Rasheed AjalaColumbia University | CU
Rasheed Ajala
Doctor of Philosophy
About
13
Publications
3,979
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
55
Citations
Introduction
Skills and Expertise
Publications
Publications (13)
Intraplate regions commonly host energetic earthquakes on less-prominent fault zones, raising questions on how fault structure may influence intraplate seismogenesis. Here, we investigate the causative fault of the strongly-felt April 5, 2024 Mw4.8 New Jersey Earthquake which occurred near the misoriented 300-km long Ramapo Fault. Field mapping of...
We investigate the upper-crustal structure of the Rukwa–Tanganyika rift zone in East Africa, where the Tanganyika rift interacts with the Rukwa and Mweru-Wantipa rift tips, evidenced by prominent fault scarps and seismicity across the rift interaction zones. We invert earthquake P-wave and S-wave travel times to produce 3D upper-crustal velocity mo...
Tectonic forces alone cannot drive rifting in old and thick continental lithosphere. Geodynamic models suggest that thermal weakening is critical for lithospheric extension, yet many active rifts lack volcanism, seeming to preclude this process. We focus on one such rift, the Tanganyika-Rukwa segment of the East African Rift System, where we analyz...
We investigate the upper-crustal structure of the Rukwa-Tanganyika Rift Zone, East Africa, where earthquakes anomalously cluster at the northwestern tip of the Rukwa Rift, the eastern tip of the Mweru-Wantipa Rift, and along the Tanganyika Rift axis. The current rift tips host distributed faulting in exposed basement with little sedimentation. Here...
We investigate the upper-crustal structure of the Rukwa-Tanganyika Rift Zone, East Africa, where earthquakes anomalously cluster at the northwestern tip of the Rukwa Rift, the eastern tip of the Mweru-Wantipa Rift, and along the Tanganyika Rift axis. The current rift tips host distributed faulting in exposed basement with little sedimentation. Here...
We investigate the upper-crustal structure of the Rukwa-Tanganyika Rift Zone, East Africa, where earthquakes anomalously cluster at the northwestern tip of the Rukwa Rift, the eastern tip of the Mweru-Wantipa Rift, and along the Tanganyika Rift axis. The current rift tips host distributed faulting in exposed basement with little sedimentation. Here...
Accurately predicting the seismic wavefield is important for physics-based earthquake hazard studies and is dependent on an accurate source model, a good model of the subsurface geology, and the full physics of wave propagation. Here, we conduct numerical experiments to investigate the effect of different representations of the Southern California...
Cost-effective strategies for enhancing seismic velocity models are an active research topic. The recently developed hybridization technique shows promise in improving models used for deterministic earthquake hazard evaluation. We augment the results of Ajala and Persaud (2021) by exploring other hybrid models generated using 13 sets of embedding p...
Updating Earth models used by the scientific community in geologic studies and hazard assessment has a significant societal impact but is computationally prohibitive due to the large spatial scale. The advent of urban seismology allowed rapid development of local high‐resolution models using short‐term dense seismic arrays to become conventional. T...
Yangon has a population of over seven million and is one of
the fastest growing cities in Myanmar. Like many of
Myanmar’s large cities, it is located in close proximity to the
Sagaing fault, a major strike-slip fault in Southeast Asia that
has historically produced magnitude >7 earthquakes. In
addition, the Indo-Myanmar region hosts complex tectoni...
We evaluate the accuracy of earth models developed in the Salton Trough, Southern California in ground motion prediction.
The Coachella Valley in the northern Salton Trough is known to produce destructive earthquakes, making it a high seismic hazard area. Knowledge of the seismic velocity structure and geometry of the sedimentary basins and fault zones is required to improve earthquake hazard estimates in this region. We simultaneously inverted first P wave travel tim...