Ralph Sinkus

Ralph Sinkus
King's College London | KCL · Division of Imaging Sciences and Biomedical Engineering

About

331
Publications
43,716
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,260
Citations

Publications

Publications (331)
Article
Full-text available
MR elastography is a non-invasive imaging technique that provides quantitative maps of tissue biomechanical properties, i.e., elasticity and viscosity. Currently, hepatic MR elastography is deployed in the clinic to assess liver fibrosis in MAFLD patients. In addition, research has demonstrated MR elastography’s ability to non-invasively assess chr...
Article
Full-text available
Purpose To demonstrate the feasibility of hepatic 3D MR elastography (MRE) at 0.55 T in healthy volunteers using Hadamard encoding and to study the effects of concomitant fields in the domain of MRE in general. Methods Concomitant field effects in MRE are assessed using a Taylor series expansion and an encoding scheme is proposed to study the corr...
Article
Background Gliomas are highly invasive brain neoplasms. MRI is the most important tool to diagnose and monitor glioma but has shortcomings. In particular, the assessment of tumor cell invasion is insufficient. This is a clinical dilemma, as recurrence can arise from MRI‐occult glioma cell invasion. Hypothesis Tumor cell invasion, tumor growth and...
Article
Background Magnetic resonance elastography (MRE) can quantify tissue biomechanics noninvasively, including pathological hepatic states like metabolic dysfunction‐associated steatohepatitis. Purpose To compare the performance of 2D/3D‐MRE using the gravitational (GT) transducer concept with the current commercial acoustic (AC) solution utilizing a...
Article
The physics of shear waves traveling through matter carries fundamental insights into its structure, for instance, quantifying stiffness for disease characterization. However, the origin of shear wave attenuation in tissue is currently not properly understood. Attenuation is caused by two phenomena: absorption due to energy dissipation and scatteri...
Article
Full-text available
Glioblastoma is the most common and aggressive primary malignant brain tumor with poor prognosis. Novel immunotherapeutic approaches are currently under investigation. Even though magnetic resonance imaging (MRI) is the most important imaging tool for treatment monitoring, response assessment is often hampered by therapy-related tissue changes. As...
Article
Full-text available
Introduction: Magnetic resonance elastography (MRE) is a non-invasive method to quantify biomechanical properties of human tissues. It has potential in diagnosis and monitoring of kidney disease, if established in clinical practice. The interplay of flow and volume changes in renal vessels, tubule, urinary collection system and interstitium is comp...
Article
Full-text available
Objective: To investigate the feasibility of assessing the viscoelastic properties of the brain using magnetic resonance elastography (MRE) and a novel MRE transducer to determine the relationship between the viscoelastic properties and glymphatic function in neurologically normal individuals. Materials and methods: This prospective study includ...
Article
Background: Pancreatic ductal adenocarcinoma (PDAC) stromal disposition is thought to influence chemotherapy efficacy and increase tissue stiffness, which could be quantified noninvasively via MR elastography (MRE). Current methods cause position-based errors in pancreas location over time, hampering accuracy. It would be beneficial to have a sing...
Article
Full-text available
Hyaluronan (HA) is a key component of the dense extracellular matrix in breast cancer, and its accumulation is associated with poor prognosis and metastasis. Pegvorhyaluronidase alfa (PEGPH20) enzymatically degrades HA and can enhance drug delivery and treatment response in preclinical tumour models. Clinical development of stromal-targeted therapi...
Article
Full-text available
Diffusion MRI classically uses gradient fields that vary linearly in space to encode the diffusion of water molecules in the signal magnitude by tempering its intensity. In spin ensembles, a presumably equal number of particles move in positive and negative direction, resulting in approximately zero change in net phase. Hence, in classical diffusio...
Article
Full-text available
Background: Biomechanical tissue properties of glioblastoma tumors are heterogeneous, but the molecular mechanisms involved and the biological implications are poorly understood. Here, we combine magnetic resonance elastography (MRE) measurement of tissue stiffness with RNA sequencing of tissue biopsies to explore the molecular characteristics of t...
Article
Objectives: Three-dimensional (3D) magnetic resonance elastography (MRE) measures liver fibrosis and inflammation but requires several breath-holds that hamper clinical acceptance. The aim of this study was to evaluate the technical and clinical feasibility of a single breath-hold 3D MRE sequence as a means of measuring liver fibrosis and inflamma...
Preprint
Full-text available
Background: The biomechanical tissue properties of glioblastoma tumors are heterogeneous, but the molecular mechanisms involved and the biological implications are poorly understood. Here, we combine magnetic resonance elastography (MRE) measurement of tissue stiffness with RNA sequencing of tissue biopsies to explore the molecular characteristics...
Article
Background and purpose: Biomechanical changes in the brain have not been fully elucidated in Alzheimer's disease (AD). We aimed to investigate the effect of β-amyloid accumulation on mouse brain viscoelasticity. Methods: Magnetic resonance elastography was used to calculate magnitude of the viscoelastic modulus (|G*|), elasticity (Gd ), and visc...
Article
Magnetic resonance elastography aims at non-invasively and remotely characterizing the mechanical properties of living tissues. To quantitatively and regionally map in vivo the shear viscoelastic moduli, the technique must achieve proper mechanical excitation throughout the targeted tissues. Although it is straight forward, ante manibus, in close o...
Article
Purpose Understanding how mechanical properties relate to functional changes in glioblastomas may help explain different treatment response between patients. The aim of this study was to map differences in biomechanical and functional properties between tumor and healthy tissue, to assess any relationship between them and to study their spatial dis...
Article
Full-text available
The purpose of this study was to assess the diagnostic value of multifrequency MR elastography for grading necro-inflammation in the liver. Fifty participants with chronic hepatitis B or C were recruited for this institutional review board-approved study. Their liver was examined with multifrequency MR elastography. The storage, shear and loss modu...
Article
Full-text available
Elastography has become widely used clinically for characterising changes in soft tissue mechanics that are associated with altered tissue structure and composition. However, some soft tissues, such as muscle, are not isotropic as is assumed in clinical elastog-raphy implementations. This limits the ability of these methods to capture changes in an...
Article
Full-text available
Understanding the biomechanics of the heart in health and disease plays an important role in the diagnosis and treatment of heart failure. The use of computational biomechanical models for therapy assessment is paving the way for personalized treatment, and relies on accurate constitutive equations mapping strain to stress. Current state-of-the art...
Article
Full-text available
Solid tumour growth is often associated with the accumulation of mechanical stresses acting on the surrounding host tissue. Due to tissue nonlinearity, the shear modulus of the peri-tumoural region inherits a signature from the tumour expansion which depends on multiple factors, including the soft tissue constitutive behaviour and its stress/strain...
Preprint
Full-text available
PURPOSE Understanding how mechanical properties relate to functional changes in glioblastomas may help explain different treatment response between patients. The aim of this study was to map differences in biomechanical and functional properties between tumor and healthy tissue, to assess any relationship between them and to study their spatial dis...
Article
Full-text available
Background Noninvasive diagnostic methods are urgently required in disease stratification and monitoring in nonalcoholic fatty liver disease (NAFLD). Multiparametric magnetic resonance imaging (MRI) is a promising technique to assess hepatic steatosis, inflammation, and fibrosis, potentially enabling noninvasive identification of individuals with a...
Preprint
Full-text available
Understanding the biomechanics of the heart in health and disease plays an important role in the diagnosis and treatment of heart failure. The use of computational biomechanical models for therapy assessment is paving the way for personalized treatment, and relies on accurate constitutive equations mapping strain to stress. Current state-of-the art...
Article
Full-text available
Experimental autoimmune encephalomyelitis (EAE) is a model of multiple sclerosis (MS). EAE reflects important histopathological hallmarks, dissemination, and diversity of the disease, but has only moderate reproducibility of clinical and histopathological features. Focal lesions are less frequently observed in EAE than in MS, and can neither be con...
Article
Full-text available
MR Elastography is a novel technique enabling the quantification of mechanical properties in tissue with MRI. It relies on a three-step process that includes the generation of a mechanical vibration, motion capture using dedicated MR sequences, and data processing involving inversion algorithms. If not properly tuned to the targeted application, ea...
Article
Full-text available
Changes in myocardial stiffness may represent a valuable biomarker for early tissue injury or adverse remodeling. In this study, we developed and validated a novel transducer-free magnetic resonance elastography (MRE) approach for quantifying myocardial biomechanics using aortic valve closure-induced shear waves. Using motion-sensitized two-dimensi...
Article
Full-text available
Background Changes in brain stiffness can be an important biomarker for neurological disease. Magnetic resonance elastography (MRE) quantifies tissue stiffness, but the results vary between acquisition and reconstruction methods. Purpose To measure MRE repeatability and estimate the effect of different reconstruction methods and varying data quali...
Article
Full-text available
Magnetic resonance elastography (MRE) is a phase contrast–based MRI technique that can measure displacement due to propagating mechanical waves, from which material properties such as shear modulus can be calculated. Magnetic resonance elastography can be thought of as quantitative, noninvasive palpation. It is increasing in clinical importance, ha...
Article
Full-text available
Background: Anti-angiogenic treatment of glioblastoma (GBM) complicates radiologic monitoring. We evaluated magnetic resonance elastography (MRE) as an imaging tool for monitoring the efficacy of anti-VEGF treatment of GBM. Methods: Longitudinal studies were performed in an orthotopic GBM xenograft mouse model. Animals treated with B20 anti-VEGF...
Article
Full-text available
Soft tissue mechanical characterisation is important in many areas of medical research. Examples span from surgery training, device design and testing, sudden injury and disease diagnosis. The liver is of particular interest, as it is the most commonly injured organ in frontal and side motor vehicle crashes, and also assessed for inflammation and f...
Article
No PDF available ABSTRACT The imaginary part of the complex shear modulus in tissue is not negligible. In liver the phase angle (ranging between 0 and 1) is about 0.2 while in kidney it is about 0.3. The presence of dispersion can have its origin either in a constitutive loss—i.e., absorption of energy—or in scattering of the wave and hence represe...
Article
Full-text available
The solid and fluid pressures of tumours are often elevated relative to surrounding tissue. This increased pressure is known to correlate with decreased treatment efficacy and potentially with tumour aggressiveness and therefore, accurate noninvasive estimates of tumour pressure would be of great value. We present a proof-of-concept method to infer...
Article
Full-text available
Several biological processes are involved in dementia, and fibrillar aggregation of misshaped endogenous proteins appears to be an early hallmark of neurodegenerative disease. A recently developed means of studying neurodegenerative diseases is magnetic resonance elastography (MRE), an imaging technique investigating the mechanical properties of ti...
Article
Full-text available
MR elastography allows non-invasive quantification of the shear modulus of tissue, i.e. tissue stiffness and viscosity, information that offers the potential to guide presurgical planning for brain tumor resection. Here, we review brain tumor MRE studies with particular attention to clinical applications. Studies that investigated MRE in patients w...
Article
Full-text available
In MR elastography (MRE), zeroth moment balanced motion‐encoding gradients (MEGs) are incorporated into MRI sequences to induce a phase shift proportional to the local displacement caused by external actuation. To maximize the signal‐to‐noise ratio (SNR), fractional encoding is employed, i.e., the MEG duration is reduced below the wave period. Here...
Article
Increased stiffness in the extracellular matrix (ECM) contributes to tumor progression and metastasis. Therefore, stromal modulating therapies and accompanying biomarkers are being developed to target ECM stiffness. Magnetic resonance (MR) elastography can noninvasively and quantitatively map the viscoelastic properties of tumors in vivo and thus h...
Article
Background Malignant tumors are associated with increased tissue rigidity, which can be an indicator of tumor progression. MR elastography (MRE) has the potential to study the variations of tumor mechanical properties. ex vivo studies have shown the ability of MRE to assess increase of mechanical properties; nevertheless, it has not yet been observ...
Article
Full-text available
Mapping neuronal activity noninvasively is a key requirement for in vivo human neuroscience. Traditional functional magnetic resonance (MR) imaging, with a temporal response of seconds, cannot measure high-level cognitive processes evolving in tens of milliseconds. To advance neuroscience, imaging of fast neuronal processes is required. Here, we sh...
Article
Full-text available
The current state‐of‐the‐art diagnosis method for deep tissue injury in muscle, a subcategory of pressure ulcers, is palpation. It is recognized that deep tissue injury is frequently preceded by altered biomechanical properties. A quantitative understanding of the changes in biomechanical properties preceding and during deep tissue injury developme...
Article
Full-text available
Background: Magnetic resonance elastography (MRE) is used to non-invasively estimate biomechanical tissue properties via the imaging of propagating mechanical shear waves. Several factors including mechanical transducer design, MRI sequence design and viscoelastic reconstruction influence data quality and hence the reliability of the derived biome...
Article
Full-text available
Characterisation of soft tissue mechanical properties is a topic of increasing interest in translational and clinical research. Magnetic resonance elastography (MRE) has been used in this context to assess the mechanical properties of tissues in vivo noninvasively. Typically, these analyses rely on linear viscoelastic wave equations to assess mater...
Article
Full-text available
Neuromuscular diseases are characterized by progressive muscle degeneration and muscle weakness resulting in functional disabilities. While each of these diseases is individually rare, they are common as a group, and a large majority lacks effective treatment with fully market approved drugs. Magnetic resonance imaging and spectroscopy techniques (...
Article
Full-text available
In order to acquire consistent k‐space data in MR elastography, a fixed temporal relationship between the MRI sequence and the underlying period of the wave needs to be ensured. To this end, conventional GRE‐MRE enforces synchronization through repeated triggering of the transducer and forcing the sequence repetition time to be equal to an integer...
Article
The purpose of this study is to investigate the use of fundamental rheological parameters as quantified by MR elastography (MRE) to measure liver fibrosis and inflammation simultaneously in humans. MRE was performed on 45 patients at 3 T using a vibration frequency of 56 Hz. Fibrosis and inflammation scores were obtained from liver biopsies. Biomec...
Article
Full-text available
Assessment of tissue stiffness is desirable for clinicians and researchers, as it is well established that pathophysiological mechanisms often alter the structural properties of tissue. Magnetic resonance elastography (MRE) provides an avenue for measuring tissue stiffness and has a long history of clinical application, including staging liver fibr...
Article
Full-text available
Magnetic resonance elastography (MRE) utilizes phase contrast magnetic resonance imaging (MRI), which is phase locked to externally generated mechanical vibrations, to measure the three‐dimensional wave displacement field. At least four measurements with linear‐independent encoding directions are necessary to correct for spurious phase contribution...
Article
Full-text available
As disease often alters structural and functional properties in tissue, the noninvasive measurement of material stiffness in vivo is desirable. Magnetic resonance elastography provides an approach to in vivo tissue characterization, using images of wave motion in tissue and biomechanical principles to reconstruct and quantify stiffness. Successful...
Article
Full-text available
Magnetic Resonance Elastography (MRE) is a non invasive imaging modality, which holds the promise of absolute quantification of the mechanical properties of human tissues in vivo . MRE reconstruction with algebraic inversion of the Helmholtz equation upon the curl of the shear displacement field may theoretically be flawless. However, its performan...
Article
The purpose of this work was to assess the diagnostic value of magnetic resonance elastography (MRE) in addition to MRI to differentiate malignant from benign breast tumors, and the feasibility of performing MRE on the whole breast. MRE quantified biomechanical properties within the entire breast (50 slices) using an 11 min acquisition protocol at...
Article
Full-text available
Deformation of skeletal muscle in the proximity of bony structures may lead to deep tissue injury category of pressure ulcers. Changes in mechanical properties have been proposed as a risk factor in the development of deep tissue injury and may be useful as a diagnostic tool for early detection. MRE allows for the estimation of mechanical propertie...
Data
Photograph of a rat positioned in the setup. Rat, Indentation and MRE component are indicated with arrows. In A, the indentor, put through the surface RF coil, positioned on top of TA muscle in rats hindleg, and the MRE piston attached at distal side of TA muscle are shown. Indentation component is removed in B, revealing the MRE component and surf...
Data
Detail of indentation and MRE actuator part of setup. Following parts are labeled: u-shaped profile (a), cutout for the rat’s groin (b), indentor (c), movable indentor holder (d), rotatable half arch (e), dovetail profile (f), spacer plates (g), MRE piston (h), drive rod (i), cantilever (j). (TIF)
Data
MRE pre and post indentation movie. Movie of a 16 offsets 900 Hz SE-EPI-MRE (A) before and (B) after indentation. (AVI)
Article
In this paper a fluid-structure interaction (FSI) experiment is presented. The aim of this experiment is to provide a challenging yet easy-to-setup FSI test case that addresses the need for rigorous testing of FSI algorithms and modeling frameworks. Steady-state and periodic steady-state test cases with constant and periodic inflow were established...
Article
Purpose To determine if healthy hepatic mechanical properties differ between pediatric and adult subjects at magnetic resonance (MR) elastography. Materials and Methods Liver shear mod