Raul Gonzalez-Esquer

Raul Gonzalez-Esquer
  • PhD Plant Biology
  • PostDoc Position at Los Alamos National Laboratory

About

15
Publications
2,772
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
436
Citations
Current institution
Los Alamos National Laboratory
Current position
  • PostDoc Position
Additional affiliations
August 2007 - July 2013
Arizona State University
Position
  • Research Assistant

Publications

Publications (15)
Article
Full-text available
ClpB1 is a heat shock protein known to disaggregate large protein complexes. Constitutive, 16-fold ClpB1 overproduction in the cyanobacterium Synechocystis sp. strain PCC 6803 increased cell survival by 20-fold when cultures were heated quickly (1°C/s) to 50°C and delayed cell death by an average of 3 min during incubation at high temperatures (>46...
Article
Full-text available
Bacterial microcompartments (BMCs) are proteinaceous organelles used by a broad range of bacteria to segregate and optimize metabolic reactions. Their functions are diverse, and can be divided into anabolic (carboxysome) and catabolic (metabolosomes) processes, depending on their cargo enzymes. The assembly pathway for the β-carboxysome has been ch...
Article
Full-text available
Microalgae remain an important feedstock in the circular bioeconomy. The discovery of new species combined with advanced biotechnology drives optimization of performance predicated on deep knowledge of algal genomics and phenotype. Understanding the contribution of epigenetic processes to algal function provides insight and better approaches for ac...
Article
Full-text available
Polyhydroxyalkanoates (PHA) are a promising bio-based alternative to traditional plastics derived from petroleum. Cyanobacteria are photosynthetic organisms that produce PHA from CO2 and sunlight, which can potentially reduce production costs and environmental footprint in comparison to heterotrophic bacteria cultures because (1) they utilize inorg...
Article
Full-text available
The carboxysome is a bacterial microcompartment (BMC) which plays a central role in the cyanobacterial CO2-concentrating mechanism. These proteinaceous structures consist of an outer protein shell that partitions Rubisco and carbonic anhydrase from the rest of the cytosol, thereby providing a favorable microenvironment that enhances carbon fixation...
Article
Full-text available
Bacterial microcompartments (BMCs) are protein organelles consisting of an inner enzymatic core encased within a selectively permeable shell. BMC shells are modular, tractable architectures that can be repurposed with new interior enzymes for biomanufacturing purposes. The permeability of BMC shells is function-specific and regulated by biophysical...
Article
Full-text available
Terpene synthases are biotechnologically-relevant enzymes with a variety of applications. However, they are typically poor catalysts and have been difficult to engineer. Structurally, most terpene synthases share two conserved domains (α- and β-domains). Some also contain a third domain containing a second active site (γ-domain). Based on the three...
Article
Full-text available
Photosynthetic microbes are considered promising biofactories for transforming inorganic carbon from the atmosphere into a renewable source of chemicals and precursors of industrial interest; however, there continues to be a need for strains that demonstrate high productivity, environmental robustness, and the potential to be genetically manipulate...
Article
Full-text available
Picochlorum soloecismus is a halotolerant, fast-growing, and moderate-lipid-producing microalga that is being evaluated as a renewable feedstock for biofuel production. Herein, we report on an improved high-quality draft assembly and annotation for the nuclear, chloroplast, and mitochondrial genomes of P. soloecismus DOE 101.
Article
The carboxysome is a bacterial microcompartment encapsulating the enzymes carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase. As the site of CO2 fixation, it serves an essential role in the carbon dioxide concentrating mechanism of many chemoautotrophs and all cyanobacteria. Carboxysomes and other bacterial microcompartments sel...
Article
Full-text available
Cyanobacteria are physiologically and morphologically diverse photosynthetic microbes that play major roles in the carbon and nitrogen cycles of the biosphere. Recently, they have gained attention as potential platforms for the production of biofuels and other renewable chemicals. Many cyanobacteria were characterized morphologically prior to the a...
Article
Bacterial microcompartments (BMCs) are megadalton-sized protein assemblies that enclose segments of metabolic pathways within cells. They increase the catalytic efficiency of the encapsulated enzymes while sequestering volatile or toxic intermediates from the bulk cytosol. The first BMCs discovered were the carboxysomes of cyanobacteria. Carboxysom...
Article
Full-text available
Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that enc...
Article
Bacterial microcompartments (BMCs) are self-assembling organelles that sequester segments of biochemical pathways within a protein shell. Given their functional diversity, BMCs constitute a rich source of metabolic modules for applications in synthetic biology. The carboxysome, the cyanobacterial BMC for CO2 fixation, has attracted significant atte...

Network

Cited By