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Abstract

An approach is presented to the construction of a liquid rocket Health
Monitoring (HM) system capable of using both, vibratory and thermo-
dynamic data. Preliminary results are obtained in the area of vibration
data tracking/identification, using as a test bed a low-order linear
dynamic model of the Space Shuttle Main Engine (SSME) High Pres-
sure Fuel Turbopump (HPFTP). Limitations and future extensions are
discussed.
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1. Introduction

Liquid propellant rocket engines operate at extremely
high power loadings, making component failures both,
more likely than in other machinery, and very costly in
their consequences. Because of this, substantial efforts
have been made to extract as much information as possi-
ble from the limited suite of instruments providing data
during firings. The objectives are (a) to accurately assess
the health status of an engine, (b) to diagnose by post-
event data analysis the cause of an anomaly, and/or (c)
to provide real-time feedback to engine controllers.
Several approaches have been tested using the Space
Shuttle Main Engine (SSME) as a test bed. These
include statistical approaches based on engine test his-
tory [1], analytic redundancy [2], neural networks[3]
and model-based techniques [4, 5].
_______________________
1 Presented at the 34th AIAA/ASME/SAE/ASEE Joint Pro-

pulsion Conference, Cleveland OH, July 1998. Work sup-
ported by the Charles Stark Draper Laboratory, Cambridge,
MA.

2 Department of Aeronautics and Astronautics, Massachu-
setts Institute of Technology, Cambridge, MA.

3 Department of Mechanical Engineering, M.I.T. and Control
and Dynamical Systems Division, C.S. Draper Laboratory,
Cambridge.

4 Control and Dynamical Systems Division, C.S. Draper Lab-
oratory, Cambridge.

In all cases, the data and models have been related
what could be called the engine thermodynamic sta
(pressures, flows, temperatures, shaft speeds), w
heavily damped dynamics. Thus, except for possib
applications during rapid commanded transients, the
methods manipulate essentially steady-state engine v
ables. The engines, however, have rich lightly dampe
vibratory spectra, including both, rotordynamic and ca
modes. Accelerometer or strain gauge data on the
vibrations are routinely used in a “red-line” mode only
although occasional model comparisons are perform
off-line during anomaly investigations.

Techniques for modal identification of lightly dampe
structures are well developed, led by spacecraft applic
tions [6]. By itself, one of these methods (used in co
junction with an array of advanced microsensors) cou
provide valuable engine health information, giving, fo
example, advance warning of incipient rubs, bearin
degradation or inducer cavitation. Further, fluid-derive
inputs to the vibration dynamics are clearly influence
by the thermodynamic state and the power and spe
levels of the engine, so that joint use of both, vibrato
and thermodynamic monitoring algorithms is desirable

One difficulty in the path of this unified Health Monitor-
ing (HM) system is the large difference in time scales
the thermodynamic vs. the vibratory data. The form
1
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can be sampled, as in the SSME data system, at 50 Hz,
which, as shown in [5], is sufficient for discriminating
model-based diagnostics. The latter would require on
the order of a few kHz, since the basic SSME modes are
in the range of 200-1000 Hz; this information is nor-
mally stored in analog form for post-test analysis.

In order to combine these two sources of information, a
separate layer of processing is required to generate rele-
vant “slowly varying” vibratory information which can
then be co-processed together with the thermodynamic
data. The general structure of a HM system based on

this notion is shown in Fig. 1. For successful implemen
tation, the vibration tracking and identification algo
rithm should be both computationally economical an
robust to the noisy and complex environment of a rock
engine. The Vibration and Rotordynamic Model runnin
concurrently (with inputs from the Thermodynamic
Model) has as its purpose to provide additional inform
tion to help the final filtering stage refine its estimate
and generate accurate diagnoses. All data and mo
results would, of course, feed into this filter synchro
nously, at the lower rate (say, 50 Hz.)
Figure 1. Conceptual unified HM system
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This is clearly an ambitious global program. In this
paper we restrict our attention to initial versions of the
vibration and rotordynamic model and the vibration
tracking and identification algorithm (for which, inci-
dentally, the model can serve as a test bed during devel-
opment.) Left for future work is the synthesis (filtering)
stage, as well as many necessary improvements in the
vibration signal processing, which will be pointed out in

the context of several examples of application of on
state-of-the-art algorithm.

This analysis is expected to lead to eventual integrati
with our related work on thermodynamic modeling [5
into a comprehensive health monitoring system th
could be applied to any RLV (Reusable Launch Vehicl
rocket engine.
2
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2. Rotordynamic Model for the HPFTP

The High Pressure Fuel Turbopump (HPFTP) rotor con-
sists of a complex assembly of different parts as shown
in Fig. 2.

Figure 2. HPFTP rotor - adapted from [7]

There are three centrifugal pump stages mounted on a
single beam. One extreme of the beam is held by a bear-
ing (pump bearing) which is attached to the rotor casing,
the other extreme is fastened to the turbine’s second and
first stages. A second bearing (turbine bearing) is
mounted at the end of the turbine’s first stage. Modeling
of a system such as this is done in different ways
depending on the accuracy required for the physical rep-
resentation in a particular application. Our model’s main
purpose here is to serve as a testbed for the tracking/
identification algorithms, we therefore can relax the pre-
cision requirements of more complicated finite element
and nonlinear calculations [7, 8, 9].

Figure 3. Simplified model of the HPFTP. Pointp
represents the location of an hypothetical acceler-
ometer used in this study.

We have chosen to perform the derivation of the equa-
tions of motion using the Lagrangian formalism which
has the advantage of presenting, in a very clear form, the
physical interactions involved in the system’s dynamics.
In our simplified lumped version, the pumps and tur-
bines are considered as solid thin discs mounted over a

single symmetric beam with a certain density per un
length (ρb), geometrical moment of inertia (I), modulus
of elasticity (E) and length (L) as shown in Fig. 3. The
disc positions over the shaft (xj), masses (mj) and trans-
versal moments of inertia (Jj) were extracted from [7].

The bearings are substituted by elastic springs (w
constantsk1 and k2) and damping devices (c1 and c2)
which are attached to a heavy bar of density per u
length (ρc) and moment of inertia (Jc). This bar is con-
sidered as a rough representation of the turbopump c
ing. Finally, the casing itself is attached to the engine v
springs and dampers (k3, k4, c3 andc4), in our case the
engine is considered as ground, completely fixed.

To determine the dynamic behavior, we have to defi
the allowed degrees of freedom. As shown in Fig.
only five will be considered: one for the amplitude of th
first bending mode of the rotor beam (f) plus four for
each of the displacementse1, e2, e3 ande4. The bar rep-
resenting the casing will be considered rigid enough
preclude it from bending.

Figure 4. Degrees of freedom

We can take advantage of the intrinsic axial symmet
of this problem to upgrade our model from its on
dimensional formulation to a two dimensional one b
allowing the degrees of freedom to be complex quan
ties:

(1)

We can write the kinetic and potential energies of th
system in terms of this set of displacements. The pote
tial energy (V) is a combination of the elastic energy
stored in the beam as it bends and the energy stored
each one of the springs:
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The last term in (2) involves the introduction of a cross-
coupled interaction of the movements along perpendicu-
lar directions:yyz denotes the instantaneous eccentricity
of the rotor from its nominal position as a function of
the model’s five degrees of freedom. These forces typi-
cally appear in turbines due to uneven work extraction
caused, for example, by variations in the distance
between the turbine’s blade tips and the casing [10].kyz

is the cross-coupled stiffness coefficient which is found
to be a linear function of the torqueΓ generated by the
turbine and a constantβ known as the Alford coeffi-
cient:

(3)

whereR is the mean radius andH the blade height.

The kinetic energy (T) adds up contributions from the
movements of the rotor beam (i), each one of the discs
(ii ) and the casing (iii ), plus the inertias of the rotor
beam (iv), the discs (v) and the casing beam (vi) about
thez axis:

(4)

In (4), yb andyc are the rotor and casing beam positions
which are functions of the degrees of freedom:

(5)

As the HPFTP rotor is strongly held at its ends with
bearings, the gyroscopic coupling effects expected from
the precession movement of the discs can be neglected,
this is the reason for the absence of terms containing the
shaft speedωs in (4).

Damping can be added to the energy formalism b
introducing Rayleigh’s dissipation function [5], which
in our case, can be expressed simply as (the contribut
of a cross-coupled damping coefficient is neglected)

(6)

Defining the Lagrangian asL = T - V, we can use (2) and
(4) to construct the equations of motion

(7)

The generalized external forcesQj will be considered as
unbalance excitations generated in one or more discs

(8)

The amplitude of the complex vectorAj is the amount of
eccentricity in each one of the discs, and its phase in
cates the location of the center of mass with respect
the disc center.

The result of evaluating (7) is a coupled system of fiv
second order differential equations:

(9)

Where M, C, and K are the mass, damping and stiffne
matrices, which in our case are symmetric. We can fi
directly the normal vibrational modes (ωj) of the system
by solving the eigenvalue equation

(10)

Data used in this work is shown in tables 1, 2 and 3.

Table 1. Rotor beam data used in the simplified model
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c4ė4

2+ + +( )=

td
d

q̇j∂
∂L

qj∂
∂L

q̇ j∂
∂ℜ+– Qj=

Qf ωs
2

mj Aj

πxj

L
-------sin

j 1=

5

∑ iωst( )exp=

Qe1
ωs

2
mj Aj

L xj–
L

------------
j 1=

5

∑ iωst( )exp=

Qe2
ωs

2
mj Aj

xj

L
---

j 1=

5

∑ iωst( )exp=

Qe3
Qe4

0= =

M q̇̇ Cq̇ Kq+ + Q=

ω j
2 eig M 1– K( )[ ] j= for j 1…5=
4



-
of

lar

ce

-
n

-
tial
sed
is
o-
t
e

s

is

l-
Table 2. Disc data used in the simplified model - from [7]

Table 3. Stiffness constants

Table 4 contains the results of applying (10) to compute
the normal modes. Results from [7] are also shown. As
we can observe there is good agreement for some of the
most important modes of the HPFTP.

Table 4. Modal results

To apply the model developed in this section as a signal
generator we need to solve (9) in the time domain. This
can be done using a standard numerical integrator, and
finally identifying the real and imaginary parts of the
signal as its components iny andz respectively.

Fig. 5 shows the results from our model simulating the
ignition sequence for the HPFTP. The units have been

normalized to g’s (9.8 m/s2) to be expressed in the same
way as the output of accelerometers mounted in each
one of the positions denoted in Fig. 4. We have assumed
a β = 2 (precise measurements [10] have shown that it is
higher than that) to keep the damping constant values
relatively low (all four were set to 6000 Ns/m) and avoid
instabilities. The cross-coupled force was set between
the turbine stages. The time dependent torque and rotor
speed profiles were extracted from Rocketdyne’s engine
balance simulation [12], and for the HPFTP turbines

[10] H = 2.3cms andR = 12.9cms. The unbalance exci
tation force was established by displacing the center
mass of the turbine discs by 0.028mm in perpendicu
directions.

Figure 5. Accelerometer signals - modeled ignition sequen

3. Tracking/Identification Algorithm

As we mentioned in the introduction, tracking and iden
tification of signals is commonly used as a tool i
diverse fields, from image processing to satellite com
munications. Fourier analysis, wavelets and sequen
least-squares algorithms are among the methods u
for this purpose. In our case, the tracking of the signal
performed using a standard adaptive algorithm (pr
vided by [13] and modified by the first author) tha
works to minimize the difference between the sourc
signal s and its estimate . In a discretized form, thi
difference (called the signal error) is given by

(11)

wherek represents the time step. The signal estimate
updated according to

(12)

and the parameters are found after applying the fo
lowing adaptation law

Position (xj) Mass (mj) Inertia (Jj)

Pump 1st 0.0814 6.257 3.643
Pump 2nd 0.2087 6.257 3.643
Pump 3rd 0.3320 6.098 3.535
Turbine 2nd 0.4739 6.261 3.161
Turbine 1st 0.5386 7.994 3.307

m kg x10-2 kg-m-2

Constant Value (N/m)
k1 2.1x108

k2 1.5x108

k3 1.9x109

k4 2x109

Frequency
(Hz)

Frequency
from [7] Representation

228.8 287.6 Rotor translation + bending

418.2 424.0 Rotor rocking

514.9 513.6 Rotor bending + casing
translation

773.6 N.A. Rotor/casing rocking

1076.7 N.A. Rotor bending
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(13)

wheren is the number of modes to be tracked and iden-
tified in the signal, andwl is given by

(14)

the gainγ in the adaptation law is updated at each time
step with

(15)

The origin of (11-15) arises after considering a signal
generated by the addition ofn sinusoids, each with a
defined amplitude and frequency

(16)

Each one of the components in (16) can be expressed as
the solution of a discrete second order difference equa-
tion such as

(17)

where ts is the length of the time step. Using (17) we can

discretize and represent (16) as a solution of a 2nth order
difference equation, which in terms of its characteristic
polynomial can be written as

(18)

It can be shown, after expanding and grouping terms,

that the negatives of the parameters in (12) are the
coefficients of the powers ofv in (18). In this way we
can recover the values ofa after finding the roots of the
polynomial constructed by expanding (18). Given ts we
can get the frequenciesω from a directly.

If the error (11) is small enough compared with the
magnitude of the signal, then the estimates ofb will be
close to their real values and therefore, the frequencies
comprising the signal can be correctly identified.

It was found that it is important for the identification to
work that the sampling frequency (1/ts) be fixed close to

the Nyquist limit, i.e., the sampling frequency should b
twice the highest frequency present in the sampled s
nal. If the sampling frequency is increased above th
limit, the tracking algorithm will generate estimates o
theb parameters which correspond to spurious high fr
quencies. It is possible that these high frequencies w
allow a close estimation of the signal at the samplin
points exclusively, forcing the error (11) to be small, bu
missing completely the identification of frequencies i
the observed signal.

4. Tracking/Identification Examples

In this section we will discuss some preliminary resul
from the tracking algorithm discussed above. The si
nals analyzed were created with the HPFTP mod
described in section 2. The idea of using the dynam
model as a signal generator is to explore the behavior
the signal processing algorithm when confronted wi
data that resembles real signals from the engine. W
have identified three cases in which the utility of th
algorithm can be tested. In all instances, the signal an
lyzed was taken from an hypothetical acceleromet
sensor mounted near the outside end of the pump be
ing (pointp in Fig. 3) and aligned in they direction. This
location allows a direct measurement of . Measur

ments of vibrations in the rotor and the inner end of th
bearings are extremely difficult because of the co
straints in space available, implementation issues a
working environment, which can be extremely hars
On the other hand, we found that positionp may be
compatible with a series of new accelerometers dev
oped at the C. S. Draper Laboratory [14]. This device
are quite small as they are constructed with the same
icon-based technology of microcircuits, and their spec
fications appear to be adequate to work with typic
signals generated by rocket engine turbomachine
Since we will deal in these examples with multimoda
identification of at least 6 modes, we set the algorith
with n = 7 to include all of them, and as the larges
modal frequency is close to 1 kHz, we will fix the sam
ple frequency at 2 kHz in agreement with Nyquist.

4.1 Steady state signal at 100% RPL

In this example, the dynamic model was used to gen
ate a steady state signal containing 2 sec of data. T
rotor was set at an angular speed of 3580 rad/sec (5
Hz) which is the nominal for 100% RPL (rated powe
level) operation of the SSME. The generated signal, pl
its FFT PSD spectrum are shown in Fig. 6.

b̂lk b̂l k 1–( ) γ εkwl–= for l 1… n 1–( )=

b̂nk b̂n k 1–( ) γ εksk n––=
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v
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m

sk sk m+=

b̂
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Figure 6. Steady state signal @ 100% RPL

As the turbomachine is operating relatively far away
from resonance (the closest natural mode is at 515 Hz),
the natural mode components of the signal had been
damped out and their magnitudes are very small when
compared with the synchronous response. Nevertheless,
this signal was introduced to the algorithm and the
results are shown below.

Figure 7. Signal error: steady state @ 100% RPL

Fig. 7 shows how the error (11) approaches zero indicat-
ing tracking of the signal. In Fig. 8 we observe how the
frequencies are also identified (compare with table 4).
This result gives an indication of how sensitive this
algorithm can be to small signal components. On the
other hand, if we are just interested in tracking the syn-
chronous response, a lower (n) mode order can be used.

The identified frequency close to 925 Hz represents the
one at 1076 Hz in table 4. Its misplacement occurs
because its value is higher than the Nyquist limit and an
error emerged in the discretization procedure. This can
be avoided by taking a slightly larger sampling fre-
quency to include frequencies with higher values. More

interesting than this is the fact that the algorithm iden
fied this particular mode while it was invisible in the
FFT spectrum, even at the scale presented in the cl
up view of Fig. 6.

Figure 8. Frequency identification: steady state @ 100% R

4.2 Sudden change in RPL from 100% to 109%

In this case, a steady state signal is generated at 10
RPL. At t = 1 sec a sudden change in RPL to 109% ha
pens, increasing the rotor speed to 3800 rad/sec (6
Hz). The signal plus its FFT spectra before and after t
change are shown in Fig. 9.

Figure 9. Sudden increase in RPL at t=1 sec
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In this particular case we have eliminated the damping
and the cross-forces by settingβ = 0. The reason for this
is to avoid the decay of the normal modes and test the
ability of the algorithm to adjust to sudden external per-
turbations, such as the increase in rotor speed. The error
signature from the tracking algorithm for this example is
shown in Fig. 10.

Figure 10. Signal error: change in RPL at t=1 sec

Once more, tracking of the signal was performed and
also good identification of all the natural and synchro-
nous modes was obtained as depicted in Fig. 11. The
small jump in the modal frequency located at 229 Hz is
due to the fact that its amplitude remained very small as
compared with the rest of the signal components (as can
be seen in the spectra of Fig. 9 where the scale was set to
include all the modes: the ratio of the synchronous mode
amplitude to this natural mode amplitude is approxi-
mately 50.) The jump in the synchronous response fre-
quency from 570 to 605 Hz was sharply identified,
while natural frequencies other than the lowest where
correctly shown to remain unchanged.

Figure 11. Frequency identification: change in RPL at t=1 sec

4.3 Sudden change in the stiffness matrix

In this case (also without damping and cross-forces)
structural failure is simulated by changing the stiffnes

constant of bearing #1:k1 takes a value of 1x108 N/m at
t = 0.3 sec while the engine operates at 100% RPL. Th
kind of failure produces the signal and FFT spect
shown in Fig. 12.

Figure 12. Sudden change ofk1 at t=0.3 sec

Using (10), we can recalculate the natural frequenci
for t > 0.3 sec. The results are shown in table 5.

Table 5. Modal results with change ink1

Fig. 13 shows the error profile obtained after introdu
ing the signal generated into the algorithm.

Figure 13. Signal error: change ink1 at t=0.3 sec
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The error close to zero indicates positive signal tracking,
and identification was also well performed as indicated
by the results of Fig. 14.

Figure 14. Frequency identification: change in k1 at t=0.3 sec

It is interesting to note that with this particular change in
stiffness, the highest frequency dropped below 1 kHz,
putting it within the range imposed by Nyquist. In this
way, good identification was performed at the correct
frequency. It can be also noticed, how the frequency
close to 220 Hz was slowly identified; the reason can be
attributed once more to its relatively small amplitude as
compared with the rest of the modal responses.

4.4 Limitations of the algorithm

Despite the success shown in the preceding examples,
several limitations remain to be overcome, and work
continues in this direction:

(a) The algorithm performs poorly in periods when
conditions change in a continuous fashion, as for
example during start-up or power adjustment tran-
sients. It is interesting to observe thatsudden
changes are identified easily (secs. 4.2, 4.3).

(b) For applications in rocket engines, an assessment of
the degree of damping of the various modes is as
important as identification of their frequency. This
is because of the ever-present risk of negative-
damping instabilities fed from the extremely large
pool of free energy available in the fluids being
pumped or handled. Algorithms capable of identi-

fying small positive or negative damping factors ar
being therefore investigated.

(c) Robustness of the results needs to be improve
including resilience to unexpected modes or noise

5. Conclusions

Preliminary results have been presented on the path t
unified liquid rocket HM system utilizing both, thermo-
dynamic and vibratory data. An adaptive tracking algo
rithm was tested against simulated multi-mod
accelerometer data, and good results were obtained
steady or suddenly changing conditions. Require
extensions were discussed.
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