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Abstract— Although motorcycle safety helmets are known for 

preventing head injuries, in many countries, the use of 

motorcycle helmets is low due to the lack of police power to 

enforcing helmet laws. This paper presents a system which 

automatically detect motorcycle riders and determine that they 

are wearing safety helmets or not. The system extracts moving 

objects and classifies them as a motorcycle or other moving 

objects based on features extracted from their region properties 

using K-Nearest Neighbor (KNN) classifier. The heads of the 

riders on the recognized motorcycle are then counted and 

segmented based on projection profiling. The system classifies 

the head as wearing a helmet or not using KNN based on 

features derived from 4 sections of segmented head region. 

Experiment results show an average correct detection rate for 

near lane, far lane, and both lanes as 84%, 68%, and 74%, 

respectively. 

Index Terms—object recognition, machine vision, supervised 

learning, vehicle detection, vehicle safety 

I. INTRODUCTION 

In many Asian countries, a motorcycle is a popular mean 
of transportation, due to its lower price compares to other 
four-wheeled cars, and due to the lack of efficient mass 
transportation.  Thailand is one of those countries, which 
motorcycles are widely used. According to key statistics of 
Thailand 2012 [1], Thailand had more than 17 million 
officially registered motorcycles in 2010, while in the same 
year Thailand had its population of 63.9 million. With high 
number of vehicles comes high number of road accidents, 
according to WHO Global Status Report on Road Safety 2013 
[2] the estimated road traffic death rate per 100,000 
populations for Thailand was high as 38.1 compared to 20.5 
for China, 11.4 for the U.S. and 9.1 for New Zealand, which 
made Thailand the third highest road traffic death rate in the 
world. From annually reported number of road traffic deaths 
in the recent decade, 60 - 75% of fatalities are from riders with 
motorized two- or three-wheelers [2]-[4]. Despite many 
attempts from both governmental and non-governmental 
organizations to increase road safety via many local and 
nation-wide campaigns, the reported mortality rate from 

motorcycles is still high. Motorcycle safety helmets are widely 
known for effectiveness in preventing head injuries and saving 
lives of motorcycle riders and passengers, and it has been one 
method used by Thai authorities in reducing mortality rate 
from motorcycle. Although Thai authorities are enforcing 
traffic law that requires both riders and passengers to wear 
safety helmets, unfortunately, the use of the helmets is as low 
as 54% for riders and 24% for passengers [4]. One of the 
reasons that made many helmet laws and campaigns 
unsuccessful was the lack of police manpower to monitor 
motorcyclists and enforce the laws. 

This paper proposes an approach to automatically 
recognize motorcycle riders and passengers whether they are 
wearing helmets or not and is an extension of preliminary 
work reported in [5]. The method focuses on detecting helmets 
in light traffic scenes, especially in a university campus in 
Thailand. This proposed method may reduce the labor-
intensive work of enforcing helmet laws and hence ultimately 
reduce the mortality rate involving motorcycle accidents. The 
organization of the rest of this paper is as follows. Section 2 
reviews previous studies related to detecting motorcycle 
helmets. Section 3 describes our algorithm of the motorcycle 
helmet recognition system. Section 4 presents the experiments 
and results of our algorithm. Finally, the conclusion of the 
paper is given in Section 5. 

II. RELATED WORK 

Recently, studies on automatic detection of safety helmets 
are mostly based on data from still images or video sequences 
using computer vision and image processing techniques. Some 
of these studies are automatic vehicle classification systems 
based on the assumption that a motorcyclist usually wears a 
helmet in order to classify and track motorcycles in traffic 
scenes. Chiu and Ku et al. [6], [7] proposed algorithms to 
detect occluded motorcycles using the visual length, visual 
width, and Pixel Ratio. They assume that motorcycle riders 
usually wear helmets to detect motorcycles in the scene. 
However these studies do not explicitly focus on detecting a 
helmet for safety reasons but use a helmet as a cue to identify 
a motorcycle. For the studies focusing on helmets detection, 
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Liu, Liao, Chen, and Chen [8] presented a technique to find a 
full-face helmet in a scene using circle fitting on its Canny 
edge image. Similar techniques were introduced by Wen and 
his colleagues [9], [10] to detect helmets based on Circle 
Hough Transform. They developed this method to be used in 
surveillance systems in banks or at ATM machines. These 
techniques work well on full-face helmets with easily 
extractable circles or circular arcs. More recently, Chiverton 
proposed a system for the automatic classification and 
tracking of motorcycle riders with and without helmets [11]. 
In this system, the motorcycle riders are automatically 
segmented from video data using background subtraction, and 
support vector machines (SVM) are used to train histograms 
derived from head region image data of motorcycle riders to 
classify whether or not the riders are wearing helmets. 
However, this technique is not designed to distinguish each 
rider or count people on a motorcycle. 

III. THE PROPOSED METHOD 

A. Overview 

An overview of the automatic motorcycle safety helmet 
detection system is shown in Fig.1. Input of the system can be 
either real-time video sequence captured from a common web 
camera or a pre-recorded video clip. 

The first part of the system is the moving object detection, 
which is a combination of algorithms to extract any moving 
objects in a scene. This part consists of background 
subtraction followed by a connected component labeling and a 
detection of moving direction. The extracted object is then 
classified as a motorcycle or other objects using K-Nearest 
Neighbor (KNN) classifier. For the third part, heads of the 
riders are counted and extracted from a motorcycle region. 
The last part classifies the extracted head as wearing a helmet 
or not based on KNN.  Features used in this part are based on 
circularity, average intensity, and average hues of each head 
quadrants. 

B. Moving Object Detection 

The first part of the system is the moving object detection. 
In this paper, after applying a low-pass filter to all the input 
images to reduce noise, we firstly construct a background 
image using the mixture model algorithm and doing 
background subtraction as described in [12] and [13]. This 
algorithm provides good results with decent performance and 
works well for shadow removal. After background 
subtraction, images were binarized so that moving parts were 
marked white and stationary parts were marked black. 
Morphological closing is performed on the obtained binary 
images to reduce noise. Fig. 2 shows the results of this 
algorithm, which (a) and (b) are extracted moving objects and 
their corresponding results after applying closing operation, 
respectively. 

A typical traffic scene in a university campus or in a road 
with light traffic usually consists of image frames that do not 
contain many vehicles or do not have any moving object at all.  
It is sufficient to process only one instance of a vehicle when 
it is within the camera frame. From the above reasons and to 
reduce computational load and memory consumption of the 
computer, instead of recognizing every frame in the sequence, 

we capture only an instance of a moving object when it passes 
exactly in front of the camera. To do that, a virtual vertical 
line which we call the “detection line” is drawn in the middle 
of a binary input image.  

 

Figure 1.  Overview of the system 

 

 

Figure 2.  Moving object detection, a) binary extracted moving object,  
b) closed binary moving object with the detection line and the object centroid 

Whenever any white pixels which belong to a moving 
object touch this line, the rest of the process is executed; 
otherwise the system is still in idle state.  The detection line 
also serves another purpose. It is used to determine the 
direction of a moving object. When a white pixel touches the 
line, a connected component labeling algorithm based on 
contour analysis as in [14] and [15] is performed on the binary 
image. A moving direction can be found from the spatial 
relationship between the position of the detection line and the 
centroid   ̅  ̅  of the region that touches the line. For 
example, if the centroid    ̅  ̅  of the region is on the right 
side of the detection line, says  ̅           then the object is 
identified as moving from right to left. Fig 2 (b) illustrates the 
detection line and the centroid of an object. The acquired 
direction can be used to identify the driving lane of a moving 
vehicle. As Thailand uses left-hand traffic, in which traffic 
keeps to the left side of the road, so that an object that moves 
from right to left is considered to be an object in the near 
(closer to the camera) lane, while an object that moves from 
left to right is considered to be in the far lane. 

C. Motorcycle Recognition 

The purpose of this system is to detect safety helmets worn 
by people riding on motorcycles in a traffic scene. Hence, 
firstly, a motorcycle must be distinguished from other moving 
objects. To achieve this goal, we extract 3 features from the 
moving blob (connected region) that touches the detection 
line. These features are: 
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Figure 3.  The areas used in feature computation based on S.D. of hues are 
marked as red rectangles a) on a motocycle, and b) on a car. 

Feature 1: Area of bounding rectangle 
The first feature extracted from the blob of interest is the 

area of its bounding rectangle. This feature is used based on 
the fact that a motorcycle is usually smaller than other forms 
of vehicle on the road. This feature is normalized to make it 
range within 0.0 to 1.0 by dividing the rectangle area by the 
area of the whole frame. 

Feature 2: Aspect ratio of bounding rectangle 
The aspect ratio of bounding rectangle is defined as the 

ratio of the length of the shorter side of the bounding rectangle 
to the length of its longer side. This feature is used because 
from our observation, we noticed that the aspect ratio of the 
bounding box of a motorcycle is closer to 1.0 (closer to a 
square) than other moving objects e.g. cars, buses, trucks, and 
pedestrians. 

Feature 3: Standard deviation of hue around blob center 
The third feature is the standard deviation (S.D.) of hue (H 

in the HSV color model) in a small rectangular area around 
the blob’s centroid. This feature is used based on the 
observations that an image part at the center of each 
motorcycle region has more variation of colors due to the 
motorcycle parts, riders’ legs, and shadows compared to the 
same area of cars as shown in Fig. 3. The areas used in S.D. 
computations are marked by red rectangles in Fig. 3 (a) and 
Fig. 3 (b).  

After all 3 features are extracted from the moving blob, the 
K-Nearest Neighbor (KNN) [16] classifier is applied on these 
features to classify either the blob is a motorcycle or other 
moving object. 

D. Rider Count and Head Extraction 

The heads of motorcycle riders are usually in the upper 
part of a motorcycle blob. Thus, the top 25% of the height of a 
motorcycle blob is defined as the region of interest (ROI) for 
counting and extracting motorcycle riders’ heads. Fig. 4 (a) 
depicts the top ROI of Fig. 3 (a), while Fig. 4 (b) shows the 
background-subtracted image of the top ROI in Fig. 3a. From 
this top ROI, heads in the region can be counted and extracted 
as follows:  

1) Vertical projection  
After background of the image is subtracted, small holes 

and small isolate regions in binary image of ROI are 
eliminated using morphological closing as in Fig. 4 (c). The 
top ROI is vertically projected to construct vertical projection 
profiles. A projection profile is a frequency distribution of the 
projected head pixels onto the projection line. The projection 

profiles provide information about the number of white pixels 
that aligned along the vertical direction. A moving average is 
then performed on the projection profiles to smooth the curves 
and reduce noise. The black shaded curves in Fig. 4 (d) are the 
smoothed projection profiles of Fig. 4 (c). 

 

Figure 4.  The process of rider heads detection and counting, a) the ROI of 

original frame, b) the background-subtracted frame, c) the enhanced binary 

image, d) the vertical projection profiles of the binary image and their 
defined boundaries, and e) the head counting scan line. 

2) Profile boundaries identification 
The next step is to determine left and right boundaries of 

heads’ projection profiles. To find these boundaries, pixels 
along a horizontal line of the smoothed projection profiles are 
scanned from left to right starting from the leftmost border of 
the ROI and stops when the first pixel of a profile is found as 
shown in Fig 4 (d). The process is repeated with the opposite 
direction starting from the rightmost pixel and scanning from 
right to left until the first pixel on the right of the profile is 
found. The positions of the first pixels of projection profile 
found from both directions are defined as the left and right 
boundaries and were shown with red vertical lines in Fig 4 (d). 
To avoid a few small regions which usually resulted from the 
motorcycle mirrors, the horizontal scan line is picked at the 
30% of the height of the projection profile image. 

3) Head counting 
From the vertical projection profiles image as in Fig 4 (d), 

the number of people (heads) in the top ROI equals the 
number of peaks of the projection profiles. To count the 
number of peaks from the projection profiles, another 
horizontal scan line is used. This new scan line scans the 
pixels inside the boundaries from the left boundary to the right 
boundary. The height of this scan line is the averaging of all 
the projection profiles inside the left and right boundaries. A 
scanning process is then performed along this line in order to 
count any changes from a black pixel to a white pixel 
followed by another change from a white pixel to a black 
pixel. In other words, this process counts the number of 
valleys in the projection profiles. The number of peaks (heads) 
in the projection profiles equals this counting result plus one. 
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Fig. 4 (e) depicts the head counting process, which the 
averaging scan line is drawn in green. 

 

 

Figure 5.  Head extraction process, a) a head binary image, b) horizontal 

projection profiles, and c) first-order derivatives 

4) People and head image extraction   
The presence of one or more valleys in the vertical 

projection profile means that there are two or more heads on 
that motorcycle. In that case, the midpoints of the valleys are 
used as dividing points to separate each head as depicted as 
the dotted purple line in Fig. 4 (e). The portions of the image, 
which lies on the left and right sides of a valley are considered 
to be separate heads from different riders.  

After a rider is separated, the rider’s head is then 
segmented using first order derivatives of the rider’s 
horizontal projection profiles. The first order derivatives 
represent slopes of the projection profiles curve at each point. 
The position with the minimum derivatives is assumed as the 
point between the chin and neck boundary of the rider. Fig. 5 
shows the head extraction process described earlier. Fig 5 (a) 
depicts the separated rider from Fig. 4. Fig 5 (b) is the 
horizontal projection profiles of Fig. 5 (a). Fig. 5 (c) shows the 
first order derivatives of the horizontal projection profiles in 
Fig. 5 (b).  The separation line drawn in blue dash found at the 
minimum of the second-order derivatives shown in Fig. 5 (c).  

E. Helmet-Head Classification 

After each head region is separated and extracted, the head 
region is then divided into four independent quadrants 
according to the moving direction of that motorcycle. The 
quadrant division is performed firstly by finding the head 
region centroid. This centroid is used as a dividing point for 
both vertical and horizontal divisions as shown in Fig. 6. The 
first and fourth quadrants denoted as Q1 and Q4 in Fig. 6 are 
on the back of the rider’s head, while the second and third 
quadrants denoted as Q2 and Q3 are on the forehead and lower 
face of the rider, respectively. For instance, if the motorcycle 
is moving from right to left (near lane), the face side of the 
head (Q2 and Q3) is on the left of the head region and the back 
side of the head (Q1 and Q4) is on the right side. 

 

Figure 6.  Head quadrants division 

These quadrants of head region are then treated as inputs 
of head classification algorithm described in detail below.   

1) Feature extraction   
The total of 9 features is derived from the four quadrants 

of head region. The followings are the detail descriptions of 
these features: 

Feature 1 to Feature 4: Arc circularities 
The first 4 features extracted from the quadrants are arc 

circularities. The arc circularity measures the similarity 
between the arc and a circle. We apply this measurement 
based on the circularity, C, described in [17] as: 

                 (1) 

where    and    are the mean and S.D. of the distance, r, 
from the head centroid to the head contour in each quadrant, 
respectively. Fig. 6 illustrates the distance r, the centroid, and 
the contour of the head region.   

The circularity measure, C, increases monotonically as the 
arc becomes more circular. These features are used because 
the fact that a head wearing a helmet is more circular than a 
head without a helmet, especially on the top and the back of 
the helmet which reflects in high circularity of head contour in 
quadrants Q1, Q2, and Q4. These features are normalized by 
the maximum of the circularity found in the training set.  

Feature 5 to Feature 8: Average intensities 
The next 4 features extracted from the quadrants are 

average intensities. The average intensity, µ, is computed 
individually from a grayscale image of each quadrant as: 
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where    is an intensity of the i
th
 pixel in the quadrant, 

while N is the number of head pixels in the quadrant. These 
features are used because the intensity of the head especially 
on the top and the back of the head without helmet are mostly 
dark as most Thai are black hair compared to a variety of 
shades of helmets. These features are normalized by the 
maximum grayscale intensity. 

Feature 9: Average hue of the third quadrant  
The last feature is the average hues (in the HSV color 

model) of the facial part of the head in the third quadrant Q3. 
The average hue is computed exclusively only in Q3 as: 
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where    is a hue of the i
th

 pixel in the third quadrant, and 
N is the number of head pixels in this quadrant. This feature 
is applied based on the fact that if a rider is wearing a helmet, 
a large portion of her face (third quadrant) is covered by her 
helmet and varies the average of the hues. On the other hand, 
a rider without a helmet has certain average hues of skin 
color.  

2) Classification 
For the classification of head, we applied K-Nearest 

Neighbor (KNN) [16] as a classifier. KNN is a method for 
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classifying objects based on closest training examples in the 
feature vector. In this work, a head is classified by a majority 
vote of its neighbors, with the head being assigned to either 
“wearing a helmet”, “not wearing a helmet”, and “undefined” 
classes. The neighbors are taken from a set of heads for which 
the correct classification is known and labeled. The Euclidean 
distance is used in this study. 

IV. EXPERIMENTS AND RESULTS 

A. Experiments 

We set up experiments inside Naresuan University 
campus. The width of the campus road where we set up the 
instrument is 6 meters. A web camera with 4.4 mm focal 
length was attached to a 4-meter-high pole on the sidewalk. 
The pole was set 5 meters away from the center of the road. 
The camera produced video sequences with resolution of 
640x480 pixels and 30 frames per second.  The system was 
implemented in C# on MS Windows 7 operating system that 
ran on a 2.4 GHz CPU. We tested 3 main components of our 
systems individually which are motorcycle recognition, rider 
head counting, and head-helmet classification. These 
experiments were tested separately, so that the results of each 
test are independent from other tests and error from the 
previous algorithm steps were not propagated. The overall 
performance of the system with error propagation was also 
tested. We performed all KNN classifications with K varied 
from 1 to 9 and 10-fold validation settings, each fold with 
approximately 400 training images and approximately 40 
testing images. Each experiment had different images in 
training and testing sets. Feature selection was also performed 
on each test. Weka software [18] was used in testing the 
classifications Fig. 7 shows some examples of the test images. 

B. Results 

The accuracy of the motorcycle recognition algorithm was 

95 % at K = 11 and the detail is shown in the confusion 

matrix in Table I. The diagonal cells show the percentages of 

correct recognized object of each class, while other cells 

show the percentages of incorrect recognized objects. All 

three features (area and aspect ratio of bounding rectangle, 

and SD of hue around blob center) were selected as the 

classification features. For the rider heads counting algorithm, 

we tested with 828 manually cropped motorcycle images, the 

results showed the accuracy at 83.82% and the detail is 

shown in the confusion matrix in Table II. The helmet 

classification algorithm with manual cropped heads images as 

inputs was 89% with K was set to 11 and 6 features were 

selected, which were arc circularities of Q1 and Q2, average 

intensities of Q1, Q2, and Q3, and the average hue of Q3. The 

results are shown in the confusion matrix in Table III.  

For the overall performance of our system, we also 

studied the classification accuracy under three conditions. 

Condition 1 is the set of input from moving objects that the 

system detected as in the near (closer to the camera) lane. 

Condition 2 is the set of input from moving objects that the 

system detected as in the far lane. Condition 3 is the set of 

input from moving objects in both lanes.  We also tested the 

results of various K and features in the KNN classifier.  

 

 

Figure 7.  Examples of test image; a) two riders without helmet, and b) one 

rider with a helmet 

 

 

Figure 8.  Examples of errors; a) two objects overlap when touching the 
detection line, and b) riders sit too close to each other 

For condition 1, the best value for K was 5 with accuracy 

of 84%. Seven features were selected, which were arc 

circularities of Q1 to Q4, average intensities of Q1 and Q2, 

and the average hue of Q3. Table IV is the confusion matrix 

of this condition. For condition 2, the best value for K was 11 

with accuracy of 68%. Three features were selected, which 

were arc circularities of Q1, Q3, and Q4. Table V is the 

confusion matrix of this condition. For condition 3, the best 

value for K was 5 with accuracy of 74%. Eight features were 

selected, which were arc circularities of Q1 to Q4, average 

intensities of Q1, Q2, and Q4, and the average hue of Q3. 

Table VI is the confusion matrix of this condition. 

TABLE I.  CONFUSION MATRIX FOR MOTOCYCLE RECOGNITION 

Actual 

class (%) 

Predicted class (%) 

motorcycle other  

motorcycle  96  9 

other  4  91 

TABLE II.  CONFUSION MATRIX FOR PEOPLE COUNTING 

Actual 

class (%) 

Predicted class (%) 

1 rider 2 riders > 2 riders 

1 rider  81.1  1.0  0.0 

2 riders  17.5  91.8  0.0 

> 2 riders  1.5  7.2  100.0 

TABLE III.  CONFUSION MATRIX FOR HELMET RECOGNITION 

Actual 

class (%) 

Predicted class (%) 

with helmet no helmet 

with helmet  87  9 

other  13  91 

(b) 

(b) 

(a) 

(a) 



TABLE IV.  CONFUSION MATRIX FOR NEAR LANE PERFORMANCE 

Actual 

class (%) 

Predicted class (%) 

helmet no helmet undefined 

helmet 80 16 4 

no helmet 15 81 5 

undefined 5 4 91 

TABLE V.  CONFUSION MATRIX FOR FAR LANE PERFORMANCE 

Actual 

class (%) 

Predicted class (%) 

helmet no helmet undefined 

helmet 58 33 4 

no helmet 32 60 11 

undefined 10 7 85 

TABLE VI.  CONFUSION MATRIX FOR BOTH LANES PERFORMANCE 

Actual 

class (%) 

Predicted class (%) 

helmet no helmet undefined 

helmet 58 33 4 

no helmet 32 60 11 

undefined 10 7 85 
 

From our experiments, we found some common errors of 

the system. Most error occurs in the recognition of the far 

lane. This suggests that the low resolution of input images 

play very important role in accuracy of the system. Another 

type of error occurs when a moving object touches the 

detection line while it also overlaps with other objects, the 

system would treat them as one object and results in wrong 

classifications. Fig. 8 (a) shows an example of this type of 

error. Another type of error occurs when riders on the same 

motorcycle sit too close to each other or a passenger is 

leaning on the back of the rider. Fig. 8 (b) shows some 

examples of these errors. 

V.  CONCLUSION 

We proposed a real-time motorcycle safety helmet 
detection system. The system used a moving object detection 
method and classified heads using the proposed techniques 
which consists mainly of head extraction and classification. 
The extraction method is based on vertical and horizontal 
projection profiling methods, while the classification method 
is based on features derived from head regions. The 
experimental results show that our methods accurately 
detected helmet wearing at the rate of 74% for both lane. This 
system can be combined with an automatic license plate 
recognition system to provide a novel automatic helmet 

wearing monitoring system to reduce laborious work of 
policing and law enforcement. 
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