, as well as multiple bit patters for representing NaN

exceptions. For all other cases, posit numbers are encoded with

four fields, as shown in Fig. 1:

• A sign bit (s);
• The regime field, of variable-length, composed of equal
bits r, and which encodes a scaling factor (k);

• The exponent, of at most es bits (it can be absent), which
encodes an integer unbiased value (e);

• The fraction field, composed of the remaining rightmost
bits (it can be absent too), and encodes a normalized

fraction (f ).

Thus, the numerical value X of a generic Posit〈n, es〉 is
expressed by (1), where ê is the exponent value e, bitwise
inverted if s = 1. The value encoded by the regime field is
given by (2), where l is the length of the sequence of equal
bits r.

s rr r r r … e1 e2 e3 … ees f1 f2 f3 f4 f5 f6 …

0…es
n

Sign Regime Exponent Fraction

Fig. 1. Layout of an Posit〈n, es〉 number.

X = 2(k�es)+ê × (1− 3s+ f), (1)

k =

{
−l if r = s

l − 1 if r �= s
(2)

The main differences with floating-point format are the

utilization of an unbiased exponent, if such exponent field

exists, the fraction hidden bit can be 1 or −2 (for positive or
negative posit numbers, respectively), and the existence of the

regime field. This new field consists of a sequence of bits with

the same value (r) finished with the negation of such value
(r), as shown in Fig. 1. For instance, suppose the Posit〈8, 2〉
with binary encoding 11101010. The sign bit indicates it is
a negative number. The regime field, 110, encodes the scaling
factor k = −2. Next, the two exponent bits must be inverted,
since s = 1, resulting in the exponent value e = 1. Finally, the
fraction bits are 10, which correspond to the decimal value
0.5. Thus, substituting these fields in (1) results in the value

given by (3):

2(−2�2)+1 × (1− 3 + 0.5) = −0.01171875 (3)

The variable-length regime field may cause the exponent to

be encoded with less than es bits, or even no bits if regime
is wide enough. The same occurs with the fraction. It is

noteworthy that, while the new regime field provides important

scaling capabilities that improve the dynamic range of posits,

detecting the resulting varying-sized fields adds a hardware

overhead.

Posit arithmetic offers compelling advantages over the IEEE

754 floating-point format. Under the same bitwidth, posits

provide a better trade-off than floats between dynamic range

and decimal accuracy. What is more, it has been shown

that an n-bit floating-point adder/multiplier could be safely
replaced by an m-bit posit adder/multiplier where m < n
[12]. As already mentioned, posit arithmetic includes just two

special cases (single 0 and ±∞), but it also uses a single
rounding scheme (round to nearest, ties to even), solving the

reproducibility issue mentioned for IEEE 754 floats while

simplifying the hardware designs. However, posit arithmetic is

still in an early stage of development, and the lack of hardware

support for this novel format hinders its use in computer-

intensive applications.

B. Fused Operations and Quire Register

Apart from the aforementioned properties of the posit

format, the standard [16] introduces the so-called fused oper-
ations, which allow to perform computations with more than
two operands (such as the dot product) without intermediate
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Carry wardSign
1 bit C bits

Integer
1+(n-2)×2es+1 bits

Fraction
(n-2)×2es+1 bits

Fig. 2. Quire format encoding for Posit〈n, es〉.

rounding, thus reducing the error of such computations. To

achieve this, posit arithmetic introduces the concept of quire,
a fixed-point accumulator large enough to allow for the exact

accumulation of posit products. This concept is similar to the

Kulisch accumulator for floating-point format [17]. However,

this is not included in the IEEE 754 standard. The only

similarity to posit fused operations in the IEEE floats is

the fused multiply-add operation, which allows to perform a

single product and accumulation without rounding, but was

not included in the standard until the 2008 revision [1].

According to the posit standard, fused expressions must be

distinct from non-fused expressions in source code, and the

quire accumulator must be accessible to the programmer. A

posit compliant system needs to support rounding from quire

to posit and conversion of posit to quire in the matching posit

precision. The quire format corresponding to a Posit〈n, es〉
configuration is depicted in Fig. 2. The largest exponent for

such posit configuration is given by (4).

maxE = (n− 2)× 2es (4)

To correctly represent a posit in fixed-point format, 2 ×
maxE bits are needed for the fractional part and 2×maxE+1
bits for the integer part, so a total of 4×maxE + 1 bits are
required to hold the result of multiplying two posit numbers

in fixed-point format, plus a sign bit. Adding extra C bits
allows to perform up to 2C sums of products with no overflow
risk. A common rule of thumb is to take C carry bits so
that the total length of the quire (qSize) is a power of two.
Table I summarizes the quire sizes and relevant parameters for

different posit formats.

TABLE I
QUIRE BITWIDTH PARAMETERS FOR DIFFERENT POSIT FORMATS

Posit Quire

n es C maxE qSize

8 0 6 6 32

8 1 14 12 64

8 2 30 24 128

16 1 14 28 128

16 2 30 56 256

32 2 30 120 512

64 2 30 248 1024

III. RELATED WORK

Since the appearance of posits in 2017, the interest on hard-

ware implementations for this arithmetic format has increased

rapidly, and several approaches have been proposed so far.

While many designs of basic posit functional units (such as

addition, multiplication and division) are proposed in literature

[12]–[15], just a few fused arithmetic operators have been

presented so far.

Some works propose FMA units in a similar manner as

for the floating-point format [5], [18], [19]: three posits are

taken as input operands, two of them are multiplied and

added to the third one, and the result is rounded into a

posit number. Obviously, this approach introduces multiple

intermediate roundings and a higher error in operations such

as vector dot product. For large computations, this kind of

operators introduce a large overhead derived from the rounding

performed in every step of the computation.

On the other hand, [20], [21] present arithmetic units to

perform exact sums of products in posit format with a quire

accumulator as the input/output of the exact operation. Authors

from [20] propose some optimizations to the operations with

the quire, such as handling the NaR exception in an extra bit

for faster exception checking, or to segment the quire to reduce

the long carry propagation delay. The unit presented in [21] is

integrated into a RISC-V core for posit arithmetic. While both

of these implementations include the quire-to-posit conversion,

only the latter includes the posit-to-quire conversion and is

compliant with the standard, while [20] considers the quire

format as the output of the exact posit multiplier.

IV. POSIT MAC UNIT DESIGN

The architecture of the proposed posit fused MAC unit is

shown in Fig. 3. For the sake of clarification, some signals are

omitted in the datapath diagram. The design does not depend

on the total bitwidth or the number of exponent bits.

In addition to the core of the fused operation, special

operations are required by the posit standard to convert from

posit to quire format and vice versa. These units can be

independent from the fused operations, but are explained in

this section as well.

A. Exact Accumulation of Products

As in general MAC operations, three operands are taken

as input. In this case, only two of them are in posit format,

while the remaining is the quire accumulator, which holds

an initial value for the accumulation. This allows to perform

even dot products in a fused manner, with a single rounding.

The first step in the operation is to decode the fields of the

input posits. Then, the product of the two posits is computed

by multiplying both fractions (frac) and adding the scaling

factors (sf), (k � es) + ê from (1). In order to transform the
intermediate result into quire format, the product is shifted

by a number of bits given by the addition of scaling factors.

Finally, both quires are added (the one received as input and

the one converted from the previous product), so that the result

of the operation is a new quire in which successive products

can be accumulated in the same manner.

As one may guess, and given the bitwidths shown in Table I,

the addition of quires is the module with the highest resource

consumption. For example, in a Posit〈32, 2〉 format, the 512-
bit quires to be added are much larger than the 29-bit fractions

140

Authorized licensed use limited to: Univ Complutense de Madrid. Downloaded on June 02,2022 at 17:20:57 UTC from IEEE Xplore.  Restrictions apply. 



+

×

+

A B C

Q

Normalize

Shift & Pad

Decode
fracsf

Decode
fracsf

qSize

qSize

Fig. 3. Architecture of a posit quire multiply-and-accumulate operation.

(including hidden bits) to be multiplied. For this reason, the

quire adder is a critical component for the efficiency of the

whole fused MAC unit. Previous works have addressed this

issue, either by detecting the smallest amount of bits that are

necessary to add (only for 32-bit posits) [22], or by segmenting

the quire into smaller words (at the cost of a larger number of

cycles for correct carry propagation) [20]. In this work, several

variants of quire adders and segmented units will be evaluated

in Section V.

B. Posit to Quire Conversion

The quire accumulator encodes numbers in fixed-point

format, as shown in Fig 2. Therefore, converting a posit

value into quire format is straightforward. The posit fraction

(including the hidden bits) must be shifted to the correct

position according to its scaling factor. As the quire is prepared

to hold any possible result of the multiplication of two posits,

converting a single posit value to quire encoding would require

to pad the shifted fraction with 0’s on the right and extending

the sign bit on the left.

C. Quire to Posit Conversion

Converting an accumulated result back into posit format

requires quite more resources than the previous process. First,

it is necessary to detect any possible overflow by checking

if any of the carry ward bits are different from the sign bit.

Next, the scaling factor of the corresponding posit is obtained

by counting the leading 0’s (leading 1’s in the case of negative

values) in the integer part. Then, the fraction of the posit can

be directly extracted from the quire. Finally, this fraction must

be correctly rounded according to the remaining bits from the

quire.

While this process seems to be computationally expensive,

it must be noted that it only needs to be done once, at the

end of the fused operation. In contrast, standard operations

perform rounding and encoding of the results after each single

calculation, which can increase the latency of calculations that

require a large number of operands [9].

V. EVALUATION

The design for posit MAC units presented in this paper

has been implemented using FloPoCo, an open-source C++

framework that generates arithmetic datapaths in synthesizable

VHDL from the operator specifications via a command-line

interface [23]. This tool allows operators to be automatically

generated with the specified parameters and maximum fre-

quency. In this case, FloPoCo is capable of generating posit

MAC units for different 〈n, es〉 and qSize with the same base
design. In order to verify that the proposed architectures are

correct, exhaustive tests were generated with the Universal

software library1 for 8, 10 and 12-bit posits, and corner case

tests for 16 and 32-bit posits, with different exponent and quire

sizes. All these tests were successful.

In all of the following experiments and the several posit

MAC units, standard cell synthesis is performed using Syn-

opsys Design Compiler with a 45-nm library by TSMC with

typical case parameters.

A. Area Cost and Computation Error

When compared with standard operations, using fused MAC

operations provides clear benefits in terms of computation

accuracy, but it comes with higher area and power costs

when implemented in hardware. As these operators can per-

form a large number of multiplications and additions without

rounding, General Matrix Multiplication (GeMM) is a good

benchmark to evaluate the accuracy of standard against fused

operators. In this case, large matrices with uniformly dis-

tributed random values in [−2, 2] are generated, and GeMM
is performed with fused dot product and with intermediate

rounding under multiple formats. The matrices obtained for

each configuration are compared with the result for double-

precision floating-point numbers, using the Mean Squared

Error (MSE) as metric. For the sake of completeness, the MSE

obtained using standard floating-point formats is also included.

Fig. 4 shows area synthesis results for both standard and

fused posit units, while Table II compares the error obtained

in GeMM with each type of operation. In this case, the

number of exponent and carry bits are fixed to 2 and 30,

respectively, and combinational arithmetic units are considered

at synthesis evaluation, but similar results are obtained with

other configurations.

As depicted in Fig. 4, an exact accumulator consumes

quite more resources than standard operators: up to 58%

extra area in the case of 32-bit posits. However, using fused

1github.com/stillwater-sc/universal.
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Fig. 4. Area comparison between standard and fused Posit〈n, 2〉 units.

TABLE II
GEMM ERROR COMPARISON BETWEEN FLOATING-POINT, STANDARD

POSIT AND FUSED POSIT ARITHMETIC

Format Matrix size 8 bits 16 bits 24 bits 32 bits

IEEE 754

128× 128 – 4.49e-04 – 1.00e-11

256× 256 – 8.69e-04 – 3.78e-11

512× 512 – 1.75e-03 – 1.50e-10

Standard posit

operations

128× 128 2.41e+01 4.62e-04 7.03e-09 1.08e-13

256× 256 1.03e+02 2.18e-03 3.34e-08 5.07e-13

512× 512 3.91e+02 9.52e-03 1.44e-07 2.23e-12

Fused posit

operations

128× 128 8.25e-01 1.22e-05 1.96e-10 1.99e-15

256× 256 1.67e+00 2.59e-05 4.01e-10 4.29e-15

512× 512 3.50e+00 5.40e-05 8.31e-10 8.93e-15

operations with an exact accumulator for GeMM drastically

reduces the error of the calculations, up to three orders of

magnitude in the case of the largest matrices. Another ad-

vantage of fused operations with regard to standard operators

is that intermediate rounding avoidance reduces the latency

of large computations. What is more, thanks to the fact that

the accumulation of products is a fixed-point addition, such

operators offer the possibility to exploit parallelism while

maintaining associativity in operations such as dot products,

thus eliminating reproducibility issues. With regard to floating-

point computations, the results shown in Table II confirms the

fact that such format presents lower decimal accuracy than

posit arithmetic. It must be noted that in the case of 16-bit

formats, half-precision achieves better figures than standalone

posit operations, but this is due to the use of a larger datatype,

such as 32-bit floats, to accumulate the intermediate dot

products on it. This is necessary for half-precision floats in

order to avoid overflows or enormous calculation errors due

to the limited dynamic range of this format. In any case,

employing fused posit operations outperforms both options in

several orders of magnitude.

B. Fused Operations in Deep Learning

In this section, the effects of fused posit arithmetic are tested

in the deep learning scenario. Due to its multiple properties,

such as the higher precision for small values, posit arithmetic

seems to be a suitable format for deep learning tasks [4]–[6].

The use of fused arithmetic in this number format can also

mitigate the accuracy drop when performing quantization of

DNNs. This technique consists on converting the parameters

of a trained DNN into smaller data types (typically from 32-bit

to 8-bit length). To evaluate this, different DNNs architectures

and datasets of reference for image classification are con-

sidered. LeNet-5 is a well-known convolutional network that

provides nice performance on greyscale-image datasets such

as MNIST and Fashion-MNIST. For RGB-images datasets like

SVHN or CIFAR-10, deeper networks as CifarNet are rec-

ommended. Such DNN models are trained under Posit〈32, 2〉
format using the Deep PeNSieve framework, which allows to

generate DNN models and perform both inference and training

entirely using posits [7]. The trained models are quantized into

Posit〈8, 0〉 format and inference results are compared when
standard and fused operations are used to perform GeMM.

Table III shows inference results for the multiple models

and formats. Single-precision floating-point accuracy is also

shown, since this format is usually considered as a reference

in deep learning. The results are consistent with those obtained

previously. 8-bit posits have quite less precision than the 32-bit

formats, and some accuracy drop is introduced when applying

quantization to the DNNs. However, using fused dot product to

perform GeMM mitigates this problem, reducing the accuracy

drop from 25.43% in the most complex model (CifarNet with

CIFAR-10 dataset) to just 0.44%. Recall that, in the case of

Posit〈8, 0〉, the quire accumulator has a total length of 32 bits,
and the size of the in-memory model is reduced by a factor

of 4 with respect to the original 32-bit model.

TABLE III
ACCURACY RESULTS (%) FOR DNN INFERENCE

Format MNIST Fashion-MNIST SVHN CIFAR-10

Float 32 99.17 89.34 89.32 68.06

Posit〈32, 2〉 99.09 89.90 89.51 69.32

Posit〈8, 0〉 98.77 88.52 81.31 43.89

Fused Posit〈8, 0〉 99.07 89.92 89.13 68.88

C. Pipeline and Design Variations

As mentioned in Section IV, the addition of quires is the

most resource-intensive part within the fused MAC operation.

The quire accumulator can be quite large even for low bitwidth

posits. Such a large adder is the main component that restricts

the maximum frequency achievable by these arithmetic units

due to the long carry propagation. Therefore, this module

deserves special attention when designing fused operators.

This work compares different designs for the final quire

adder depicted in the MAC architecture of Fig. 3. In par-

ticular, the design of the ripple-carry adder is replaced by
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Brent–Kung [24] and Kogge–Stone [25] adder designs2. Such

designs provide better performance with a higher area cost.

In order to improve the throughput of the posit MAC unit

in practical applications, different pipeline approaches can be

introduced to the posit MAC design. In this case, a 2-stage

pipeline architecture separating quire addition from the rest

of the operation, and a 3-stage pipeline architecture that also

separates posit multiplication from posit-to-quire shifting at

different stages are compared.

Unconstrained synthesis results for Posit〈16, 2〉 are graph-
ically shown in Fig. 5, although similar ratios are obtained

with other bitwidths. By using a Brent–Kung adder for quire

addition instead of a ripple-carry adder, the area is slightly

increased (∼ 5%), which is expectable, since the area of this
adder is O(n) [26]. However, the power and datapath delay
are reduced, resulting in energy savings of more than 26%

on average. A larger delay reduction is achieved by using the

Kogge–Stone design. In this case, a delay reduction of 63.88%

is achieved with the combinational design and about 87.15%

in the pipelined cases, resulting in energy savings of 59.62%

and 86.12%, respectively. On the other hand, and in contrast to

the previous design, there is a considerable area (∼ 38.84%)
and power increment (∼ 9.21%). This is also expected, since
the area of Kogge–Stone adder is O(n log(n)) [26].
It is noteworthy that the critical path of the pipelined units is

the same for both cases. As hypothesized, the final quire adder

is the component with the largest delay, even in the case of

the Kogge–Stone design. For this reason, the 2-stage pipeline

is the most energy-efficient design option.

D. Comparison with State-of-the-art Work

Deep Positron is a DNN kernel accelerator that works with

posit arithmetic [5]. The architecture includes an exact MAC

posit unit3 for performing DNN inference with 8 bits or

less with comparable accuracy to 32-bit floating-point. This

exact MAC unit makes use of the quire, but both input and

output are in posit format, so quire-to-posit conversion is

incorporated in the unit. This implementation is not compliant

with the standard draft, since the quire is not accessible

to the programmer, it is just for internal accumulation. A

different open-source design of exact accumulator with quire

is SmallPositHDL4. In contrast with the previous one, this

unit presents similar inputs/outputs as the one proposed in

this work. Finally, authors in [20] presented MArTo, a library

for generating parameterized posit-compliant units, including

exact accumulation of products with quire5.

The posit MAC units presented in those works are pipelined

into three stages, generally comprised of 1) posit multiplica-

tion, 2) quire alignment, and 3) quire summation. To make

a relatively fair comparison, the proposed 3-stages pipelined

designs are selected. Also, the same number of exponent

2Designs obtained from github.com/albertodbg/vhdl-arithmetic.
3Source code from github.com/craymichael/Low-Precision-EMACs/tree/

b6fe0d1.
4Source code from github.com/starbrilliance/SmallPositHDL/tree/c862e91.
5Source code from gitlab.inria.fr/lforget/marto/tree/0bc08ce8.

(es = 2) and carry (C = 30) bits are selected for all the
designs, so the total bitwidth of the quire is the same in each

case.

Table IV lists the detailed comparison of standard cell syn-

thesis between the different designs proposed in the literature.

As can be seen, Deep Positron does not provide competitive

arithmetic units, especially for large bitwidths, when compared

with previous and proposed designs. The quire-to-posit con-

verter included in these MAC units dramatically increases the

hardware requirements, so keeping those modules separately

seems to be a better design choice, as well as being compliant

with the standard. The rest of the works follow that criteria,

and they get results that are more similar to each other.

TABLE IV
COMPARISON WITH STATE-OF-THE-ART POSIT MAC UNITS

Design n Area (μm2) Power (mW) Max Delay (ns) Energy (pJ)

Deep Positron [5]

8 5349.15 4.46 4.38 19.51

16 16147.42 12.18 11.70 142.48

32 58937.59 40.07 42.01 1683.30

SmallPositHDL

8 4590.87 4.73 3.02 14.30

16 11263.02 12.37 5.99 74.11

32 28366.06 34.79 11.94 415.39

MArTo [20]

8 4234.78 4.78 3.16 15.10

16 11011.83 11.88 6.09 72.36

32 29045.79 33.28 6.00 199.69

Proposed with

ripple-carry adder

8 4346.26 4.47 3.01 13.45

16 10257.78 10.91 5.99 65.37

32 26204.34 31.68 11.93 377.91

Proposed with

Brent-Kung adder

8 4525.95 4.18 2.66 11.11

16 10710.77 10.26 4.57 46.90

32 27267.44 30.51 7.15 218.15

Proposed with

Kogge-Stone adder

8 5585.53 4.84 0.81 3.92
16 13391.11 11.74 0.77 9.04
32 33417.22 33.88 1.02 34.56

In practically all cases, each of the proposed designs obtains

the best results in each of the synthesis sections. The units

using a ripple-carry adder provide less area (except compared

with 8-bit unit from MArTo), power and delay than previous

implementations, resulting in a more energy-efficient design.

There is an exception for the 32-bit unit from MArTo, which

has approximately the same delay as the 16-bit one. The

explanation for this is found in the pipeline of the unit. In the

32-bit case, the 512-bit quire addition is split into two phases,

using a 256-bit adder in each. This way, the datapath delay

is the same as for the 16-bit unit, which also uses a 256-bit

adder to add the quires. Such optimization is not taken in the

proposed designs but could be considered for future works. As

can be seen, among the implementations from previous papers,

SmallPositHDL offers the lowest energy consumption for the

8-bit operator, while MArTo provides the best results for the

16 and 32-bit cases. Thus, for each bitwidth, these operators

are considered as the baseline for comparison.

Regarding the proposed implementations, and as the previ-

ous experiments show, using a Kogge-Stone adder for quire

addition results in the fastest and most energy-efficient fused

MAC units. In this case, the proposed design reduces energy

consumption by 72.60%, 87.50% and 82.70% for the 8, 16 and
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Fig. 5. Implementation results for different designs of Posit〈16, 2〉 MAC units with 256-bit quire.

32-bit units, respectively, when compared with previous works.

On the other hand, this energy reduction is accompanied by an

increase in area of 21.66%, 21.61% and 15.05%, respectively,

when comparing with the same alternatives. Recall that Table

IV compares 3-stage MAC units, but the results shown in Fig.

5 reveal that the 2-stage design is more efficient than the 3-

stage one in terms of area, power and energy. In such case, the

energy reduction would be slightly similar (75.49%, 88.45%

and 83.43%, respectively) while the area of the units would

be just 4.97%, 7.44% and 4.24% more than that of the state-

of-the-art operators. In addition, the latency of the operators

is reduced by 73.18%, 87.36% and 83.00%, respectively.
Finally, performing the quire addition with a Brent-Kung

adder is an intermediate compromise between the other two

solutions. This design choice requires quite less power, delay

and energy than the implementations of previous papers, while

still taking a similar or even smaller area.

VI. CONCLUSIONS

While the posit format has demonstrated to be a promising

alternative to the IEEE754 floating-point standard in a variety

of areas such as deep learning and physical simulations, fused

arithmetic units for this format are still under development.

In this paper, a fused posit multiply-accumulate (MAC) unit

design is proposed to contribute to the development of the posit

number format, as well as facilitate its use in computationally

intensive applications. The experimental results show that

using fused posit MAC instead of standard operators for large

matrix multiplication reduces the computational error derived

from intermediate rounding in more than two orders of mag-

nitude. In addition, as a practical use case, the performance

of posit fused operations is evaluated in the context of deep

learning, providing similar accuracy as the original models

when performing 8-bit quantization. The parameterized design

is implemented under different posit configurations, with 2 and

3-stage pipeline, and using multiple adder designs, such as

Brent–Kung and Kogge–Stone. In comparison with other posit

hardware solutions, the proposed implementation achieves

energy and latency reduction up to 88.45% and 87.36%,

respectively, with an area increment of only 7.44%.
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[8] M. Klöwer, P. D. Düben, and T. N. Palmer, “Number Formats, Error
Mitigation, and Scope for 16-Bit Arithmetics in Weather and Climate
Modeling Analyzed With a Shallow Water Model,” Journal of Advances
in Modeling Earth Systems, vol. 12, no. 10, 2020.

[9] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
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