On J-normal matrices and symplectic diagonalizability

Ralph John De la Cruz*

August 29, 2014

Abstract

Define $J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} \in M_{2n}$ and let $\phi_J(A) = J^{-1}A^TJ$ for all $A \in M_{2n}$. A nonsingular matrix $P \in M_{2n}$ is called symplectic if $P\phi_J(P) = I$. A matrix $P \in M_{2n}$ is called J-normal if $P\phi_J(P) = \phi_J(P)P$. We show that a diagonalizable matrix A is symplectically diagonalizable if and only if A is J-normal. We characterize matrices which are symplectically equivalent or symplectically congruent to a diagonal matrix. These results are the symplectic analogues of the Takagi factorization and the singular value decomposition. We also show that a matrix A is both J-normal and normal if and only if A is diagonalizable by a matrix which is both symplectic and unitary.

1 Introduction

Denote by $M_{m,n}$ the set m-by-n complex matrices and we write $M_{m,m} \equiv M_m$ for brevity. Let $(\cdot, \cdot) : \mathbb{C}^n \times \mathbb{C}^n \rightarrow \mathbb{C}$. Then (\cdot, \cdot) is called sesquilinear if it is conjugate linear in the first component and linear in the second and (\cdot, \cdot) is called bilinear if it is linear in both components. Let \star be conjugate transposition if the form is sesquilinear, or let \times be transposition if the form is bilinear. It is known that if (\cdot, \cdot) is sesquilinear or bilinear, then there exists a unique matrix $S \in M_n$ such that for for all $x, y \in \mathbb{C}^n$, $(x, y) = x^*Sy$.

*Institute of Mathematics, University of the Philippines, Diliman, Quezon City 1101, Philippines; rjdelacruz@math.upd.edu.ph
In this case, we say that the form is defined by S. A bilinear or sesquilinear form (\cdot,\cdot) is degenerate if there exists a nonzero x such that $(x,y) = 0$ for all $y \in \mathbb{C}^n$, otherwise, it is called nondegenerate. It is known that the bilinear form or sesquilinear form defined by a matrix S is nondegenerate if and only if S is nonsingular. From here on, we only consider nondegenerate forms. For $A \in M_n$, define $\phi_S(A) : M_n \to M_n$ by

$$\phi_S(A) = S^{-1}A^*S.$$

Note that ϕ_S acts as the adjoint with respect to the form defined by S, in the sense that for every $A \in M_n$, $\phi_S(A)$ is the unique matrix satisfying $(Ax,y) = (x,\phi_S(A)y)$ for all $x, y \in \mathbb{C}^n$. The operator ϕ_S generalizes the idea of transpose and conjugate transpose and it also has properties analogous to those of these operators: ϕ_S is additive ($\phi_S(A + B) = \phi_S(A) + \phi_S(B)$) and is an antihomomorphism ($\phi_S(AB) = \phi_S(B)\phi_S(A)$). Given a form (\cdot,\cdot) defined by a matrix S, there are three sets of special matrices associated to (\cdot,\cdot) which we define as follows. The automorphism group G_S is the set

$$G_S = \{ M \in M_n : M \text{ is nonsingular and } M^{-1} = \phi_S(M) \} = \{ M \in M_n : (x,y) = (Mx,My) \text{ for all } x, y \in \mathbb{C}^n \} ,$$

the Jordan algebra J_S is the set

$$J_S = \{ M \in M_n : M = \phi_S(M) \} = \{ M \in M_n : (Mx,y) = (x,My) \text{ for all } x, y \in \mathbb{C}^n \} ,$$

and the Lie algebra L_S is the set

$$L_S = \{ M \in M_n : M = -\phi_S(M) \} = \{ M \in M_n : (Mx,y) = -(x,My) \text{ for all } x, y \in \mathbb{C}^n \} .$$

A matrix A is called S-normal if it commutes with $\phi_S(A)$. Note that G_S, J_S, and L_S are subsets of the set of S-normal matrices. We also have that when $S = I$, the set G_I is the set of unitary (orthogonal) matrices, the set J_I is the set of Hermitian (symmetric) matrices and the set L_I is the set of skew-Hermitian (skew-symmetric) matrices, if (\cdot,\cdot) is sesquilinear (respectively, if (\cdot,\cdot) is bilinear). The elements of G_S are called S-orthogonal matrices, the elements of J_S are also called S-symmetric matrices, and the elements of L_S are also called S-skew symmetric. We note that G_S is a group under multiplication and the sets J_S and L_S are additive groups.

We consider the following problem.
Problem 1 Let $S \in M_n$ be nonsingular and $A \in M_n$.

1. Is $A = PDP^{-1}$ for some diagonal D and S-orthogonal P?
2. Is $A = PDP^T$ for some diagonal D and S-orthogonal P?
3. Is $A = PDQ$ for some diagonal D and S-orthogonal matrices P and Q?

Note that when the form is sesquilinear and when $S = I$, the answer to Problem 1 (1) is yes if and only if A is normal; the answer to Problem 1 (2) is yes if and only if A is symmetric (this is more known as the Takagi factorization of symmetric matrices); and the answer to Problem 1 (3) is yes, and this is the well known singular value decomposition (SVD). A similar problem to Problem 1 (3) is in [5], where the authors considered the ‘structured’ SVD of matrices in J_J, where

$$J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}.$$

Recall that a ‘structured’ SVD of a matrix A in J_J is the usual SVD of A, where the factors are also in J_J.

We are also interested in the case when the form is bilinear and $S = J$. Note that J-orthogonal matrices are called symplectic matrices, and the real J-symmetric and J-skew symmetric matrices are called real skew-Hamiltonian and Hamiltonian matrices, respectively. It is known that the 2-by-2 symplectic matrices are exactly the 2-by-2 matrices with determinant one.

The following is vital for our results, a proof of which is in [3].

Proposition 2 Let $S = G_J, L_J$ or J_J and let $M, N \in S$. Then M and N are similar if and only if M and N are symplectically similar.

Let $A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \in M_{2m}$ and $B = \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} \in M_{2n}$ such that $A_i \in M_m$ and $B_i \in M_n$ for each i. As in [7], the expanding sum of A and B is defined to be

$$A \boxplus B = \begin{bmatrix} A_1 \oplus B_1 & A_2 \oplus B_2 \\ A_3 \oplus B_3 & A_4 \oplus B_4 \end{bmatrix} \in M_{2(m+n)}.$$

Note that $A \boxplus B$ is J-symmetric, J-skew symmetric, or symplectic if and only if both A and B are J-symmetric, J-skew symmetric, or symplectic, respectively. We also have that $A \boxplus B$ is similar to $A \oplus B$.

A matrix is similar to a J-symmetric matrix if and only if it is similar to $A \oplus A$ for some $A \in M_n$ [7]. A matrix is similar to a J-skew symmetric matrix if and only if it is similar to the direct sum of matrices of the form $A \oplus -A$ for some nonsingular matrix $A \in M_n$ or a nilpotent matrix whose odd sized Jordan blocks come in pairs ([4], Theorem 26). The following is a consequence of Proposition 2 and the preceding. We denote by $J_k(\lambda)$ the k-by-k upper triangular Jordan block corresponding to λ.

Theorem 3 Let $M \in M_{2n}$.

1. If M is J-symmetric, then M is symplectically similar to $A \oplus A^T$ for some $A \in M_n$.

2. If M is J-skew symmetric, then M is symplectically similar to $(A \oplus -A^T) \boxplus B$ for some nonsingular A such that $\sigma(A) \cap \sigma(-A) = \phi$ and B is nilpotent and J-skew symmetric.

Theorem 3 implies that if M is J-symmetric and diagonalizable, then M is symplectically similar to $A \oplus A^T$, where A is diagonalizable. Let X be nonsingular such that XAX^{-1} is diagonal. Observe that $P = X \oplus X^{-T}$ is symplectic such that $P(A \oplus A^T)P^{-1}$ is diagonal, and so M is symplectically diagonalizable.

2 Main Results

2.1 Symplectic Diagonalizability

Note that if $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in M_{2n}$, where $A, B, C, D \in M_n$, then

$$
\phi_J(M) = \begin{bmatrix} D^T & -B^T \\ -C^T & A^T \end{bmatrix}.
$$

Let M be diagonal. Observe that $\phi_J(M)$ is also diagonal and so M commutes with $\phi_J(M)$, that is, M is J-normal. Now if P is symplectic and M is diagonal, we have that PMP^{-1} is J-normal. This gives us the following.

Lemma 4 Let M be symplectically diagonalizable. Then M is J-normal.
Let $M \in M_{2n}$. If $M - \phi_J(M)$ is nilpotent, we immediately see that the converse of Lemma 4 is true. Recall that two diagonalizable matrices A and B are simultaneously diagonalizable, that is, there exists a nonsingular matrix X such that XAX^{-1} and XBX^{-1} are both diagonal, if and only if $AB = BA$.

Lemma 5 Let $M \in M_{2n}$ be diagonalizable and J-normal such that $M - \phi_J(M)$ is nilpotent. Then M is J-symmetric. Moreover, M is symplectically diagonalizable.

Proof. Let $M \in M_{2n}$ be diagonalizable and J-normal such that $M - \phi_J(M)$ is nilpotent. Since $\phi_J(M)$ is similar to M, we have that $\phi_J(M)$ is diagonalizable. Moreover, $M\phi_J(M) = \phi_J(M)M$ implies that there exists a nonsingular X such that $XMX^{-1} = D_1$ and $X\phi_J(M)X^{-1} = D_2$ are diagonal. We have that

$$X(M - \phi_J(M))X^{-1} = D_1 - D_2,$$

and since $M - \phi_J(M)$ is nilpotent, it follows that $D_1 - D_2 = 0$. We conclude that $M = \phi_J(M)$ and since M is diagonalizable and J-symmetric, Theorem 3 implies that M is symplectically diagonalizable.

(Email the author for the complete preprint)

References

