ON ALMOST 2-ABSORBING SUBMODULES

Mohammad Yasein ${ }^{1}$
Mathematics Department
The Hashemite University
Zarqa
Jordan
e-mail: myasein@hu.edu.jo

Rashid Abu-Dawwas
Mathematics Department
Yarmouk University
Irbid
Jordan
e-mail: rrashid@yu.edu.jo

Abstract

Let R be a commutative ring with identity and let M be a unitary R module. A proper submodule N of an R-module M will be called almost 2-absorbing submodule if $a, b \in R$ and $m \in M$ with $a b m \in N-(N: M) N$ implies that $a b \in(N: M)$ or $a m \in N$, or $b m \in N$. Also a proper ideal I of R will be called almost 2-absorbing ideal if $a, b, c \in R$ with $a b c \in I-I^{2}$ implies that $a b \in I$ or $a c \in I$, or $b c \in I$. These concepts are generalizations of the notions of 2 -absorbing submodules and ideals respectively, which have been studied. In this paper we give several results concerning almost 2-absorbing submodules.

Keywords: 2-absorbing ideal, 2-absorbing submodule, Almost 2-absorbing ideal, Almost 2-absorbing submodule.
Mathematics Subject Classification: 13A15, 13C99, 13F05, 13 F 15.

1. Introduction

Through out this paper all rings are commutative with identity and all modules are unitary. Prime ideals play a central rule in commutative ring theory. A proper ideal P of R is said to be prime ideal if $a b \in P$ implies that $a \in P$ or $b \in P$ where $a, b \in R$. Various generalizations of prime ideals have been studied as well as extending ideals to submodules. For example, a proper ideal I of R is said to be almost prime provided that $a, b \in R$ with $a b \in I-I^{2}$ imply that $a \in I$ or $b \in I$ (see [4], [2]). A number of generalizations of prime ideals in commutative

[^0]rings can be found in [5], [6]. Also a proper ideal I of R is said to be 2-absorbing if whenever $a, b, c \in R$ and $a b c \in I$, then either $a b \in I$ or $a c \in I$ or $b c \in I$ (see [1]). A proper ideal I of R is said to be almost 2-absorbing ideal if whenever $a, b, c \in R$ with $a b c \in I-I^{2}$, then either $a b \in I$ or $a c \in I$, or $b c \in I$ (see [8]). A proper submodule N of M is called a 2 -absorbing (resp. weakly 2-absorbing) submodule of M if whenever $a, b \in R, m \in M$ and $a b m \in N($ resp. $0 \neq a b m \in N)$, then $a b \in\left(N:_{R} M\right)$ or $a m \in N$, or $b m \in N$ (see [8]).

Clearly, if N is a prime R-submodule of M, then N is weakly prime and then it is weakly 2 -absorbing and hence it is an almost 2 -absorbing R-submodule of M. If N is an almost 2 -absorbing R-submodule of M, then N need not to be weakly 2 -absorbing; for example $N=\langle 8\rangle$ in the Z-module $M=\mathbf{Z}_{40}$. So, almost 2 -absorbing submodules are generalization of weakly 2 -absorbing submodules. We show that if A, B are two ideals of R, N is an almost 2 -absorbing R-submodule of M and L is an R-submodule of M such that $A B L \subseteq N-(N: M) N$ and $8(A B+(A+B)(N: M))(L+N) \nsubseteq(N: M) N$, then $A B \subseteq(N: M)$ or $A L \subseteq N$ or $B L \subseteq N$.

The purpose of this paper is to introduce the notion of almost 2-absorbing submodules as a new generalization of both 2-absorbing and almost prime ideals.

2. Almost 2-absorbing submodules

Following [3], a proper submodule N of an R-module M is weakly 2-absorbing if $a, b \in R, m \in M$ and $0 \neq a b m \in N$ then $a b \in(N: M)$ or $a m \in N$, or $b m \in N$. Now we introduce the concept of almost 2-absorbing submodule and generalize the concept of almost prime submodules (see [5]) to an almost 2 -absorbing submodules.

Definition 2.1 Let R be an integral domain, M be an R-module and N a proper submodule of $M . N$ is called an almost 2-absorbing submodule of M if $a, b \in R$ and $m \in M$ with $a b m \in N-(N: M) N$ then either $a b \in(N: M)$ or $a m \in N$, or $b m \in N$.

Let R be a commutative ring and M an R-module, then every weakly 2 -absorbing submodule N of M is an almost 2-absorbing submodule of M. But the converse need not to be true. For example, consider $R=Z, M=Z_{40}$ and $N=\langle\overline{8}\rangle$ then $(N: M) N=N$. So N is almost prime submodule of M and hence N is an almost 2 -absorbing submodule of M. On the other hand, $0 \neq 2.2(\overline{2})=\overline{8} \in N$ while $2.2 \notin(N: M)$ and $2 . \overline{2} \notin N$, so N is not weakly 2 -absorbing submodule of M. So almost 2-absorbing submodules are generalization of both almost prime submodules and weakly 2 -absorbing submodules.

Theorem 2.2 Let M be an R-module and N, K be a proper submodules of M with $K \subseteq N$. Then N is an almost 2-absorbing submodule of M if and only if N / K is an almost 2-absorbing submodule of M / K.

Proof. (\Rightarrow) Let N be an almost 2-absorbing submodule of M. Now, for any $a, b \in R$ and $m \in M$ assume that $a b(m+K) \in N / K-(N / K: M / K) N / K$. It follows that $a b(m+K) \in N / K-(N: M) N / K$ and so $a b m \in N-(N: M) N$. Since N is an almost 2-absorbing then $a b \in(N: M)$ or $a m \in N$, or $b m \in N$. Hence $a b \in(N / K: M / K)$ or $a(m+K) \in N / K$, or $b(m+K) \in N / K$. Thus N / K is an almost 2-absorbing submodule of M / K.
(\Leftarrow) Let N / K be an almost 2-absorbing submodule of $M / K, a, b \in R$ and $m \in M$ with $a b m \in N-(N: M) N$. It follows that $a b(m+K) \in N / K-$ $(N / K: M / K) N / K$. Since N / K is an almost 2-absorbing submodule of M / K then $a b \in(N / K: M / K)$ or $a(m+K) \in N / K$, or $b(m+K) \in N / K$. So $a b \in(N: M)$ or $a m \in N$, or $b m \in N$.

Proposition 2.3 Let M be an R-module and N be a submodule of M. Then the following are equivalent.
(i) N is an almost 2-absorbing submodule of M.
(ii) For $r_{1} r_{2} \in R-\left(N:_{R} M\right)$,
$\left(N:_{M}\left\langle r_{1} r_{2}\right\rangle\right)=\left(N:_{M}\left\langle r_{1}\right\rangle\right) \cup\left(N:_{M}\left\langle r_{2}\right\rangle\right) \cup\left((N: M) N:_{M}\left\langle r_{1} r_{2}\right\rangle\right)$.
(iii) For $r_{1} r_{2} \in R-(N: M)$,
$\left(N:_{M}\left\langle r_{1} r_{2}\right\rangle\right)=\left(N:_{M}\left\langle r_{1}\right\rangle\right)$ or $\left(N:_{M}\left\langle r_{1} r_{2}\right\rangle\right)=\left(N:_{M}\left\langle r_{2}\right\rangle\right)$, or $\left(N:_{M}\left\langle r_{1} r_{2}\right\rangle\right)=\left((N: M) N:_{M}\left\langle r_{1} r_{2}\right\rangle\right)$.

Proof. $(i) \Rightarrow(i i)$ If $r_{1} r_{2} \in R-\left(N:_{R} M\right)$ and $m \in\left(N:_{M}\left\langle r_{1} r_{2}\right\rangle\right)$ then $r_{1} r_{2} m \in N$. But if $r_{1} r_{2} \notin R-\left(N:_{R} M\right) N$ then $r_{1} r_{2} m \in N-\left(N:_{R} M\right) N$. So $r_{1} m \in N$ or $r_{2} m \in N$. Hence $m \in\left(N:_{M}\left\langle r_{1}\right\rangle\right)$ or $m \in\left(N:_{M}\left\langle r_{2}\right\rangle\right)$.
(ii) \Rightarrow (iii) It is well known that if a module equals to the union of two modules then it is one of them.
(iii) \Rightarrow (i) Let $a, b \in R$ and $m \in M$ with $a b m \in N-(N: M) N$. Now assume that $a b \notin(N: M)$, we show that $a m \in N$ or $b m \in N$. By (ii) $\left(N:_{M}\langle a b\rangle\right)=$ $\left(N:_{M}\langle a\rangle\right)$ or $\left(N:_{M}\langle a b\rangle\right)=\left(N:_{M}\langle b\rangle\right)$, or $\left(N:_{M}\langle a b\rangle\right)=\left((N: M) N:_{M}\langle a b\rangle\right)$. Since $a b m \notin(N: M) N$ then $m \notin\left((N: M) N:_{M}\langle a b\rangle\right)$. Therefore $m \in\left(N:_{M}\langle a\rangle\right)$ or $m \in\left(N:_{M}\langle b\rangle\right)$. Hence $a m \in N$ or $b m \in N$.

Lemma 2.4 Let M be an R-module, N be an almost 2-absorbing R-submodule of M and $r, s \in R$. If L is an R-submodule of M such that $r s L \subseteq(N: M) N$ and $2 r s L \nsubseteq(N: M)$, then $r s \in(N: M)$ or $r L \subseteq N$ or $s L \subseteq N$.

Proof. Assume $K=(N: M)$ and suppose $r s \notin K$. It is enough to prove $L \subseteq\left(N:_{M} r\right) \cup\left(N:_{M} s\right)$. Let $x \in L$. If $r s x \notin(N: M) N$, then since N is almost 2absorbing and $r s \notin K$, either $r x \in N$ or $s x \in N$ and then $x \in\left(N:_{M} r\right) \cup\left(N:_{M} s\right)$. Suppose $r s x \in(N: M) N$. Since $2 r s L \nsubseteq(N: M)$, there exists $z \in L$ such that $2 r s z \notin(N: M) N$ and then $2 r s z \in N-(N: M) N$. Since N is almost 2-absorbing and $r s \notin K$, either $r z \in N$ or $s z \in N$. Let $m=z+x$. Then $r s m \in N-(N: M) N$ and since $r s \notin K$, either $r m \in N$ or $s m \in N$. We study three cases:

Case 1. $r z \in N$ and $s z \in N$. Clearly, $r m \in N$ or $s m \in N$ and then either $r x \in N$ or $s x \in N$.

Case 2. $r z \in N$ and $s z \notin N$. Suppose $r x \notin N$. Then $r m \in N$ and then $s m \in N$ which implies that $r(m+z) \notin N$ and $s(m+z) \notin N$. Since N is almost 2-absorbing and $r s \notin K, r s(m+z) \in(N: M) N$ which is a contradiction. Hence, $r x \in N$.

Case 3. Similarly, as Case 2.
Lemma 2.5 Let M be an R-module, N be an almost 2-absorbing R-submodule of M and $r \in R$. If I is an ideal of R and L is an R-submodule of M such that $r I L \subseteq N$ and $4 r I L \nsubseteq(N: M) N$, then $r I \subseteq(N: M)$ or $r L \subseteq N$ or $I L \subseteq N$.

Proof. Assume $K=(N: M)$ and suppose $r I \nsubseteq K$. The there exists $s \in I$ such that $r s \notin K$. We show that there exists $t \in I$ such that $4 r t L \nsubseteq(N: M) N$ and $r t \notin K$. Since $4 r I L \nsubseteq(N: M) N$, there exists $\alpha \in I$ such that $4 r \alpha L \nsubseteq$ $(N: M) N$. If $r \alpha \notin K$ or $4 r s L \nsubseteq(N: M) N$, then by taking $t=\alpha$ or $t=s$, we obtain our result. Suppose $r \alpha \in K$ and $4 r s L \subseteq(N: M) N$. Then $4 r(s+\alpha) L \subseteq N-(N: M) N$ and $r(s+\alpha) \notin K$ and then by taking $t=s+\alpha$, we obtain our result. Hence, $2 r t L \nsubseteq(N: M) N$ and then by Lemma 2.4, $L \subseteq\left(N:_{M} r\right) \bigcup\left(N:_{M} t\right)$. If $r L \subseteq N$, we are done. Suppose $r L \nsubseteq N$. Then $t L \subseteq N$. We show that $I \subseteq(K: r) \cup(N: L)$. Let $\beta \in I$. If $2 r \beta L \nsubseteq(N: M) N$, then by Lemma $2.4, r \beta \in K$ or $r L \subseteq N$ or $\beta L \subseteq N$. Since $r L \nsubseteq N, \beta \in(K: r) \cup(N: L)$. Suppose $2 r \beta L \subseteq(N: M) N$. Then $2 r(t+\beta) L \subseteq N-(N: M) N$ and then Lemma $2.4, r(t+\beta) \in K$ or $r L \subseteq N$ or $(t+\beta) L \subseteq N$. Since $r L \nsubseteq N,(t+\beta) \in(K: r) \cup(N: L)$. If $t+\beta \in(N: L)$, then since $t \in(N: L), \beta \in(N: L)$. Suppose $t+\beta \in(K: r)-(N: L)$. Now, $2 r(2 t+\beta) L \nsubseteq(N: M) N$ and $2 r(2 t+\beta) L \subseteq N$. Since $r t \notin K$ and $r(t+\beta) \in K$, $r(2 t+\beta) \notin K$. So, by Lemma 2.4, $L \subseteq\left(N:_{M} r\right) \cup\left(N:_{M} 2 t+\beta\right)$. Since $t+\beta \notin(N: L)$ and $t \in(N: L), 2 t+\beta \notin(N: L)$ and then $L \subseteq(N: r)$ which is a contradiction. So, $t+\beta \in(N: L)$ and since $t \in(N: L), \beta \in(N: L)$. Thus, $I \subseteq(K: r) \cup(N: L)$ and since $r I \nsubseteq K, I L \subseteq N$.

Theorem 2.6 Let A, B be two ideals of R. Suppose M is an R-module and N be an almost 2 -absorbing R-submodule of M. If L is an R-submodule of M such that $A B L \subseteq N-(N: M) N$ and $8(A B+(A+B)(N: M))(L+N) \nsubseteq(N: M) N$, then $A B \subseteq(N: M)$ or $A L \subseteq N$ or $B L \subseteq N$.

Proof. We study three cases:
Case 1. $8 A B L \nsubseteq(N: M) N$. Then there exists $r \in B$ such that $8 r A L \nsubseteq$ $(N: M) N$ and then $4 r A L \nsubseteq(N: M) N$. By Lemma 2.4, $r A \subseteq(N: M)=K$ or $r L \subseteq N$ or $A L \subseteq N$. If $A L \subseteq N$, then we are done. Suppose $A L \nsubseteq N$. Then $r \in(K: A) \cup(N: L)$. We show that $B \subseteq(K: A) \cup(N: L)$. Let $s \in B$. If $4 s A L \nsubseteq(N: M) N$, then by Lemma $2.4, s \in(K: A) \cup(N: L)$ as $A L \nsubseteq N$. Suppose $4 s A L \subseteq(N: M) N$. Then $4(r+s) A L \subseteq N-(N: M) N$ and then by Lemma 2.4, $r+s \in(K: A) \bigcup(N: L)$ as $A L \nsubseteq N$. We study four subcases:

Subcase 1. $r+s \in(K: A)$ and $r \in(K: A)$. Then $s \in(K: A)$.
Subcase 2. $r+s \in(N: L)$ and $r \in(N: L)$. Then $s \in(N: L)$.
Subcase 3. $r \in(K: A)-(N: L)$ and $r+s \in(N: L)-(K: A)$. Then $2 r+s \notin(K: A)$ and $2 r+s \notin(N: L)$ and then $2 r+s \notin(K: A) \cup(N: L)$. Now, $4(2 r+s) A L \nsubseteq(N: M) N$ and hence by Lemma 2.4, $2 r+s \in(K: A) \cup(N: L)$ as $A L \nsubseteq N$, which is a contradiction. As $r \in(K: A) \cup(N: L)$ and $r+s \in(K: A)$ $\cup(N: L)$, we have two situations:
(1) $r \in(N: L)$ and $r+s \in(N: L)-(K: A)$, so $s \in(N: L)$.
(2) $r \in(K: A)-(N: L)$ and $r+s \in(K: A)$, so $s \in(K: A)$.

Subcase 4. $r+s \in(K: A)-(N: L)$ and $r \in(N: L)-(K: A)$. Then, as Subcase $3, s \in(K: A) \cup(N: L)$. Thus, $B \subseteq(K: A) \cup(N: L)$.

Case 2. $8 A B N \nsubseteq(N: M) N$ and $8 A B L \subseteq(N: M) N$. Then $8 A B(L+N) \subseteq$ $N-(N: M) N$ and then, by Case $1, B A \subseteq(N: M)$ or $B(L+N) \subseteq N$ or $A(L+N) \subseteq N$ and then $B A \subseteq(N: M)$ or $B L \subseteq N$ or $A L \subseteq N$.

Case 3. $8 B(N: M) L \nsubseteq(N: M) N$ and $8 A B L \subseteq(N: M) N$. Then, $8 B(A+(N: M)) L \nsubseteq(N: M) N$ and then, by Case $1,8(A+(N: M)) \subseteq(N: M)$ or $B L \subseteq N$ or $(A+(N: M)) L \subseteq N$ which implies that $B A \subseteq(N: M)$ or $B L \subseteq N$ or $A L \subseteq N$. Similarly, if $8 A(N: M) L \nsubseteq(N: M) N$.

Theorem 2.7 Let M be an R-module and N be an almost 2-absorbing R-submodule of M. Suppose $r, s \in R$ and $m \in M$ such that $r s m \in(N: M) N$, $r s \notin(N: M), r m \notin N$ and $s m \notin N$. Then $r s N \subseteq(N: M) N$.

Proof. Suppose $r s N \nsubseteq(N: M) N$. Then there exists $n \in N$ such that $r s n \notin$ $(N: M) N$ and then $r s(m+n) \in N-(N: M) N$. Since N is almost 2-absorbing, $r s \in(N: M)$ or $r(m+n) \in N$ or $s(m+n) \in N$ and then $r s \in(N: M)$ or $r m \in N$ or $s m \in N$ which are contradiction. Hence, $r s N \subseteq(N: M) N$.

Proposition 2.8 Let (R, M) be a quasi-local ring. Then every proper ideal of R is almost 2-absorbing ideal if $M^{3}=0$.

Proof. Let $a, b, c \in M$ with $a b c \neq 0$. Since $a b c \neq 0$ then $a b c \in M-M^{2}$. So $a b \in M$ or $a c \in M$, or $b c \in M$ then a or b, or c is not in M, which is a contradiction. Hence $a b c=0$.

References

[1] Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75 (2007), 417-429.
[2] Badawi, A., Yousefian Darani, A., On weakly 2-absorbing ideals of commutative rings, Houston J. Math. To appear.
[3] Yousefian Darani, A., Soheilnia, F., 2-Absorbing and weakly 2absorbing submodules, Thai Journal of Mathematics, 9 (2011), 577-584.
[4] Anderson, D.D., Smith, E., Weakly prime ideals, Houston J. Math., 29 (2003), 831-840.
[5] Anderson, D.D., Bataineh, M., Generalizations of prime ideals, Comm. Algebra, 36 (2008), 686-696.
[6] Khashan, H., On Almost prime submodules, Acta Math. Sci., 32B (2012), 645-651.
[7] Bhatwadekar, M.S., Sharma, P.K., Unique factorization and birth of almost primes, Comm. Algebra, 33 (2005), 43-49.
[8] Moradi, S., Azızı, A., 2-Absorbing and n-weakly prime submodules, Miskolc Mathematical Notes, 13 (2012), 75-86.

Accepted: 20.06.2016

[^0]: ${ }^{1}$ Corresponding author.

