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Abstract
Background: Understanding the genetic basis of disease risk in depth requires an exhaustive knowledge of the types 
of genetic variation. Very recently, Copy Number Variants (CNVs) have received much attention because of their 
potential implication in common disease susceptibility. Copy Number Polymorphisms (CNPs) are of interest as they 
segregate at an appreciable frequency in the general population (i.e. > 1%) and are potentially implicated in the 
genetic basis of common diseases.

Results: This paper concerns CNstream, a method for whole-genome CNV discovery and genotyping, using Illumina 
Beadchip arrays. Compared with other methods, a high level of accuracy was achieved by analyzing the measures of 
each intensity channel separately and combining information from multiple samples. The CNstream method uses 
heuristics and parametrical statistics to assign a confidence score to each sample at each probe; the sensitivity of the 
analysis is increased by jointly calling the copy number state over a set of nearby and consecutive probes. The present 
method has been tested on a real dataset of 575 samples genotyped using Illumina HumanHap 300 Beadchip, and 
demonstrates a high correlation with the Database of Genomic Variants (DGV). The same set of samples was analyzed 
with PennCNV, one of the most frequently used copy number inference methods for Illumina platforms. CNstream was 
able to identify CNP loci that are not detected by PennCNV and it increased the sensitivity over multiple other loci in 
the genome.

Conclusions: CNstream is a useful method for the identification and characterization of CNPs using Illumina 
genotyping microarrays. Compared to the PennCNV method, it has greater sensitivity over multiple CNP loci and allows 
more powerful statistical analysis in these regions. Therefore, CNstream is a robust CNP analysis tool of use to 
researchers performing genome-wide association studies (GWAS) on Illumina platforms and aiming to identify CNVs 
associated with the variables of interest. CNstream has been implemented as an R statistical software package that can 
work directly from raw intensity files generated from Illumina GWAS projects. The method is available at http://
www.urr.cat/cnv/cnstream.html.

Background
Over the last three years, Single Nucleotide Polymor-
phism (SNP)-based GWAS studies using microarray
technology have played a fundamental role in the charac-
terization of new genetic variants associated with dis-
eases and other complex human traits [1-3]. Recently,
CNVs have been identified as potentially responsible for a

significant proportion of human phenotypic variability
that remains unexplained [4,5]. With this objective in
mind, several studies have provided finer-scale details of
this type of variation and have enabled accurate CNV
mapping of the human genome to be conducted [6-10].
The results from most of these studies have been com-
piled in the DGV database [11], the reference database for
CNV studies.

Current studies agree that CNV regions collectively
span between 10% and 20% of the genome, although the
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majority of these loci correspond to rare events with very
low population frequencies (<0.05%) [6]. However, if we
compare any two individuals in the general population,
those CNVs with frequencies = 1% will be responsible for
90% of the total copy number variation between them
[12]. These relatively frequent CNVs are also called Copy
Number Polymorphisms (CNPs). To date, more than
1,000 CNP loci have been identified and analyzed [12-
14]. Genetic population differences could lead to the
identification of new CNP loci [6,7,12]. Consequently,
although the present CNP maps are useful as a reference,
an exhaustive list of CNPs is necessary for analyzing new
sample collections on different populations.

Length estimates of CNP loci have decreased from
~500 kb to ~50 kb recently. Approximately 95% of CNV
loci larger than 100 kb correspond to rare CNVs with
non-polymorphic frequencies, while the majority of CNP
loci range from 10 kb to 100 kb [6,12,13]. Therefore, for
exhaustive identification of CNPs associated with disease,
probe density must be increased and the sensitivity of the
analytical methods improved.

Several technologies such as multiplex ligation-depen-
dent probe amplification and array comparative genomic
hybridization can be used to characterize CNV geno-
types. However, the majority of these technologies can-
not be used on a genome-wide scale for CNP analysis
owing to low throughput or elevated costs. SNP probe
microarrays have been proven to be highly robust for the
characterization of the genotypes of these markers. It has
been shown that, despite having a relatively low signal-to-
noise ratio, they can be useful for characterizing CNVs.
This has led several commercial companies, including
Illumina and Affymetrix, to include non-polymorphic
microarray probes for research. Therefore, it is a major
challenge to develop analytical methods that can best
deal with these deficiencies, avoid assignment errors, reli-
ably quantify known CNPs and detect new CNV regions
that could be associated with disease risk.

So far, most algorithms [15-18] covering CNV analysis
have been based on the differences in the log R ratio
(logR) and B-Allele frequency (BAF) measurements [19]
between samples and a model learned from a reference
set. One of the most frequently used methods for
analysing CNVs using Illumina microarrays is PennCNV
[6,18,20]. PennCNV is a CNV estimation method based
on Hidden-Markov-Models (HMM), in which CNV calls
are performed at the individual level by analyzing the
sample logR and BAF values. This type of approach works
well for large deletions and amplifications but it is very
sensitive to intensity noise, leading to high false discovery
rates [6]. New approaches have been developed based on
the power of Gaussian Mixture Models (GMM) for mod-

elling the statistical distribution of genotyping intensity
data. The SCIMM method [16] uses GMMs over sets of
informative probes but it has disadvantages including the
inability to detect amplifications and the lack of public
availability to the software. Another powerful approach is
the Canary algorithm [21] but it was specifically designed
for Affymetrix microarray data. Both the SCIMM and
Canary methods, whilst they robustly genotype CNP loci,
require a predefined set of CNP loci and cannot be
applied to other available microarray probes.

In this study we present CNstream, a method for accu-
rate whole-genome CNP identification and genotyping
using Illumina Beadchip arrays. The algorithm is based
on a robust single locus scoring algorithm followed by a
segment-based genotyping algorithm - multilocus calling
- that increases the sensitivity and the accuracy of the
results. This method takes advantage of multiple sample
analysis by jointly calling each probe and it increases the
accuracy of the CNP calls by considering the scores of
nearby and consecutive markers. The CNstream method
is publicly available, fully implemented in R statistical
software [22], and requires little user input, employing
the direct output from Illumina genotyping software.

Methods
GWAS samples and quality control procedures
To evaluate CNstream and to compare its performance
with PennCNV software, a cohort of 572 individuals from
a published GWAS in Rheumatoid Arthritis (RA) was
used [2]. Informed consent was obtained from all individ-
uals, in accordance with the Declaration of Helsinki. The
cohort was divided into 379 patients diagnosed with RA
according to the American College of Rheumatology Cri-
teria [23] and 193 control subjects. Individuals were gen-
otyped using the Illumina HumanHap 300 genotyping
microarray according to the protocol [2]. Raw intensity
data were loaded into the Genomestudio software (Illu-
mina, USA), which automatically performs a normaliza-
tion step using affine transformation [19] at the sub-bead
pool level (i.e. sets of beads that are manufactured
together and behave similarly). The normalized intensity
data were extracted, as were the BAF and logR values.

In order to ensure the quality of the data for the differ-
ent CNP analyses we applied a series of quality control
(QC) steps. Those individuals in which the percentage of
successfully genotyped SNPs was lower than 95% were
discarded [24]. Samples with excessive signal noise,
defined as a logR standard deviation greater than 0.25 or
an absolute value of the logR mean greater than 0.1, were
eliminated [6]. QC metrics were computed exclusively
using the autosomal probes.
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PennCNV analysis
PennCNV version 1.05 [18] was used to perform the
CNV calls. The algorithm implemented by this software
uses a Hidden Markov Model (HMM) [25] to analyze
each sample, where the hidden states correspond to the
number of copies and the observations are the BAF/LogR
measurements. Emission probabilities are modelled as
distributions depending on the expected LogR values for
each state and the minor allele frequency of each probe.
The transition matrix between consecutive markers also
depends on the spacing between these markers.

The PennCNV output form includes all the sample
calls, specifying the sample for each call, the chromo-
some region, the number of markers affected by the call
and the copy number state. To avoid false positives and
excessively large calls, the resulting CNV calls were fil-
tered to focus analysis on copy number variants shorter
than 1 Mb. Therefore, those calls greater than 1 Mb or
including more than 100 probes were excluded, as they
usually correspond to very rare CNVs or to PennCNV
calling artefacts. In addition, samples with more than 100
CNV calls or with CNV calls spanning more than 7 Mb
were excluded as this normally indicates poor DNA qual-
ity [26]. These quality control filters were based on previ-
ous CNV studies [6,26], and we verified that after
observing the distribution of the inclusion thresholds of
the parameter, the discarded samples were clear outliers
(data not shown).

After removing calls that did not pass the quality con-
trol filters, we used PLINK software [27] to perform a
region-based frequency filtering, as we were only inter-
ested in CNVs with frequencies higher than 1%. Conse-
quently, PLINK software removed all CNV calls that
completely span regions with four CNV calls or fewer.
CNP regions were defined in the remaining calls as seg-
ments of consecutive probes spaced less than 100 kb.
DGV matching was considered as an overlap between
these CNV regions and the DGV regions. In order to test
for CNV association, we used PLINK to run a simple per-
mutation-based test of association of segmental CNV
data for case-control phenotypes, performing 50,000 null
permutations to generate empirical P-values. These P-
values were calculated as (R+1)/(N+1), where R is the
number of times the association statistic calculated from
the permuted data (logistic regression coefficient in this
case) was greater than the observed statistic, and N is the
total number of permutations. In the present analysis,
events (deletions or amplifications) had to be more fre-
quent in the experimental group than controls and the
test was performed for all events within a 50 kb slicing
window.

CNstream software
CNstream is an R-statistical software package for whole-
genome CNV discovery and genotyping specifically
adapted for Illumina arrays. Consequently, the required
data for the analysis can be directly extracted from
GenomeStudio without a formatting step. The X and Y
channel intensities (measuring A and B alleles, respec-
tively) for each sample n are mandatory (Inx, Iny). The fol-
lowing subsections describe each of the CNstream
processing steps (Figure 1).
First step: Pre-processing
Intensity normalization is a very important step in
microarray-based analyses as it ensures the accuracy of
results. Therefore, although the data were normalized by
Illumina genotyping software, per-probe intensity distri-
butions of samples processed in different plates can dem-
onstrate significant deviations. Generally, large studies
involving hundreds or thousands of samples are pro-
cessed using 96 well plates. Samples in this type of plate
normally share similar environmental conditions
throughout the labelling and hybridization processes and
similar scanning parameters. These conditions could
result in variability between samples in different plates
and in the same plate. In order to reduce inter-plate vari-
ability, CNstream users can include the plate number of
each sample, and a subsequent normalization step can be
applied to standardize the plate intensity distributions
over each marker (Figure 2). Then, for each plate p � 1K
P,

where N and P respectively denote the total number of

samples and the total number of plates, Inc refers to the

intensity of the sample n in channel C, and  is the

indicator function for sample n genotyped in plate p. To

improve the performance of this approach, a minimum

threshold of five samples per plate was estimated.
After per-plate normalization, a scaling correction step

is applied in order to equalize the overall sensitivity of
both channels X and Y [19]. Medians are computed for
the channel X intensities of candidate AA homozygotes
to define an x-axis correction parameter Tx, and for the
channel Y intensities of candidate BB homozygotes to
define a y-axis correction parameter Ty:
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Figure 1 Flowchart of CNstream processing steps. Data processing with CNstream is organized into four functional modules: Pre-processing, SNP 
genotyping, Single-locus scoring and Segment-based calling.
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Second step: SNP Genotyping
Once the normalized intensities (inX, iny) have been com-
puted, a clustering algorithm is applied to determine the
SNP genotype (i.e. allele A homozygotes, allele B
homozygotes and heterozygotes) of each sample. The
approach used was allied to that described by Teo et al.
[28]. It is important to note that for specific CNV probes,
all samples will be genotyped as homozygote probes as
only one allele will hybridize the DNA.

Using the normalized intensities, we compute the abso-
lute normalized intensities Rn = inX + iny and the B-allele
frequencies θn = (2/π) arctan (inX/iny). The histogram of θn
values is used to determine the genotype centres and to
cluster the samples following a minimum-centre-distance
criterion. The mean and the variance of the samples
assigned to each genotype are used to initialize the
Expectation-Maximization (EM) algorithm [29] with a
two dimensional (Rn, θn) Gaussian Mixture Model
(GMM) with three components (allele A homozygotes,
allele B homozygotes and heterozygotes). After one EM
round, the final GMM parameters are accurately
obtained (excluding very rare SNPs (<<1%) with poor
clustering performance) and the genotypes of each sam-
ple are assigned following a maximum-likelihood
approach.

Third step: Single-locus scoring
Copy number scores for a probe i are computed by com-
bining the estimated number of copies of each intensity
channel for each sample, n. The single-locus approach
separately analyzes each channel by combining the inten-
sity distribution information and the estimated genotype
cluster of the sample (Figure 3). We consider the analysis
of channel X intensities, measuring the number of copies
of allele A. The analysis of channel Y intensities is carried
out in the same manner but it is reciprocal as it measures
the number of copies of allele B.

In the third step, CNstream computes the zero intensity
threshold (L01) so that all samples with lower intensities
have a 0-score for this allele (i.e. 0 copies of allele A). This
threshold is calculated by creating a vector with the
sorted sample intensities delimited by two predefined
limits and localizing the maximum increase of intensity
between two consecutive samples in this vector. In the
most common case, the lower intensity limit is defined by
the intensity mean of the allele B homozygote samples as
they have 0 copies of the allele A. The higher intensity
limit is defined by the intensity mean of the heterozygote
samples as the majority will have one copy of allele A.
Once L01 has been computed, those samples with lower
intensities are excluded from further analysis.

Having identified the zero thresholds, a GMM with two
components is fitted to the intensity data of the remain-
ing (non-zero) samples via the EM algorithm. The two
GMM components will model the intensity distributions

i
InX
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i
InY
Ty

n NnX nY=
′

=
′

∀ ∈; ;   1… (2)

Figure 2 Per-plate intensity normalization. An example of how per-plate normalization can improve data quality. After this normalization step the 
plate intensity distributions follow a more similar pattern.
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of the one-copy (A) and the two-copy (AA) samples,
respectively. In order to improve the EM convergence
time and the model fitting, the two GMM components
were initialized using the SNP genotype information
computed in the previous step (θ0): 1-copy component
with the mean and the variance of the intensities corre-
sponding to heterozygotes, and the 2-copy component
using the allele A homozygote intensities:

where  is the indicator function for sample n

being a heterozygote if X = 1, or being a homozygote in

the allele that is being measured (in this case AA) if X = 2.

The EM algorithm was stopped after 15 iterations or if

the increase in the Log-Likelihood Ratio between consec-

utive iterations was <0.1. The former condition is rarely

reached and the EM converges in >99% of cases.
Once EM has fitted the model to the data, CNstream

uses the maximum likelihood parameters obtained

to assign a score  to each sample n at the analyzed

probe i (Figure 3). CNstream also computes the intersec-

tion point between the two GMM components (L12):

Scores ranging from 0 to 2 are assigned depending on
the interval that holds the sample n intensity inX:
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Figure 3 Single-locus analysis. (a) CNstream performs a GMM fitting 
over the intensities of the samples on each channel (black circles). The 
zero copy intensity thresholds are determined and a two-component 
GMM is fitted (one copy in blue and two copies in red). The thin colour 
lines represent the initial model, and the thick lines represent the final 
model after EM fitting. (b) Channel intensity of the samples for one 
channel within one probe versus scores assigned by CNstream.
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where .

At this point, samples that can hold more than two A
allele copies are detected. In order to identify such sam-
ples, scores ranging from 2 to 3 are assigned to samples
having intensities higher than μF2. The maximum score,
3, is achieved when the sample intensity is more than
three standard deviations σF2 away from μF2:

The value of three standard deviations was determined
empirically by averaging the intensity distances of those
samples that have amplifications. Once the probe scores
of channel X and channel Y were computed, the final
score for each sample n was calculated as follows:

Fourth step: CNstream: segment-based calling

After single-locus scoring, CNstream analyzes the scores

obtained for each sample along a set of consecutive and

nearby probes, referred to as segments. Segments are

defined by sets of NS consecutive probes (sorted by chro-

mosome and base-pair), where the distance between the

most distant probes does not exceed the maximum dis-

tance Dmax. For each probe segment [i, i + 1K i + NS-1],

the scores  for each sample n

are used to call the copy number of the sample on this

segment. This calling is based on the definition of a dele-

tion threshold HDEL and an amplification threshold HAMP,

and on assigning amplifications and deletions to those

samples that have a sufficient number of scores NM over

the segment exceeding these thresholds (Additional file 1,

Figure S1):

where  refers to the copy number state

assigned to the sample n within the probe segment [i, i+

1... i + Ns-1].

CNstream analysis
All samples that did not pass the quality control proce-
dures were excluded from the CNstream analysis. Sam-
ples identified as outliers in the PennCNV calls (i.e. those
with more than 100 CNV calls or with CNV calls span-
ning more than 7 Mb) were also excluded.

Once the computations were performed, the output of
CNstream included all those segments where the number
of amplification/deletion calls exceeded the minimum
frequency threshold for a CNP (~1%). This segment-
based analysis was performed using parameters that have
been shown to obtain the best compromise between
called CNP regions and correlates with the DGV data-
base. NS = 5 was the optimal parameter value, which is in
agreement with previous studies [30]. A minimum of NM
= 3 scores below the deletion threshold HDEL to call a
deletion, or 3 scores higher than the amplification thresh-
old HAMP to call an amplification. The maximum distance
Dmax allowed between markers in one segment was set at
100 kb. In order to calculate the frequencies at each CNP
locus, a CNP region was defined as all the overlapping NS
= 5 segments showing a common signal. Based on these
counts, CNstream can also perform an association analy-
sis using Fisher's exact test, provided that a file with the
Case/Control status is included. In this case, the P-value,
Odds Ratio (OR) and frequencies were included in the
output.

Selection of CNP candidate loci
From each of the two CNP analyses, loci showing evi-
dence of association with RA susceptibility were selected
(Table 1). Therefore chromosome 8 locus
chr8:145,079,175-145,090,342 within the transcribed
region of the Plectin 1 (PLEC1) gene was selected for
PennCNV. Chromosome 8 locus chr8:15,435,527-
15,467,031, within the transcribed region of the Tumour
Suppressor Candidate 3 (TUSC3) gene was selected for
CNstream. Both CNPs are on chromosome 8 but they are
more than 100 Mb apart, making them two independent
candidates.

Quantitative PCR validation of CNP loci
To determine the relative copy number at the two candi-
date loci we used Taqman Real-Time PCR technology.
Recently, a panel of more than 1.6e6 pre-designed CNV
Taqman assays has become available (Applied Biosys-
tems, CA, USA), allowing high density coverage of almost
all CNVs in the genome. Using this panel, the RT-PCR
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Table 1: Significantly associated regions detected by CNstream and PennCNV

REGIONS CHROM BASEPAIR DELS CASES DELS CONTROLS OR

N % n %

CNSTREAM SIGNIFICANT SEGMENTS

8p22 8 15435527..15453141 24 7.2 4 2.6 2.9

8 15439515..15455979 33 9.9 5 3.3 3.2

8 15447669..15464497 33 9.9 5 3.3 3.2

8 15450330..15467035 24 7.2 4 2.6 2.9

19p12 19 20368239..20449621 51 15.2 11 7.2 2.3

19 20385941..20473895 54 16.1 11 7.2 2.5

19 20423788..20520617 54 16.1 11 7.2 2.5

19 20439390..20522325 40 11.9 5 3.3 4

PENNCNV SIGNIFICANT PROBES

8q24.3 8 145079175 30 9.0 0 0.0 Inf

8 145083192 30 9.0 0 0.0 Inf

8 145083193 29 8.7 0 0.0 Inf

8 145090342 29 8.7 0 0.0 Inf

11p15.5 11 1073364 16 4.8 2 1.3 3.8

11 1074362 16 4.8 2 1.3 3.8

11 1074363 15 4.5 2 1.3 3.5

11 1086494 15 4.5 2 1.3 3.5

19p13.3 19 4020119 15 4.5 1 0.7 7.1

19 4028096 15 4.5 1 0.7 7.1

19 4037807 15 4.5 1 0.7 7.1

19 4041113 15 4.5 1 0.7 7.1

Number and percentage of cases and controls in each of the associated CNP regions detected by CNstream and PennCNV. In bold, the 
candidate regions chosen for quantitative PCR validation.
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assay within the identified CNP locus and closest to the
Illumina probe showing the strongest evidence of copy
number variation was selected. Therefore, in PennCNV
analysis, the probe with the highest degree of overlapping
CN regions was selected; for CNstream analysis the
probe with the highest number of CN-harbouring indi-
viduals was selected. For PennCNV validation, the Taq-
man assay "Hs00837735_cn" (closest to rs11136336 SNP
probe, bp 145,079,175) and within the CN region
described in DGV (chr8:145,064,090-145,740,218) was
used. For CNstream RT-PCR, the "Hs03676276_cn" assay
was utilised as it was in close proximity to the rs1346590
SNP probe (bp 15,453,141 of chromosome 8), and within
the same DGV region (chr8:14,670,571-15,809,077). In
order to include a 2-copy endogenous control within each
RT-PCR reaction, the RNAse P Copy Number Reference
Assay (Applied Biosystems) was utilised.

In this technical validation analysis a total of 30 individ-
uals were genotyped: 10 having a deletion in the TUSC3
locus as defined by PennCNV, 10 having a deletion in
PLEC1 as defined by CNstream and 10 without a CN in
either of the two loci. In addition, individuals identified as
carrying one CNV by one method were considered nega-
tive for the other method and therefore expanded the
negative control group to 20 individuals in each case. For
each assay, 5 ng of genomic DNA was assayed in triplicate
in 10 μl reactions containing 1× final concentration Taq-
Man Universal Master Mix (Applied Biosystems, part
number 4304437). Cycling was performed under default
conditions in 384-well optical plates on an ABI 7900HT
machine. Copy numbers for each sample and for each
locus were inferred using the ΔΔCt method. In this
method, the threshold cycle values (Ct) for each target
Copy Number (TUSC3 and PLEC1) are normalized
against the RNAseP cycle value (ΔCt = CT, TARGET- CT,

RNAseP), which is known to be diploid. The resulting ΔCt
values of each sample were compared with the average
values of a control group (ΔΔCt = ΔCt-ΔCt, control) whose
samples are known to be diploid over the targeted Copy
Number regions. The estimated Copy Number for each
sample was computed as 2·2-ΔΔCt.

CNV analysis of Hapmap reference samples
Further evidence relating to the sensitivity of CNstream
was provided using available data from Hapmap refer-
ence samples. In particular, the set of eight Hapmap sam-
ples thoroughly characterized in the study of Kidd et al.
[8] were utilised. The list of CNVs from these individuals
was downloaded from the DGV database (Additional file
1, Table S3).

Maximal coverage concerning genomic variability was
obtained by downloading data from the Illumina
Human1-Duo array, which characterizes 1,119,187 mark-
ers per sample. Raw intensity data from these individuals

were downloaded from the Gene Expression Omnibus
database (series GSE16896, GSE16895 and GSE16894).
Given that CNstream is a sample-based algorithm, the
complete set of 269 Hapmap individuals was used to per-
form CNV calling. PennCNV estimates CNVs at the indi-
vidual level, allowing the analysis to be limited to the
eight specific Hapmap samples. In addition, a segmenta-
tion-based method was also utilised, which is a different
approach from GMM or HMM-based methods. The Cir-
cular Binary Segmentation algorithm (CBS) described by
Venkatraman et al. [31] was used. Like PennCNV, this
method estimates CNVs at the individual level, and is
available as an open-source R-package from the Biocon-
ductor repository [32].

Results
Quality control analysis
From the samples described in the methods section, 53
individuals were excluded owing to a high standard devi-
ation over their logR values, seven samples were excluded
because the mean logR values were over the threshold
and 10 were excluded for fulfilling both conditions. Of
the remaining 502 samples, five were excluded as they
had an excess of PennCNV calls. CNstream was carried
out using the plate normalization option and nine sam-
ples were excluded from plates with insufficient sample to
estimate this parameter accurately. The final cohort ana-
lyzed using PennCNV and CNstream consisted of 488
samples, 335 of which were from RA patients and 153
from controls.

PennCNV analysis results
After running PennCNV over the 488 samples that
passed the QC filters, the number of CNV calls was
7,321, with a mean of 15 calls per individual. PennCNV
delivers a report file with relevant fields for each call such
as chromosomal region, number of probes per CNV, the
estimated copy number and the sample name. As this
study concerned CNP regions (i.e. CNVs with frequency
higher than 1%), the PLINK frequency filter was applied
to remove probes having a CNV frequency lower than
1%. This resulted in a final set of 2,050 probes with a pos-
itive signal (Additional file 1, Figure S2a). These positive
probes were joined by physical proximity to obtain a final
set of 283 CNP regions. The correlation of these regions
with the DGV database was high; 232 regions (82%) had
overlapping CNV regions previously defined in the DGV
database. The majority of these 283 regions (62%) had
lengths ranging from 10 Kb to 100 Kb [6,12], with a mean
length of 70 Kb (Additional file 1, Figure S2c). The major-
ity of these regions had a CNV frequency ranging from
1% to 3%, with only 63 regions exceeding 3% frequency
(Additional file 1, Figure S2b).
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PLINK was used to run a simple permutation-based
test of association of segmental CNV data for case/con-
trol phenotypes, performing 50,000 null permutations to
generate empirical P-values. Three hundred and forty-six
probes presented with an empirical p-value lower than
0.05 (Additional file 1, Figure S2d) and 89 were found
within three genomic regions showing the highest signifi-
cance values (Table 1). The most associated region corre-
sponds to a high frequency 8q24.3 deletion, containing 50
probes with empirical P-values of association lower than
0.01. Within this region, the segment ranging from base
pair 145,079,175 to 145,133,612, within the PLEC1 gene
coding region, yielded the highest global significance val-
ues; 14 probes had an empirical P-value below P = 7e-5.
This segment has been previously defined as a CNP
region in several studies [6,7,18,33]. As this region dem-
onstrated the strongest association to RA susceptibility, it
was chosen for posterior CNV validation using Taqman
Real-Time PCR technology.

The second significant region corresponded to a
11p15.5 deletion locus (24 probes). Within this region,
the segment ranging from base pair 1,028,110 to
1,074,363, within the mucin 2 (MUC2) transcribed region
had 10 probes with empirical P-values lower than 0.005.
This segment has been defined as a CNP region by sev-
eral studies [7,9,10]. The last significant region identified
by PennCNV analysis corresponds to a 19p13.3 CNV
locus within myeloid/lymphoid or mixed-lineage leukae-
mia gene (MLLT3); 15 probes passed the significance
threshold, with nine having empirical P-values lower than
0.005.

CNstream results
To compare the performance of CNstream with a well-
established method such as PennCNV, the CNP analysis
was carried out using the same sample set that passed all
the QC filters (n = 488 samples). The report generated by
CNstream included relevant information concerning
those probe segments that exceeded the minimum fre-

Figure 4 CNstream results. (a) CNV frequencies of the 697 segments of five consecutive probes that exceeded the 1% frequency filter, sorted by 
chromosome and basepair position. (b) Length and frequency distribution of the 206 CNP regions. The colours indicate whether the regions match 
a DGV region or not. (c) Comparison between the CNP length histograms of the CNP regions. (d) P-values of the 353 segments with an OR > 1. Asso-
ciated regions in 8p22 and 19p12 have been highlighted.
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quency threshold including the chromosome position,
the percentage of amplifications or deletions, the P-value
(if the phenotype file was provided) and the CNV call for
each sample.

After running CNstream, 697 segments were obtained
and more than 1% of the samples had a CNV (Figure 4a).
Subsequently, overlapping segments were merged to
obtain a final set of 206 regions, of which 143 (69.4%)
matched previously defined DGV regions. Regarding the
length and the frequency distribution of these 206
regions, 85% of these CNVs had lengths ranging from 10
Kb to 100 Kb, with only 24 regions exceeding the 100 Kb
limit, although all matched to DGV regions (Figure 4c).
CNP frequencies were predominantly between 1% and
3%, with 24 regions exceeding the 3% threshold (Figure
4b). For each segment, the CNstream output included the
OR and the resulting P-value after performing a chi-
square association test. Excluding segments with an OR
lower than one (i.e. regions where the CNV is more com-
mon in patients than in control subjects), a final set of
377 segments was obtained, from which two regions
stand out according to their significance values.

The most significant CNP locus was a 8p22 deletion
between bp 15,439,515 and bp 15,464,497, which had a
9.9% frequency in the experimental group compared with
a 3.3% frequency in controls (P-value = 0.019). This
region was obtained after merging four consecutive 5-
probe segments (Table 1) with OR values higher than 2.9
and a maximum OR of 3.2 in the central segments (i.e. 33
RA patients carrying a deletion vs. five controls carrying
the same deletion). This 8p22 CNP is located in the
TUSC3 transcribed region, and matches previously
defined DGV regions [6,8,9,12,13,18,33,34]. This CNP
had the highest evidence of statistical association to RA
after CNstream analysis, therefore Taqman Real-Time
PCR validation was performed in this region.

A second associated region was also detected in 19p12,
where deletions between base pair 20,368,239 and base
pair 20,439,390 were found to be more common in the
experimental group than in controls (16.1% versus 7.2%).
This region is located in the Zinc Finger Protein 826
(ZNF86) transcribed region and matched previously
defined DGV regions [6,8,9,12,16,18,33]. Detailed infor-

Figure 5 CNstream: Top candidate regions. The top figures present the information detailed in the DGV for the two most associated regions de-
tected by CNstream. Both have been previously identified as CNV regions and, principally, as deletion loci (blue lines). The lower figures demonstrate 
the distribution of the BAF and the normalized intensities along the five probes of the segment for the samples that have deletions (in red) and those 
that are detected as diploid (in blue).
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mation regarding these regions is presented in Table 1
and Figure 5.

Quantitative RT-PCR validation of CNP regions
Taqman Real-Time PCR technology allowed the results of
the most important candidate locus for each algorithm to
be compared: the 8p22 deletion locus (TUSC3) for
CNstream and the 8q24.3 deletion locus (PLEC1) for
PennCNV. For the CNstream candidate the CNV calls
were replicated, with all deletion-carrying individuals
having ΔΔCt values close to one (CN = 1) and diploid
individuals having a ΔΔCt close to zero (CN = 2) (t-test
P-value = 4.82E-14, Figure 6). For the PennCNV candi-
date, however, ΔΔCt values for all individuals were close
to zero (CN = 2) with no significant difference between
deletion-carrying individuals and the 2-copy samples (t-
test P-value = 0.54, Figure 6).

Comparison between PennCNV and CNstream results
The CNP regions detected by CNstream and PennCNV
were compared. Both sets of CNP regions were matched
and 103 regions were detected by both methods. These
overlapping regions were used to compare the number of
CNV calls identified by both algorithms. In 49 of the 103
regions, the difference between the numbers of calls
assigned was, at most, 1. Analysis of the other 54 CNP
regions revealed that CNstream had an increased call rate
in 28 of them and PennCNV had an increased call rate in
the remaining 26. In the CNP regions where the number
of calls was most discordant (Table 2), it was manually
verified that for CNstream analysis the calls had a clear
CNV pattern, supporting the existence of an underlying
CNP (Figure 7).

Figure 6 Quantitative PCR results. (a) ΔΔCT values for 20 individuals for the TUSC3 locus, which clearly validate the deletions assigned by CNstream 
(red bars) versus the 2-copy samples (blue bars). (b) ΔΔCt values for the 20 individuals analyzed for the PLEC1 locus demonstrate no differences be-
tween those that were called with a deletion (in blue) and those that were called as 2-copy samples (in red) by PennCNV.
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Table 2: Comparison in the number of calls between CNstream and PennCNV

REGION CNstream PennCNV REGION CNstream PennCNV

chr1:2151995..2236917 11 5 chr2:242633058..242645262 5 13

chr3:65166887..65187636 33 22 chr3:75511365..7553579 7 41

chr6:95118323..95118537 10 5 chr5:32142841..32171356 6 11

chr8:5590045..5591685 48 25 chr8:145064091..145083192 6 23

chr8:15447669..15455979 38 23 chr10:47013328..47173619 45 65

chr10:90934639..90954006 25 12 chr10:135116379..135167074 5 24

chr12:7884583..8017012 21 5 chr10:13522971..135284293 10 24

chr14:85518391..85557882 22 5 chr17:74878104..74905197 9 21

chr16:1192442..1265972 13 7 chr19:48267714..48350666 6 16

chr16:1744358..1781034 28 13 chr19:59423491..59445355 7 34

chr19:681297..717103 11 6 chr19:59994795..60018551 21 38

chr19:20385941..20528316 65 7 chr20:14815422..14856741 5 13

chr20:61323074..61366354 12 5 chr20:35443071..3548526 5 21

chr21:45756756..45788806 10 5 chr21:18981497..19000295 5 12

chr21:43647907..43659936 6 12

chr22:21169096..21190977 6 12

chr22:21223788..21337263 6 12

chr22:2408234..24235221 21 27

Comparison of the number of CNV calls made by both algorithms in the CNP regions that were detected by both algorithms and that showed 
the maximum difference in number of calls.

Comparison of CNV detection on Hapmap reference 
samples
A similar trend was found in the Illumina genotype data
and a reference Hapmap dataset (Figure 8). Comparing
the results of CNstream with PennCNV, a similar number
of calls was achieved over the CNVs validated by Kidd et
al. PennCNV matched 165 CNV loci over the eight sam-

ples (6.98%) while CNstream matched a total of 145 CNV
loci (6.13%), indicating that both algorithms have similar
sensitivity over this particular dataset. Within these calls,
92 CNVs were detected by both algorithms, demonstrat-
ing that CNstream can increase the sensitivity by >30%.

CBS, the segmentation-based method, was not as accu-
rate as the other two methods (Table 3). Furthermore,
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CBS results needed to be curated as a number of CNV
calls were clear artefacts that spanned regions of > 5 Mb
(data not shown).

Discussion
These results highlight the benefits of using CNstream, a
method for whole-genome CNV discovery and genotyp-
ing for Illumina BeadChip arrays. The present method
combined a single-locus scoring approach that takes
advantage of the joint clustering analysis of all the inten-
sity samples at each probe with the computational speed
and analytical accuracy of estimating CNPs from seg-
ments of consecutive probes. Compared with PennCNV,
CNstream has superior sensitivity in several common
CNPs and it can identify different CNPs that are not
detected by PennCNV. The CNP detected by CNstream
was demonstrated to be the most significantly associated
with RA susceptibility using available RT-PCR technol-
ogy.

With regard to the single-locus scoring method,
CNstream reduced the processing time by robustly ini-
tializing the GMM before the EM procedure. This allows
a whole-genome analysis to be carried out without the
need for previously defined CNP maps, which are
required for the SCIMM method. In addition, in compar-
ison with SCIMM, CNstream is able to detect amplifica-
tions. Furthermore, CNstream is available as a publicly
available R statistical software package.

One of the main problems with single-locus CNV anal-
ysis is that some probes can have noisy intensities that
could lead to erroneous CNV calls. For this reason, a
stage of segment-based calling was added that took into
account the CNV evidence over consecutive probes for
each sample. This effectively minimized the effect of this
type of error and increased the accuracy of the calls. An
indirect measurement of the accuracy of the calls is the
degree of overlap between the found CNP regions and
those listed in the DGV database. The CNstream analysis
of the present data demonstrated a 70% overlap with the

Figure 7 Cnstream: Sensitivity gain. Intensity plots of several probes of those loci where CNstream made more calls than PennCNV (Table 2). Sam-
ples called as deletions are plotted in red and those with amplifications in blue. As shown, the intensity measurements of these samples match a typ-
ical CNV pattern. However, several loci match the CNV pattern but are assigned to the normal state. This is because these particular samples do not 
show consistent behaviour throughout the adjacent probes that are analyzed by CNstream.
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DGV regions, indicating a strong correlation with previ-
ous studies. However, it is important to note that this
does not mean that the remaining 30% CNP loci are false-
positives. Manual inspection of the intensity plots
revealed that these were likely to be true CNP loci. The
fact that there are as yet no studies from Spanish cohorts
included in the DGV database could explain why these
regions are still not present in this public CNV resource.
In the future, more specific studies with alternative tech-
nologies such as RT-PCR will be necessary to character-
ize this new group of CNP loci fully.

One of the most time-consuming aspects of genome-
wide data analysis is formatting data files; CNstream
requires minimal user input to perform a genome-wide
CNP analysis with Illumina data. The input files can be
easily extracted from Illumina genotyping software (i.e.
Beadstudio or Genomestudio) and loaded into R for sub-
sequent CNV analysis. There is a step-by-step tutorial to
guide interested users: http://www.urr.cat/cnv/
cnstream.html. The default parameters have been opti-
mized for Illumina array data but experienced users can
modify them using the available R function arguments.
For example, users can seek to gain less or more specific-
ity by varying the maximum segment length allowed
(default set to 100 Kb), the number of markers per seg-
ment (default set to 5) or the score thresholds for amplifi-
cations and deletions.

Comparing the results obtained with CNstream with
those obtained by PennCNV, we demonstrated that
CNstream increases the total number of CNP regions
detected by 36%. This is important as it demonstrates the
consistency of the results between both analytical algo-
rithms (i.e. 50% of the CNP regions detected by
CNstream where also found using PennCNV). Is also
worth noting the substantial increase in the number of
different CNP regions identified (50% of the CNP regions
detected by CNstream were not detected by PennCNV),
which could be important risk variants for a particular
disease or trait. CNstream had increased sensitivity in
several of the 50% CNP regions called by both algorithms.
This reduction of the false-negative rate could be critical
in increasing the statistical power of genome-wide stud-
ies analyzing CNPs.

RT-PCR was used to validate the CNP most associated
with RA susceptibility. CNstream CNP calls were vali-
dated but PennCNV CNP deletion calls could not be dis-
tinguished from diploid events in this region. The RT-
PCR assays used have been validated to perform opti-
mally with Taqman technology and all measurements
were done in parallel. Therefore, it is unlikely that techni-
cal differences could explain the lack of replication of the
PennCNV loci. Moreover, the regions targeted by these
RT-PCR assays were the closest to the microarray probes
that had high evidence of CNP presence by each of the
CNV analysis methods. Therefore, more specific

Figure 8 Quantitative PCR results. Number of CNV events detected by CNstream, PennCNV and CBS over the eight Hapmap reference samples 
characterized in Kidd et al.

http://www.urr.cat/cnv/cnstream.html
http://www.urr.cat/cnv/cnstream.html
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approaches such as targeted sequencing will be necessary
to explain the lack of replication of the PennCNV CNP.

TUSC3 (also N33) is an 11 exon gene spanning approx-
imately 224 kb that was first cloned from a homozygous
deletion found in metastatic prostate carcinoma [35],
suggesting a tumour suppressor role for this gene. It is
under-expressed in ovarian carcinoma [36] although the
presence of an underlying deletion that could explain the
altered expression has not been investigated. TUSC3 is
thought to be an ortholog of the yeast Ost3 protein,
which is implicated in the transference of sugar residues
to the nascent protein, and its expression is not restricted
to a particular human tissue. In a recent study, a homozy-
gous deletion in the TUSC3 locus was shown to be asso-
ciated with a form of Autosomal Recessive Mental
Retardation [37]. To date, no study has implicated TUSC3
deletion with RA or any other chronic inflammatory dis-
ease. In order to clarify the association of this gene with
the genetic etiology of RA, it will be fundamental to repli-
cate these findings in an independent dataset of RA
patients and controls. Disposing of a robust RT-PCR
assay like that used in the present study will facilitate the
analytical process.

Another possible approach to comparing the perfor-
mances of different CNV genotyping algorithms would
be to use microarray data from well-characterized indi-
viduals such as the Hapmap samples. The CNV content

of eight Hapmap samples validated in the study by Kidd
et al. could be used as a reference dataset. In the present
study, CNstream, PennCNV and CBS methods were used
on this dataset to compare the sensitivities of each
approach. CNstream and PennCNV analyses performed
superiorly to the segmentation-based method on Illu-
mina microarray data. CNstream is a sample-based
method whereas PennCNV and CBS are individual-based
methods; the sensitivity of the CNstream approach
improved with an increased sample size. However, using
a relatively small genome-wide dataset (n = 269),
CNstream performed to a similar level to PennCNV.
Therefore, in the sample sizes typical of GWAS studies of
common traits, CNstream will be a valuable tool for
researchers aiming to identify CNPs and perform geno-
typing.

Conclusions
In the present study a new method, CNstream, for CNP
identification and quantification using the Illumina
microarray platform was developed. This genetic analysis
tool was able to identify known CNVs and incorporate
strong evidence in favour of new CNP loci. The increased
sensitivity in several regions compared with PennCNV
will increase the power of genome-wide scans for CNPs
associated with diseases or other complex traits. Using
CNstream, researchers performing GWAS analysis with

Table 3: Comparison in the number of calls between CNstream and PennCNV

SAMPLE CNV events
from Kidd et al.

PENNCNV CNSTREAM CBS Events detected
by Cnstream and

PennCNV

NA19240 405 26 17 8 16

NA19129 339 18 21 7 15

NA18956 307 18 19 15 10

NA18555 383 13 10 12 4

NA18517 100 16 15 4 8

NA18507 174 21 22 9 14

NA12878 351 35 26 16 15

NA12156 305 18 15 12 10

TOTAL 2364 165 145 83 92

Number of CNV events detected by each algorithm for each of the eight Hapmap reference samples. Number of events detected 
simultaneously by CNstream and PennCNV is provided in the last column.
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Illumina platforms will be able to analyze the data for the
presence of relevant CNVs associated with disease risk.
We conclude that CNstream is a powerful and useful tool
for CNP analysis of complex human traits.
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