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AN INTERPOLATION METHOD FOR RIGID CONTACT

LENSES

GLEN DALE PEARSON JR., RAM IYER, AND STEVEN MATHEWS

Abstract. Custom designed rigid gas permeable lenses show promise for correcting the vision
of subjects with significant higher order aberration beyond defocus (myopia and hyperopia) and

astigmatism. Such aberrations could be coma, trefoil, spherical aberration, secondary astigmatism
etc. Although, there exist several techniques for designing the central part of the front optic zone

for subjects with significant higher order aberration, there does not exist a method for continuously

differentiable interpolation of the corrected region and the rest of the front surface of the lens. This
paper presents a method for C1 interpolation based on the solution of the biharmonic equation

with appropriate boundary conditions.

Key words. rigid contact lenses, higher order aberration, two dimensional cubic spline interpo-

lation, biharmonic equation.

1. Introduction

In the early 1960’s, it was Smirnov, who suggested that higher-order aberrations
can be corrected with customized lenses to compensate for aberrations in individual
eyes (page 19 in [1]). Aberrations in human vision, and optics, in general, may be
characterized by a variety of methods such as the point spread function, the optical
transfer function, Seidel polynomial expansion, or Zernike polynomial expansion
[2, 3, 4]. Of these, the Zernike polynomial representation is especially useful in
the design of contact lenses [2]. Traditionally, the majority of aberration correc-
tion methods dealt with a class called lower-order aberrations. This class consists
of refractive errors such as Myopia (nearsightedness), Hyperopia (farsightedness),
and Astigmatism. Glasses, contact lenses, and laser surgery can correct these types
of refractive errors. Unfortunately, the eye can suffer from many more types of
aberrations called higher-order aberrations, such as Coma, Trefoil, Spherical Aber-
ration, and Secondary astigmatism, which are characterized by the coefficients in a
Zernike expansion of the wavefront measured by an aberrometer. Such aberrations
are especially prominent in patients suffering from a disease called keratoconus and
significantly affects their vision [5].

In this paper, we present a method for C1 interpolation of the corrected region
on a customized rigid gas permeable contact lens with the rest of the front surface.
There exist several techniques for the design of the front surface for the correction
of aberrations [2, 6, 7, 8]. All of these methods will result in a modification of a
circular region of the trial lens directly in front of the pupil. This leads to an edge
dislocation at the boundary of the modified region, which leads to a C1 interpolation
problem. In this paper, we consider an aberration correction method by Guirao et.
al., which accounts for decentrations and rotations of the lens. We then interpolate
on the contact lens by solving the biharmonic equation with Dirichlet boundary
conditions. This procedure completes the process of designing the front surface of
the contact lens. We illustrate the process with data from a human subject.
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2. Wavefront aberration correction using a contact lens

A wavefront is a constant phase solution to the scalar wave equation. The causal
solution to the scalar inhomogenous wave equation is given by the Kirchhoff formula
[4, 11]. The solution for the particular case of a point source is a spherical wave.
Therefore, if a constant (in time) point light source is “placed” at the retina, the
solution to wave equation yields a constant (in time) spherical wave solution within
the vitreous humor of the eye. After passing through the lens in the eye, the opening
in the iris, the anterior chamber, and the cornea, the solution in the space in front
of the eye takes the form of a plane wave in the ideal case of no ocular aberrations
(see figure 2.1 in [2] for an illustration). An imperfect optical system consisting of
the cornea and lens will result in a wave that is not planar.

A device that “places” a point source at the retina and measures the reflected
wave coming out of the cornea is a Shack-Hartmann wavefront sensor. The wave-
front sensor shines a low-power laser through a patient’s cornea and iris onto the
retina. As the retina is a rough surface, the reflected light inside the eye is not a
ray travelling back along the optical axis but a spherical wave.

The patient wears a lens of known front and back surface radii while being tested
on a Sharck-Hartmann aberrometer. The back surface of the lens is designed by
an optometrist after a corneal topography measurement. It is desirable for the
patient to wear a trial lens during the aberrometry because the tear layer between
the cornea and the contact lens is optically active, which is unaccounted for in the
absence of the trial lens. Therefore, a lens designer only has to make corrections on
the front surface of the trial lens itself to cancel the aberrations after an aberrometry
measurement.

We present a simple lens design below based on the idea of equalizing optical
path lengths so that the reflected wave coming out of the trial lens is a plane wave.
Let W (x, y) be the function of the wavefront reflected from the trial lens, and let
L(x, y) be the thickness of the contact lens. Furthermore, let Lmax be the thickest
part of the contact lens, and ηglass be the refractive index of the contact lens glass
material. The expression

(1) L(x, y) = Lmax −
W (x, y)

ηglass − 1

yields a simple method for designing a contact lens [2, 8]. Unfortunately, decentra-
tions and rotations can occur each time the patient blinks (page 126 in [7]). As a
result, it is essential that equation (1) take decentrations and rotations into accoun-
t. Guirao, Cox, and Williams presented a method for optimizing the correction of
the aberrations of the eye with decentrations and rotations (pages 126-127 in [7]).
The method partially corrects each of the Zernike coefficients such that the average
variance of the residual wavefront aberration for each decentration can be mini-
mized. The interpolation method presented in the next section does not depend on
the aberration correction method used. Any method including Equation (1) or the
method in [7] may be used followed by an application of the interpolation method
described in this paper.

2.1. Wavefront representation using Zernike polynomials. In 1934, Fritz
Zernike introduced the concept of Zernike Polynomials. Unlike Seidel Aberrations,
Zernike Polynomials represents aberrations of any order on the unit disk. Since
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Zernike Polynomials are orthogonal and complete over the unit disk, we may repre-
sent each L2 function over the unit disk as a linear combination of Zernike Polyno-
mials (pages 28-29 in [12]). Below is a formal definition of the Zernike Polynomial
(as found in [13]).

Definition 1. A polynomial Zmn (ρ, θ) is called a Zernike polynomial if,

(2) Zmn (ρ, θ) =

{
Nm
n R

|m|
n (ρ) cosmθ for m ≥ 0,

−Nm
n R

|m|
n (ρ) sinmθ for m < 0,

where (ρ, θ) are in Polar Coordinates (0 ≤ ρ ≤ 1 and 0 ≤ θ ≤ 2π), n is the order
of the polynomial and m is the azimuthal frequency of the sinusoidal component.
In addition, Nm

n is the normalization constant given by

Nm
n =

√
2(n+ 1)

1 + δm
, where δm =

{
1 for m = 0,
0 for m 6= 0,

and R
|m|
n is the radial component given by

R|m|n (ρ) =

n−|m|
2∑
i=0

(−1)i(n− i)

i!

[
1

2

(
n+ |m| − i

)]
!

[
1

2

(
n− |m| − i

)]
!

ρn−2i.

Table 1 lists the first 10 Zernike Polynomials based on Definition 1. As the

Table 1. First 10 Zernike polynomials [13]

Order (n) Frequency (m) Polynomial [Zmn (ρ, θ)]
0 0 1

1 -1 2ρ sin θ

1 1 2ρ cos θ

2 -2
√

6ρ2 sin 2θ

2 0
√

3(2ρ2 − 1)

2 2
√

6ρ2 cos 2θ

3 -3
√

8ρ3 sin 3θ

3 -1
√

8(3ρ3 − 2ρ) sin θ

3 1
√

8(3ρ3 − 2ρ) cos θ

3 3
√

8ρ3 cos 3θ

Zernike polynomials form an orthogonal basis for the space of L2 functions on a
unit circle, we can express the continuous function W (x, y) as a linear combination
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of the Zernike Polynomials defined over the pupil region. Therefore,

(3) W (x, y) =

N∑
n=0

∑
m

αmn Z
m
n (x, y), where m = −n,−n+ 2, . . . , n.

Each Zernike coefficient αmn is related to a particular type of aberration [2]. The
types of aberrations that a person notices depends on the magnitude of each Zernike
coefficients. Through Table 2 we can see the types of aberrations corresponding to
the first few Zernike coefficients. As coefficients of second order and above affect
vision, the contact lens should be designed to minimize the Zernike coefficients
of second order and above as much as possible while taking into account possible
decentrations and rotations.

Table 2. First 20 aberrations corresponding to their Zernike co-
efficients (page 35 in [12])

Coefficient Aberration Coefficient Aberration Coefficient Aberration

α0
0 Piston α−1

1 Tilt α−2
2

Primary
astigmatism

α1
1 Tilt α0

2 Defocus

α2
2

Primary
astigmatism

α−3
3 Trefoil α−4

4 Quadrafoil α−5
5 Pentafoil

α−1
3

Primary
coma

α−2
4

Secondary
astigmatism

α−3
5

Secondary
trefoil

α1
3

Primary
coma

α0
4

Spherical
aberration

α−1
5

Secondary
coma

α3
3 Trefoil α2

4
Secondary

astigmatism
α1
5

Secondary
coma

α4
4 Quadrafoil α3

5
Secondary

trefoil
α5
5 Pentafoil

3. C1 interpolation using the biharmonic equation

Equation (1) or the Guirao, Cox, Williams [7] method yield a formula to calculate
the front surface of contact lens after correcting for wavefront aberrations. However,
the lens will contain corners and discontinuities along its surface after correction.
Upon decentration, the corners can cause optical errors (see Figure 3). To account
for this, we will smoothly interpolate the corrected and uncorrected regions of the
contact lens by solving the biharmonic equation with Dirichlet boundary conditions
(see Figure 4).

Consider the Laplacian in Polar Coordinates (page 78 in [14])

(4) 4 = 4r +
1

r2
4φ

where,

(5) 4r =
∂2

∂r2
+

1

r

∂

∂r
; 4φ =

∂2

∂φ2
.

The annular domain Da,b on which the biharmonic equation is defined is: Da,b =
{(r, φ) : 0 < a < r < b ; 0 ≤ φ ≤ 2π}. A function u defined on the annular domain
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Da,b is Biharmonic if and only if it satisfies the fourth-order equation:

(6) 42u(x) = 0 x ∈ Da,b.

Substituting (4) into (6) we obtain,

(7) 42u(x) =

(
4r +

1

r2
4φ
)(
4r +

1

r2
4φ
)
u(x) = 0.

Let h(r, φ) be a biharmonic function in the annulus where h(r, φ) ∈ C4(Da,b) ∩
C(D̄a,b) for every r with 0 < a < r < b . Therefore, we can express h(r, φ) as a
Fourier Series,

(8) h(r, φ) =
u0(r)

2
+

∞∑
k=1

[uk(r) cos(kφ) + vk(r) sin(kφ)].

Theorem 1 below considers behavior of an arbitrary function g(r, φ) as a function
of φ with r fixed, while Theorem 2 considers the case when φ is the fixed variable
and r is the independent variable. Finally, Theorem 3 applies to the solution of the
biharmonic equation.

Theorem 1. Let gr(φ) denote the function g(r, φ) where r ∈ [a, b] is fixed. For
each r ∈ [a, b], if gr is absolutely continuous and periodic on [0, 2π], and in addition,
∂gr
∂φ
∈ L2[0, 2π], then

(i) The Fourier Series for gr(φ) ∼
∞∑
k=1

[uk(r) cos(kφ) + vk(r) sin(kφ)] converges

absolutely.

(ii)
∂gr
∂φ

(φ) ∼
∞∑
k=1

[−k uk(r) sin(kφ) + k vk(r) cos(kφ)].

(iii)

∞∑
k=1

k2(u2
k(r) + v2

k(r)) <∞ for almost all uk(r) and vk(r).

(iv) If
∂gr
∂φ

(φ) ∈ C0,α[0, 2π], (that is ∃ L > 0 ∈ R 3
∣∣∣∣ ∂∂r gr(φ1) − ∂

∂r
gr(φ2)

∣∣∣∣ ≤
L|φ1 − φ2|α with 1

2 < α ≤ 1), then

∞∑
k=1

[−k uk(r) sin(kφ) + k vk(r) cos(kφ)]

converges absolutely.

The proof may be found in Sections 6.35 (page 138), 2.12 (page 15), 5.6 (page
125), and 6.3 (page 135) in Zygmund [15].

Theorem 2. Suppose f(r, φ) is continuous on [a, b]× [0, 2π] and differentiable with

respect to r for each φ ∈ [0, 2π], with either (a)
∂

∂r
f(r, φ) a continuous function on

(a, b)× [0, 2π] or (b)
∂

∂r
f(r, φ) ∈ L2[0, 2π] and

∣∣∣∣ ∂∂r f(r, φ)

∣∣∣∣ ≤ K(φ), where K(φ) is

an integrable function on [0, 2π], and suppose f(r, φ) ∼
∞∑
k=1

[uk(r) cos(kφ) + vk(r) sin(kφ)].

Then, for r ∈ (a, b), we have

(i)

(9)
∂

∂r
uk(r) =

∫ 2π

0

∂

∂r
f(r, φ) cos(kφ)dφ,
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(10)
∂

∂r
vk(r) =

∫ 2π

0

∂

∂r
f(r, φ) sin(kφ)dφ,

(11)
∂

∂r
f(r, φ) ∼

∞∑
k=1

∂

∂r

[
uk(r) cos(kφ) + vk(r) sin(kφ)

]
.

(ii) Furthermore, if
∂

∂r
f(r, φ) ∈ C0,α[0, 2π] with 1

2 < α ≤ 1), then

∂

∂r
f(r, φ) ∼

∞∑
k=1

∂

∂r
[uk(r) cos(kφ) + vk(r) sin(kφ)], where the series converges

absolutely.

The proof follows from the Leibniz formula and section 6.3 (page 135) of Zyg-
mund [15].

Theorem 3. Let h(r, φ) be a biharmonic function in the annulus Da,b where h(r, φ)
can be represented as in (8). Suppose h(r, φ) is absolutely continuous on [a, b] ×
[0, 2π], periodic in φ (that is, for almost ever r, h(r, 0) = h(r, 2π)), four times
differentiable in both r and φ, and 42

φh(r, φ),42
rh(r, φ) ∈ C0,α[0, 2π] with 1

2 < α ≤
1), then we have

(i) 42
φ h(r, φ) ∼

∞∑
k=1

42
φ[uk(r) cos(kφ) + vk(r) sin(kφ)],

(ii) 4r4φ h(r, φ) ∼
∞∑
k=1

4r4φ[uk(r) cos(kφ) + vk(r) sin(kφ)],

(iii) 42
r h(r, φ) ∼ 42

r

(
u0(r)

2

)
+

∞∑
k=1

42
r[uk(r) cos(kφ) + vk(r) sin(kφ)],

(iv) 4φ4r h(r, φ) ∼
∞∑
k=1

4φ4r[uk(r) cos(kφ) + vk(r) sin(kφ)], where all the series

converge absolutely.

In addition, uk(r) and vk(r) satisfy the equations

(12)

(
4r −

k2

r2

)2

uk(r) = 0 k = 0, 1, 2, 3, . . .

(13)

(
4r −

k2

r2

)2

vk(r) = 0 k = 1, 2, 3, . . .

for 0 < a < r < b and 0 ≤ φ ≤ 2π

The proof of the first three items follow from Theorems 1 and 2, while the proof
of the last item involves straightforward calculations and may be found in [8].

Equations (12) and (13) obtained in Theorem 3 are Ordinary Differential E-
quations that we can obtain solutions for as seen in the following Proposition (see
Proposition 7.12 on page 90 in [14]).

Proposition 4. Given equations (12) and (13) where k ≥ 0, we have the following
solution subspaces:

(i) If k = 0, then
H0 = span{1, r2, ln r, r2 ln r}.

(ii) If k = 1, then
H1 = span{r−1, r, r3, r ln r}.
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(iii) Else if, k ≥ 2, then
Hk = span{r−k, r−k+2, rk, rk+2}.

For example, consider the set H1 = span{r−1, r, r3, r ln r} for k = 1. One can
show that any solution for k = 1 is a linear combination of the spanning set for H1

described in Proposition 4 by showing that: [8]

(1) each function u in the spanning set satisfies the equation
(
∆r − 1

r2

)2
u(r) =

0,
(2) the functions in the spanning set are linearly independent, and
(3) using the fact from linear ordinary equations theory that a homogeneous

fourth order linear ordinary differential equation has at most 4 linearly
independent solutions (see page 87 of [9], or Chapter 3 of [10]).

Therefore, the spanning set for each k described in Proposition 4 is a basis for
the corresponding solution subspace for Equations (12) and (13), and we may find
general solutions to Equations (12) and (13). The boundary conditions to the
Dirichlet Problem yields a particular solution to (12) and (13), which is the C1

interpolation between the corrected and the uncorrected regions of the contact
lens.

Let fa and ga be continuous functions of the angular variable defined on the
interior circle Cint(0; a). In addition, let fb and gb be continuous functions of the
angular variable on the exterior circle Cext(0; b). We require the Dirichlet Problem
to satisfy the following conditions (see section 7.3.2 on page 92-93 in [14]):

(i) 42h(r, φ) = 0 ∀ 0 < a < r < b and 0 ≤ φ ≤ 2π,

(ii) h(a, φ) = fa(φ),
∂h(a, φ)

∂r
= ga(φ), h(b, φ) = fb(φ),

∂h(b, φ)

∂r
= gb(φ).

As h, fa(φ), fb(φ), ga(φ), and gb(φ) are continuous functions, then we can rep-
resent them as a Fourier Series. Therefore, we have

(14) fa(φ) =
f0,a

2
+

∞∑
k=1

[fk,a cos(kφ) + f̄k,a sin(kφ)],

(15) ga(φ) =
g0,a

2
+

∞∑
k=1

[gk,a cos(kφ) + ḡk,a sin(kφ)],

(16) fb(φ) =
f0,b

2
+

∞∑
k=1

[fk,b cos(kφ) + f̄k,b sin(kφ)],

(17) gb(φ) =
g0,b

2
+

∞∑
k=1

[gk,b cos(kφ) + ḡk,b sin(kφ)].

Substituting equations (14) through (17) into the Dirichlet boundary conditions,
we obtain the following four equations (page 94 in [14]):

(i)
u0(a)

2
+

∞∑
k=1

[uk(a) cos(kφ) + vk(a) sin(kφ)] =
f0,r
2

+

∞∑
k=1

[fk,a cos(kφ) + f̄k,a sin(kφ)].

(ii)
u
′
0(a)

2
+

∞∑
k=1

[u
′
k(a) cos(kφ) + v

′
k(a) sin(kφ)] =

g0,a
2

+

∞∑
k=1

[gk,a cos(kφ) + ḡk,a sin(kφ)].

(iii)
u0(b)

2
+

∞∑
k=1

[uk(b) cos(kφ) + vk(b) sin(kφ)] =
f0,b
2

+

∞∑
k=1

[fk,b cos(kφ) + f̄k,b sin(kφ)].
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(iv)
u
′
0(b)

2
+

∞∑
k=1

[u
′
k(b) cos(kφ) + v

′
k(b) sin(kφ)] =

g0,b
2

+

∞∑
k=1

[gk,b cos(kφ) + ḡk,b sin(kφ)].

Therefore, our desired solution is given by

h(r, φ) =
u0(r)

2
+

∞∑
k=1

[uk(r) cos(kφ) + vk(r) sin(kφ)],

where, for k = 0 we have, u0(a) = f0,a = c0,1 + c0,2a
2 + c0,3 ln a+ c0,4a

2 ln a,
u0(b) = f0,b = c0,1 + c0,2b

2 + c0,3 ln b+ c0,4b
2 ln b,

u′0(a) = g0,a = 2 · c0,2a+ c0,3
1
a

+ c0,4(a+ 2a ln a),

u′0(b) = g0,b = 2 · c0,2b+ c0,3
1
b

+ c0,4(b+ 2b ln b).
For k = 1 we have,
u1(a) = f1,a = c1,1a

−1 + c1,2a+ c1,3a
3 + c1,4a ln a,

u1(b) = f1,b = c1,1b
−1 + c1,2b+ c1,3b

3 + c1,4b ln b,
u′1(a) = g1,a = −c1,1a−2 + c1,2 + 3 · c1,3a2 + c1,4(ln a+ 1),
u′1(b) = g1,b = −c1,1b−2 + c1,2 + 3 · c1,3b2 + c1,4(ln b+ 1),
v1(a) = f̄1,a = d1,1a

−1 + d1,2a+ d1,3a
3 + d1,4a ln a,

v1(b) = f̄1,b = d1,1b
−1 + d1,2b+ d1,3b

3 + d1,4b ln b,
v′1(a) = ḡ1,a = −d1,1a−2 + d1,2 + 3 · d1,3a2 + d1,4(ln a+ 1),
v′1(b) = ḡ1,b = −d1,1b−2 + d1,2 + 3 · d1,3b2 + d1,4(ln b+ 1).

For k ≥ 2 we have,
uk(a) = fk,a = ck,1a

−k + ck,2a
−k+2 + ck,3a

k + ck,4a
k+2,

uk(b) = fk,b = ck,1b
−k + ck,2b

−k+2 + ck,3b
k + ck,4b

k+2,
u′k(a) = gk,a = −k · ck,1a−k−1 + (−k+ 2) · ck,2a−k+1 + k · ck,3ak−1 + (k+ 2) · ck,4ak+1,
u′k(b) = gk,b = −k · ck,1b−k−1 + (−k + 2) · ck,2b−k+1 + k · ck,3bk−1 + (k + 2) · ck,4bk+1,
vk(a) = f̄k,a = dk,1a

−k + dk,2a
−k+2 + dk,3a

k + dk,4a
k+2,

vk(b) = f̄k,b = dk,1b
−k + dk,2b

−k+2 + dk,3b
k + dk,4b

k+2,
v′k(a) = ḡk,a = −k · dk,1a−k−1 + (−k+ 2) · dk,2a−k+1 + k · dk,3ak−1 + (k+ 2) · dk,4ak+1,
v′k(b) = ḡk,b = −k · dk,1b−k−1 + (−k + 2) · dk,2b−k+1 + k · dk,3bk−1 + (k + 2) · dk,4bk+1.

Let Φk,j , where j = 1, 2, 3, 4, be the set of four functions spanning the solution subspace
Hk. Therefore, we have

(18)


Φk,1(a) Φk,2(a) Φk,3(a) Φk,4(a)

Φ
′
k,1(a) Φ

′
k,2(a) Φ

′
k,3(a) Φ

′
k,4(a)

Φk,1(b) Φk,2(b) Φk,3(b) Φk,4(b)

Φ
′
k,1(b) Φ

′
k,2(b) Φ

′
k,3(b) Φ

′
k,4(b)



ck,1 dk,1
ck,2 dk,2
ck,3 dk,3
ck,4 dk,4

 =


fk,a f̄k,a
gk,a ḡk,a
fk,b f̄k,b
gk,b ḡk,b

 ,
where Φk,j is the j-th basis function for the subspace Hk defined in Proposition 4. As

Φk,j , Φ
′
k,j , fk,r, gk,r, f̄k,r, and ḡk,r are known, we can solve for the unknown coefficients

ck,j and dk,j in equation (18) for j = 0, 1, 2, 3 and r = a, b.
As a result, we obtain a particular solution h(r, φ) to the biharmonic equation with

Dirichlet boundary conditions. This particular h(r, φ) will allow us to smoothly interpolate
the corrected and uncorrected regions of the contact lens as desired.

4. RESULTS

In this example, we will apply the smoothing algorithm to data from an actual patient.
An aberrometer reading of Patient X showed the first six order Zernike coefficients given
in Table 3.

Figure 1 shows a trial lens with a bevel and prism. The prism is for weighting one end
of the lens and this will reduce rotational motion. The bevel is a shaping of the corner
to look like a cone. This reduces the weight of the lens, which is increased by adding the
prism, and also reduces chances of injury to the lower eyelid.

A patient wearing a trial lens had Zernike coefficients as measured by a Shack-Hartmann
aberrometer produced and marketed by Wavefront Sciences Inc. The Zernike coefficients
for this patient X is shown in Table 3. Due to space limitations only the first 20 coefficients
are shown while the design used 27 coefficients, which is the maximum measurable with the
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Table 3. The first 20 non-dimensional Zernike coefficients for pa-
tient X with pupil radius = 1.7 mm

Order 1 Order 2 Order 3 Order 4 Order 5
×10−4 ×10−4 ×10−5 ×10−5 ×10−5

α−1
1 = 9 α−2

2 = 4 α−3
3 = −10 α−4

4 = 10 α−5
5 = −6

α1
1 = −5 α0

2 = −8 α−1
3 = 8 α−2

4 = −6 α−3
5 = 4

α2
2 = −4 α1

3 = −9 α0
4 = 2 α−1

5 = 3
α3
3 = 20 α2

4 = 5 α1
5 = 6

α4
4 = −0.9 α3

5 = −5
α5
5 = 2

−6
−4

−2
0

−6
−4

−2
0

2

mm
mm

Figure 1. Trial lens for patient X with bevel and prism. The
units for the axes are millimeters. The diameter of the lens is 8.7
mm, with front surface radius 7.39 mm. The prism angle is 1◦ and
the width of the bevel from the edge of the lens is 1mm.

aberrometer used. The Guirao, Cox, Williams correction method [7] yields the required
correction to be added to the lens as shown in Figure 2.

Figure 3 shows the base lens with the center part corrected. The pupil is concentric
with the lens. It may be observed that part of the lens that is sticking out and is recessed
in other parts as determined by Figure 2.

Figure 4 shows the base lens with the corrected region in the center and the smoothed
interpolation region. To solve for the interpolated region, we need to solve Equation (18).
It turns out that this equation is very badly conditioned, with singular values of the order
of 1015, 1012, 1 and 10−7 for each value of k ≥ 0. Therefore, a regularized equation was
solved using only the two largest singular values for each value of k.

Unlike the contact lens in Figure 3, this contact lens contains no corners or disconti-
nuities along the surface. Therefore, by solving the Biharmonic equation with Dirichlet
boundary conditions, our contact lens has a smooth surface.
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Figure 2. Required correction on the trial lens using the Guirao,
Cox, and Williams [7] method.

−6 −4 −2 0 2−10
0

10
0

0.5

1

1.5

2

2.5

3

mm
mm

mm

Figure 3. Trial lens with aberration correction. The dislocation
(discontinuity) in the surface may be seen near the top. This dis-
location falls in the functional optical zone of the lens.

5. Conclusion

In this paper, we have presented a method to smooth the regions of a contact lens
after a wavefront aberration correction is implemented. The correction method may vary
but the result of the correction is that there is a discontinuity in the surface of the lens,
which may cause injury to the eyelid in addition to causing a vision deficiency due to lens
motion. Our method involves solving the biharmonic equation with Dirichlet boundary
conditions. We have presented the results of the design for an actual patient with data
about wavefront aberrations obtained from a Shack-Hartmann aberrometer.
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Figure 4. Lens with aberration correction and C1 interpolation
between the corrected and uncorrected regions. There is no longer
any dislocation of the surface.
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