• Home
  • Raphael Marschall
Raphael Marschall

Raphael Marschall
  • PhD in Physics, www.spaceMarschall.net
  • PostDoc Position at CNRS Observatoire de la Côte d'Azur

About

88
Publications
9,893
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,430
Citations
Current institution
CNRS Observatoire de la Côte d'Azur
Current position
  • PostDoc Position
Additional affiliations
April 2019 - present
Southwest Research Institute, Boulder, CO, USA
Position
  • PostDoc Position
August 2017 - February 2019
International Space Science Institute
Position
  • PostDoc Position
Description
  • The Multi-instrument Analysis of Rosetta Data (MiARD) project seeks to provide an integrated description of the physical and chemical properties of the nucleus of comet 67P/CG using date from the Rosetta orbiter and lander, a mission conducted by the ESA.
May 2013 - July 2017
University of Bern
Position
  • PhD Student
Description
  • Doctoral thesis: Inner gas and dust comae of comets: Building a 3D simulation pipeline to understand multi instrument results from the Rosetta mission to comet 67P/Churyumov-Gerasimenko

Publications

Publications (88)
Preprint
Full-text available
Comets, asteroids, and other small bodies are thought to be remnants of the original planetesimal population of the Solar System. As such, their physical, chemical, and isotopic properties hold crucial details on how and where they formed and how they evolved. Yet, placing precise constraints on the formation region of these bodies has been challen...
Article
Full-text available
Aims . This paper focuses on how insolation affects the nucleus of comet 67P/Churyumov-Gerasimenko over its current orbit. We aim to better understand the thermal environment of the nucleus, in particular its surface temperature variations, erosion, relationship with topography, and how insolation affects the interior temperature for the location o...
Article
Full-text available
Aims . The objective of this work is to study the influence of a highly non-isothermal porous dust layer on the formation of a comet’s inner coma. We studied the water gas activity of comet 67P/Churyumov-Gerasimenko to find a link between the gas properties around the comet and the properties of the dust surface crust. The effects on the radiative...
Article
Full-text available
We report the detection of 239 trans-Neptunian objects discovered through the ongoing New Horizons survey for distant minor bodies being performed with the Hyper Suprime-Cam mosaic imager on the Subaru Telescope. These objects were discovered in images acquired with either the r 2 or the recently commissioned EB- gri filter using shift and stack ro...
Article
Full-text available
Context. The formation and evolution of protoplanetary disks remains elusive. We have numerous astronomical observations of young stellar objects of different ages with their envelopes and/or disks. Moreover, in the last decade, there has been tremendous progress in numerical simulations of star and disk formation. New simulations use realistic equ...
Poster
Full-text available
Presentation of ComMoDE software for modelling coma comet for supporting comet fly-by.
Preprint
We present a plausible and coherent view of the evolution of the protosolar disk that is consistent with the cosmochemical constraints and compatible with observations of other protoplanetary disks and sophisticated numerical simulations. The evidence that high-temperature condensates, CAIs and AOAs, formed near the protosun before being transporte...
Article
Full-text available
Aims . We investigate the ability of a simultaneous fitting of comet 67P/Churyumov-Gerasimenko’s non-gravitational forces, torques, and total water-outgassing rate, as observed by Rosetta, to constrain complex thermophysical models of cometary material. Methods . We extend the previous work of fitting geographically defined surface outgassing model...
Preprint
Full-text available
We investigate the ability of a simultaneous fitting of comet 67P/Churyumov-Gerasimenko's non-gravitational forces, torques and total water-outgassing rate, as observed by Rosetta, to constrain complex thermophysical models of cometary material. We extend the previous work of fitting geographically defined surface outgassing models to the Rosetta o...
Preprint
We report the detection of 239 trans-Neptunian Objects discovered through the on-going New Horizons survey for distant minor bodies being performed with the Hyper Suprime-Cam mosaic imager on the Subaru Telescope. These objects were discovered in images acquired with either the r2 or the recently commissioned EB-gri filter using shift and stack rou...
Article
Full-text available
Asteroids with diameters less than about 5 km have complex histories because they are small enough for radiative torques (that is, YORP, short for the Yarkovsky–O’Keefe–Radzievskii–Paddack effect)¹ to be a notable factor in their evolution². (152830) Dinkinesh is a small asteroid orbiting the Sun near the inner edge of the main asteroid belt with a...
Article
Full-text available
Context . The process of gas-driven ejection of refractory materials from cometary surfaces continues to pose a challenging question in cometary science. The activity modeling of comet 67P/Churyumov-Gerasimenko, based on data from the Rosetta mission, has significantly enhanced our comprehension of cometary activity. But thermophysical models have...
Article
Full-text available
Context. One of the primary goals of the European Space Agency’s Rosetta mission to comet 67P/Churyumov-Gerasimenko was to investigate the mechanisms responsible for cometary activity. Aims. Our aim is to learn more about the ejection process of large refractory material by studying the dynamics of decimeter-sized dust particles in the coma of 67P...
Article
Full-text available
Plain Language Summary Comets are composed of some of the most primitive materials in the solar system, having spent most of their lifetimes in the far reaches of the outer solar system, shielded from the Sun's radiation. Jupiter Family Comets (JFCs) are a class of comets that get pulled into the inner solar system due to Jupiter's gravity. While J...
Article
Full-text available
Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are...
Article
Full-text available
The origin of the Jupiter Trojan asteroids has long been a mystery. Dynamically, the population, which is considerably smaller than the main asteroid belt, librates around Jupiter’s stable L4 and L5 Lagrange points, 60 deg ahead and behind Jupiter. It is thought that these bodies were captured into these orbits early in solar system history, but an...
Poster
Full-text available
I am proud to announce the delivery to the European Space Agency of ComMoDE (Cometary Model of Dust Environments), a tool dedicated to the prediction of dust environments for future cometary missions. ComMoDE has been developed by ISA, OPTIMAD, and University of Bern for supporting the Comet Interceptor Project.
Preprint
Deriving properties of cometary nuclei from coma data is of significant importance for our understanding of cometary activity and has implications beyond. Ground-based data represent the bulk of measurements available for comets. Yet, to date these observations only access a comet's gas and dust coma at rather large distances from the surface and d...
Article
Full-text available
Context. Understanding planetesimal formation is an essential first step towards understanding planet formation. The distribution of these first solid bodies drives the locations where planetary embryos, which eventually form fully-fledged planets, grow. Aims. We seek to understand the parameter space of possible protoplanetary disk formation and e...
Preprint
Full-text available
Understanding planetesimal formation is an essential first step to understanding planet formation. The distribution of these first solid bodies will drive the locations where planetary embryos can grow. We seek to understand the parameter space of possible protoplanetary disk formation and evolution models of our Solar System. A good protoplanetary...
Article
Full-text available
Comets are generally considered among the most pristine objects in our Solar System. There have thus been significant efforts to understand these bodies. During the past decades, we have seen significant progress in our theoretical understanding of planetesimal/cometesimals (the precursors of comets) formation. Recent space missions—such as ESA’s R...
Article
Full-text available
Aims . Understanding the activity is vital for deciphering the structure, formation, and evolution of comets. We investigate models of cometary activity by comparing them to the dynamics of 67P/Churyumov-Gerasimenko. Methods . We matched simple thermal models of water activity to the combined Rosetta datasets by fitting to the total outgassing rate...
Preprint
Full-text available
Aims. Understanding the activity is vital for deciphering the structure, formation, and evolution of comets. We investigate models of cometary activity by comparing them to the dynamics of 67P/Churyumov-Gerasimenko. Methods. We matched simple thermal models of water activity to the combined Rosetta datasets by fitting to the total outgassing rate a...
Article
Full-text available
Context. An assessment of the dust environment of a comet is needed for data analysis and planning spacecraft missions, such as ESA’s Comet Interceptor (CI) mission. The distinctive feature of CI is that the target object will be defined shortly before (or even after) launch; as a result, the properties of the nucleus and dust environment are poorl...
Preprint
Full-text available
In this work, we model the collisional evolution of the Jupiter Trojans and determined under which conditions the Eurybates-Queta system survives. We show that the collisional strength of the Jupiter Trojans and the age of the Eurybates family and by extension Queta are correlated. The collisional grinding of the Jupiter Trojan population over 4.5...
Preprint
Full-text available
We present a statistical approach to assess the dust environment for a yet unknown comet (or when its parameters are known only with large uncertainty). This is of particular importance for missions such as ESA's Comet Interceptor mission to a dynamically new comet. We find that the lack of knowledge of any particular comet results in very large un...
Article
Full-text available
Large portions of comet 67P/Churyumov–Gerasimenko’s northern hemisphere are blanketed by fallback material consisting of centimeter-sized particles termed the smooth terrains. Observations from the Rosetta mission show that the most drastic transient changes during 67P’s 2015 perihelion passage occurred within a subset of these deposits. However, w...
Article
The attitude perturbations caused by large dust particle impacts on a three-axis stabilised spacecraft during a high velocity encounter with a comet are studied. Specifically, a numerical model is used to make order of magnitude estimations in relation to the European Space Agency’s Comet Interceptor mission and help constrain requirements for guid...
Conference Paper
Full-text available
The Origo mission was submitted in response to the 2021 call for a Medium-size mission opportunity in ESA's Science Programme.The goal of Origo is to inform and challenge planetesimal formation theories. Understanding how planetesimals form in protoplanetary disks is arguably one of the biggest open questions in planetary science. To this end, it i...
Article
Aims. The aim of this work is to investigate the parameters influencing the generation of the inner comae of a comet with a spherical nucleus and to model the gas activity distribution around its nuclei. Here, we investigate the influence of thermal conductivity combined with sub-surface H 2 O and CO 2 -ice sources on insolation-driven sublimation...
Article
Full-text available
A recent work aided by Rosetta in situ measurements set constraints on the dust-to-gas mass emission ratio and the size distribution of dust escaping the nucleus of comet 67P/Churyumov–Gerasimenko near perihelion. Here we use this information along with other observables/parameters as input into an analytical model aimed at estimating the number de...
Article
Strong heterogeneities in the composition of the volatile species have been detected in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) by the ROSINA instrument onboard the ESA’s Rosetta spacecraft. However, it is not clear if these heterogeneities are indicative of heterogeneities in the near-surface nucleus composition or if the coma compos...
Article
Full-text available
Planetesimals are compact astrophysical objects roughly 1–1000 km in size, massive enough to be held together by gravity. They can grow by accreting material to become full-size planets. Planetesimals themselves are thought to form by complex physical processes from small grains in protoplanetary disks. The streaming instability (SI) model states t...
Article
Full-text available
A comet is a highly dynamic object, undergoing a permanent state of change. These changes have to be carefully classified and considered according to their intrinsic temporal and spatial scales. The Rosetta mission has, through its contiguous in-situ and remote sensing coverage of comet 67P/Churyumov-Gerasimenko (hereafter 67P) over the time span o...
Preprint
Planetesimals are compact astrophysical objects roughly 1-1000 km in size, massive enough to be held together by gravity. They can grow by accreting material to become full-size planets. Planetesimals themselves are thought to form by complex physical processes from small grains in protoplanetary disks. The streaming instability (SI) model states t...
Article
The Jovian Trojans are two swarms of objects located around the L4 and L5 Lagrange points. The population is thought to have been captured by Jupiter during the Solar system’s youth. Within the swarms, six collisional families have been identified in previous work, with four in the L4 swarm, and two in the L5. Our aim is to investigate the stabilit...
Article
We have determined the dust coma brightness ratio between the dayside and the nightside (DS:NS) in OSIRIS images of comet 67P/Churyumov-Gerasimenko and compared them to results from numerical dust coma simulations to learn more about the dynamic processes that are involved in coma formation. The primary focus of this paper lies in the analysis of a...
Article
Full-text available
In this work, we present results that simultaneously constrain the dust size distribution, dust-to-gas ratio, fraction of dust re-deposition, and total mass production rates for comet 67P/Churyumov-Gerasimenko. We use a 3D Direct Simulation Monte Carlo (DSMC) gas dynamics code to simulate the inner gas coma of the comet for the duration of the Rose...
Preprint
In this work, we present results that simultaneously constrain the dust size distribution, dust-to-gas ratio, fraction of dust re-deposition, and total mass production rates for comet 67P/Churyumov-Gerasimenko. We use a 3D Direct Simulation Monte Carlo (DSMC) gas dynamics code to simulate the inner gas coma of the comet for the duration of the Rose...
Article
For problems in astrophysics, planetary science, and beyond, numerical simulations are often limited to simulating fewer particles than in the real system. To model collisions, the simulated particles (a.k.a. superparticles) need to be inflated to represent a collectively large collisional cross section of real particles. Here we develop a superpar...
Preprint
Full-text available
The Jovian Trojans are two swarms of objects located around the L$_4$ and L$_5$ Lagrange points. The population is thought to have been captured by Jupiter during the Solar system's youth. Within the swarms, six collisional families have been identified in previous work, with four in the L$_4$ swarm, and two in the L$_5$. Our aim is to investigate...
Preprint
The European Space Agency's (ESA) Rosetta mission has returned a vast data set of measurements of the inner gas coma of comet 67P/Churyumov-Gerasimenko. These measurements have been used by different groups to determine the distribution of the gas sources at the nucleus surface. The solutions that have been found differ from each other substantiall...
Preprint
For problems in astrophysics, planetary science and beyond, numerical simulations are often limited to simulating fewer particles than in the real system. To model collisions, the simulated particles (aka superparticles) need to be inflated to represent a collectively large collisional cross section of real particles. Here we develop a superparticl...
Article
Full-text available
This chapter reviews the estimates of the dust-to-gas and refractory-to-ice mass ratios derived from Rosetta measurements in the lost materials and the nucleus of 67P/Churyumov-Gerasimenko, respectively. First, the measurements by Rosetta instruments are described, as well as relevant characteristics of 67P. The complex picture of the activity of 6...
Article
Full-text available
The European Space Agency's (ESA) Rosetta mission has returned a vast data set of measurements of the inner gas coma of comet 67/Churyumov-Gerasimenko. These measurements have been used by different groups to determine the distribution of the gas sources at the nucleus surface. The solutions that have been found differ from each other substantially...
Article
Full-text available
Rosetta observations of 67P/Churyumov‐Gerasimenko (67P) reveal that most changes occur in the fallback‐generated smooth terrains, vast deposits of granular material blanketing the comet's northern hemisphere. These changes express themselves both morphologically and spectrally across the nucleus, yet we lack a model that describes their formation a...
Article
Full-text available
Context. On 27 April 2015, when comet 67P/Churyumov-Gerasimenko was at 1.76 au from the Sun and moving toward perihelion, the OSIRIS and VIRTIS-M instruments on board the Rosetta spacecraft simultaneously observed the evolving dust and gas coma during a complete rotation of the comet. Aims: We aim to characterize the spatial distribution of dust, H...
Article
Our aim is to investigate early activity (2014 July) of 67P/C–G with 3D coma and radiative transfer modeling of Microwave Instrument on the Rosetta Orbiter (MIRO) measurements, accounting for nucleus shape, illumination, and orientation of the comet. We investigate MIRO line shape information for spatial distribution of water activity on the nucleu...
Conference Paper
Numerical models are powerful tools for understanding the connection between the emitted gas and dust from the surface of comets and the subsequent expansion into space where remote sensing instruments can perform measurements. We will present such a predictive model which can provide synthetic measurements for multiple instruments (ROSINA, MIRO, V...
Preprint
Full-text available
Rosetta observations of 67P/Churyumov-Gerasimenko (67P) reveal that most changes occur in the fallback-generated smooth terrains, vast deposits of granular material blanketing the comet's northern hemisphere. These changes express themselves both morphologically and spectrally across the nucleus, yet we lack a model that describes their formation a...
Article
The Rosetta spacecraft has provided invaluable and unexpected information about cometary outgassing. The on-board instruments ROSINA, MIRO, and VIRTIS showed non-uniform outgassing of H2O over the surface of the nucleus. Rarefied gas flows display remarkable flow phenomena that may help explain diverse physical observations and models have been use...
Article
Full-text available
Context. On 27 April 2015, when comet 67P/Churyumov-Gerasimenko was at 1.76 au from the Sun and moving toward perihelion, the OSIRIS and VIRTIS-M instruments on board the Rosetta spacecraft simultaneously observed the evolving dust and gas coma during a complete rotation of the comet. Aims. We aim to characterize the spatial distribution of dust, H...
Preprint
On 27 Apr 2015, when 67P/C-G was at 1.76 au from the Sun and moving towards perihelion, the OSIRIS and VIRTIS-M instruments on Rosetta observed the evolving dust and gas coma during a complete rotation of the comet. We aim to characterize the dust, H2O and CO2 gas spatial distribution in the inner coma. To do this we performed a quantitative analys...
Article
Full-text available
Comets are made of volatile and refractory material and naturally experience various degrees of sublimation as they orbit around the Sun. This gas release, accompanied by dust, represents what is traditionally described as activity. Although the basic principles are well established, most details remain elusive, especially regarding the mechanisms...
Preprint
Comets are made of volatile and refractory material and naturally experience various degrees of sublimation as they orbit around the Sun. This gas release, accompanied by dust, represents what is traditionally described as activity. Although the basic principles are well established, most details remain elusive, especially regarding the mechanisms...
Article
Full-text available
We have used the latest available shape model for gas and dust simulations of the inner coma of comet 67P/Churyumov-Gerasimenko for the period around May 2015 (equinox). We compare results from a purely insolation-driven model with a complementary set of observations made by ROSINA, VIRTIS, MIRO, and OSIRIS within the same period. The observations...
Preprint
Full-text available
Our aim is to investigate early activity (July 2014) of 67P/CG with 3D coma and radiative transfer modeling of MIRO measurements, accounting for nucleus shape, illumination, and orientation of the comet. We investigate MIRO line shape information for spatial distribution of water activity on the nucleus during the onset of activity. During this per...
Conference Paper
Full-text available
Numerical models are powerful tools for understanding the connection between the emitted gas and dust from the surface of comets and the subsequent expansion into space where remote sensing instruments can perform measurements. We will present such a predictive model which can provide synthetic measurements for multiple instruments on board ESA's R...
Conference Paper
From August 2014 to September 2016 ESA's Rosetta spacecraft escorted comet 67P/Chury-umov-Gerasimenko (hereafter 67P) on its journey into the inner solar system and out again. The mission provides, via various dust and gas instruments, unprecedented data on the nature of cometary activity. The determination of the activity distribution on the surfa...
Article
Full-text available
We performed an investigation of a comet like porous surface to study how sub-surface sublimation with subsequent flow through the porous medium can lead to higher gas temperatures at the surface. A higher gas temperature of the emitted gas at the surface layer, compared to the sublimation temperature, will lead to higher gas speeds as the gas expa...
Article
Full-text available
The previously defined regions on the nucleus of comet 67P/Churyumov-Gerasimenko have been mapped back onto the 3D SHAP7 model of the nucleus (Preusker et al., 2017). The resulting regional definition is therefore self-consistent with boundaries that are well defined in 3 dimensions. The facets belonging to each region are provided as supplementary...
Article
Rosetta has detected water ice existing on the surface of Comet 67P/Churyumov-Gerasimenko in various types of features. One of particular interest is the frost-like layer observed at the edge of receding shadows during the whole mission, interpreted as the recondensation of a thin layer of water ice. Two possible mechanisms, (1) subsurface ice subl...
Article
Full-text available
The Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) onboard the European Space Agency's Rosetta spacecraft acquired images of comet 67P/Churyumov–Gerasimenko (67P) and its surrounding dust coma starting from May 2014 until September 2016. In this paper we present methods and results from analysis of OSIRIS images regarding the d...
Article
Full-text available
Context. This paper describes the modelling of gas and dust data acquired in the period August to October 2014 from the European Space Agency's Rosetta spacecraft when it was in close proximity to the nucleus of comet 67P/Churyumov-Gerasimenko. Aims. With our 3D gas and dust comae models this work attempts to test the hypothesis that cliff activity...
Article
Full-text available
the paper describes the modelling of gas and dust data acquired in August to October 2014 from the European Space Agency's Rosetta spacecraft when it was in close proximity to the nucleus of comet 67P/Churyumov-Gerasimenko
Article
Aims. The OSIRIS camera on board the Rosetta spacecraft has been acquiring images of the comet 67P/Churyumov-Gerasimenko (67P)’s nucleus since August 2014. Starting in May 2015, the southern hemisphere gradually became illuminated and was imaged for the first time. Here we present the regional morphology of the southern hemisphere, which serves as...
Article
Full-text available
Context. This paper describes the initial modelling of gas and dust data acquired in August and September 2014 from the European Space Agency's Rosetta spacecraft when it was in close proximity to the nucleus of comet 67P/Churyumov-Gerasimenko. Aims. This work is an attempt to provide a self-consistent model of the innermost gas and dust coma of th...
Article
Full-text available
Direct Simulation Monte Carlo (DSMC) is a powerful numerical method to study rarefied gas flows such as cometary comae and has been used by several authors over the past decade to study cometary outflow. However, the investigation of the parameter space in simulations can be time consuming since 3D DSMC is computationally highly intensive. For the...
Article
Full-text available
Since OSIRIS started acquiring high-resolution observations of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, over one hundred meter-sized bright spots have been identified in numerous types of geomorphologic regions, but mostly located in areas receiving low insolation. The bright spots are either clustered, in debris fields close...
Article
Context. We present an investigation of the surface properties of areas on the nucleus of comet 67P/Churyumov-Gerasimenko. Aims. We aim to show that transport of material from one part of the cometary nucleus to another is a significant mechanism that influences the appearance of the nucleus and the surface thermal properties. Methods. We used data...
Article
Full-text available
Aims. The OSIRIS camera onboard the Rosetta spacecraft has been acquiring images of the comet 67P/Churyumov-Gerasimenko (67P)’s nucleus at spatial resolutions down to ~0.17 m/px ever since Aug. 2014. These images have yielded unprecedented insight into the morphological diversity of the comet’s surface. This paper presents an overview of the region...
Article
The Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) experiment onboard the Rosetta spacecraft currently orbiting comet 67P/Churyumov-Gerasimenko has yielded unprecedented views of a comet's nucleus. We present here the first ever observations of meter-scale fractures on the surface of a comet. Some of these fractures form polygo...
Article
Full-text available
We present an investigation of the surface properties of areas on the nucleus of comet 67P/Churyumov-Gerasimenko. Aims. We aim to show that transport of material from one part of the cometary nucleus to another is a significant mechanism that influences the appearance of the nucleus and the surface thermal properties. Methods. We used data from the...

Network

Cited By